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Purpose: To elucidate the incidence of cytochrome P450 1B1 (CYP1B1) and myocillin (MYOC) mutations in Korean
patients with primary congenital glaucoma (PCG).
Methods: Genomic DNA was collected from peripheral blood of 85 unrelated Korean patients who were diagnosed as
having PCG by standard ophthalmological examinations and screened for mutations in the CYP1B1 and MYOC genes by
using bi-directional sequencing.
Results: Among 85 patients with PCG, 22 patients (22/85; 25.9%) had either one (n=11) or two (n=11) mutant alleles of
the CYP1B1 gene. Among 11 different CYP1B1 mutations identified, a frameshift mutation (c.970_971dupAT;
p.T325SfsX104) was the most frequent mutant allele (6/33; 18.2%) while p.G329S and p.V419Gfs11X were novel. In
the MYOC gene, two variants of unknown significance (p.L228S and p.E240G) were identified in two PCG patients (2/85;
2.4%), respectively. No patient had mutations in both genes.
Conclusions: Although CYP1B1 mutations are major causes of PCG in Korea, ~70% of PCG patients have neither
CYP1B1 nor MYOC mutations suggesting a high degree of genetic heterogeneity. Furthermore, the fact that 11 out of 22
patients had only one mutant allele in the CYP1B1 gene necessitates further investigation for other genetic backgrounds
underlying PCG.

Primary congenital glaucoma (PCG; OMIM 231300) is
a rare but severe form of glaucoma, which usually manifests
within the first year of life [1]. It is characterized by high
ocular pressure (IOP) resulting from an obstruction of
aqueous outflow from the anterior segment of the eye, and is
thought to be the result of an anatomic defect in the trabecular
meshwork and anterior chamber [2]. Increased IOP causes
irreversible damage to the optic nerve and can lead to
blindness if untreated. Affected children typically present
with photophobia, epiphora, corneal clouding, and
enlargement of globe or cornea. PCG occurs in both familial
and sporadic patterns [3]. Inheritance in familial cases is
usually autosomal recessive. Incidence of PCG is
geographically and ethnically variable, with the lowest
incidence (1:10,000) in the Western population and higher
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incidence in inbred populations, such as the Gypsy
subpopulation of Slovakia (1:1,250) [4]. Three loci have been
mapped for PCG (gene symbol GLC3), GLC3A (2p21;
OMIM 231300), GLC3B (1p36.2; OMIM 600975), and
GLC3C (14q24.3). The gene associated with GLC3A,
cytochrome P450, family 1, subfamily B, polypeptide 1
(CYP1B1; OMIM 601771), has been implicated in the
pathogenesis of PCG. Physiologic studies have confirmed that
mutations in CYP1B1 can cause disease; however, the
pathway by which CYP1B1 affects development of the
anterior chamber of the eye is unknown. The proportion of
PCG patients whose disease is due to CYP1B1 mutations is
generally high, but varies among populations, ranging from
100% in Slovakian Roma to ~10% in Mexico [4,5]. No
responsible gene has yet been identified at the GLC3B and
GLC3C loci [6].

Of particular interest, the myocilin gene (MYOC; OMIM
601652), the first open angle glaucoma gene, was initially
reported to interact with CYP1B1 through a digenic
mechanism, leading to juvenile open angle glaucoma [7].
However, MYOC has recently been implicated in the
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pathogenesis of some cases of PCG, either independently or
in association with CYP1B1 [8,9].

Herein, we screened both the CYP1B1 and MYOC genes
in 1 familial and 84 sporadic cases of PCG to identify the
underlying genetic mutations in a Korean population.

METHODS
Subjects: The study protocol adhered to the tenets of the
Declaration of Helsinki and informed consent was obtained
from patients or their responsible guardians. We conducted a
prospective multi-institutional collaborative study from
September, 2008 to February, 2010. A total of 85 unrelated
PCG patients were recruited from seven hospitals in South
Korea. Of the 85 cases, only one case was familial and the rest
were sporadic. Criteria for PCG diagnosis included IOP
≥21 mmHg in at least one eye; megalocornea; corneal edema/
clouding/ opacity; and glaucomatous optic nerve head damage
when examination was possible. Corroborating features
included symptoms of epiphora and photophobia. Patients
with other ocular or systemic anomalies were excluded.

To determine whether sequence variants identified were
polymorphic in Korean population, we used a panel of DNA

from 105 to 200 unrelated Korean individuals who attended
the clinic for conditions other than glaucoma.
Genetic analyses of CYP1B1 and MYOC genes: Blood
samples were taken from affected subjects and their parents
or relatives when possible. According to the manufacturer’s
instructions, genomic DNA was isolated from peripheral
blood leukocytes using the Wizard genomic DNA purification
kit (Promega, Madison, WI). Using the primers designed by
the authors (Table 1 and Table 2), entire coding exons and
flanking intronic sequences of CYP1B1 and MYOC were
amplified by polymerase chain reaction (PCR). Using the
BigDye Terminator Cycle Sequencing Ready Reaction kit
(Applied Biosystems, Foster City, CA), cycle sequencing of
CYP1B1 and MYOC was performed on the ABI 3100 Genetic
Analyzer (Applied Biosystems).

The Sequencher program (Gene Codes Corp., Ann Arbor,
MI) was used for analysis of sequence variations with
reference to the wild type sequence. Variations were described
according to guidelines established by the Human Genome
Variation Society (HGVS); the ‘A’ of the ATG codon for
translation initiation was numbered +1 and the 1st methionine

TABLE 1. PCR AND SEQUENCING PRIMERS FOR CYP1B1 GENE ANALYSIS.

Primer name Primer sequence (5'→3') Size (bp)
CYP1B1 1F TCTCCAGAGAGTCAGCTCCG 786
CYP1B1 1R GGGTCGTCGTGGCTGTAG
CYP1B1 2F ATGGCTTTCGGCCACTACT 787
CYP1B1 2R GATCTTGGTTTTGAGGGGTG
CYP1B1 3F AGTGAGAAATTAGGAAGCTGTTTTAGA 594
CYP1B1 3R GCCAGGATGGAGATGAAGAG
CYP1B1 4F CCCAAGGACACTGTGGTTTT 498
CYP1B1 4R AACGCTAATTGAGAAGCAGCA

                Annealing temperature, 60 °C for all primer pairs.

TABLE 2. PCR AND SEQUENCING PRIMERS FOR MYOC GENE ANALYSIS.

Primer name Primer sequence (5'→3') Size (bp)
MYOC 1F CTCTGTCTTCCCCCATGAAG 462
MYOC 1R AGCCTGGTCCAAGGTCAAT
MYOC 2F AGGCCATGTCAGTCATCCAT 478
MYOC 2R GCGCCTGTAGCAGGTCACTA
MYOC 3F GCAGCCTATTTAAATGTCATCCT 310
MYOC 3R TGGGTGGGCATTTACCCTAT
MYOC 4F TCCGCATGATCATTGTCTGT 467
MYOC 4R ACCCCAAGAATACGGGAACT
MYOC 5F ACTCGGGGAGCCTCTATTTC 461
MYOC 5R CTCCAGGGGGTTGTAGTCAA
MYOC 6F CCCAGAGAATCTGGAACTCG 478
MYOC 6R CGCCCTCAGACTACAATTCC

               Annealing temperature, 60 °C for all primer pairs.
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was numbered +1 (CYP1B1; NP_000095.2, MYOC;
NP_000252.1). We referred to the CYP1B1 and MYOC
mutation database, as well as the literature, to determine
whether a detected variation was novel or known [10]. When
a novel sequence variant was identified, 400 ethnically
matched normal control chromosomes were tested for the
presence of the variant.

To assess the extent of conservation of a novel variation
in CYP1B1 thought to be associated with disease, the deduced
amino acid sequence was assessed by aligning the protein
sequences of different mammalian species and of related
CYP1B1 family members using ClustalW2 software
(European Bioinformatics Institute, Hinxton, UK).

RESULTS
Mutational analysis of CYP1B1: Eleven different mutations
in 22 sporadic cases were identified by direct sequencing of
the CYP1B1 gene in 85 PCG probands (Table 3). In total, three
subjects were homozygous for a CYP1B1 mutation and 8

Figure 1. Conservation of p.Gly329 residues (numeration according
to human CYP1B1, as shown by protein alignment of several
CYP1B1 orthologs and other CYP family members, using
ClustalW2.

patients were compound heterozygous. Another 11 patients
were heterozygous for a CYP1B1 mutation. Among 11
different mutations, two novel variations, including a
missense variation and a 2-bp deletion (p.G329S and
p.V419Gfs11X), were identified. The p.G329S variation
occurs in a highly conserved residue (Figure 1) and
p.V419Gfs11X causes a frameshift, resulting in a premature
termination codon at residue 429 (Figure 2). These two
variations were not found in 400 normal chromosomes. The
remaining 9 mutations identified in our cohort have been
reported previously. They included the following missense
changes: c.985G>T (p.V320L), c.988_989delinsTT
(p.A330F), c.1090G>A (p.V364M), c.1103G>A (p.R368H),
c.1169G>A (p.R390H), and c.1331G>A (p.R444Q), along
with three deleterious mutations, including c. 55C>T
(p.Q19X), c.243C>G (p.T81X), and a two base pair
duplication in exon 2 (c.970_971dupAT; p.T325SfsX104).
p.T325SfsX104 was the most frequent allele (18.2%, 6/33)
and exhibited compound heterozygosity with p.T81X,
p.G329S, p.R390H, and p.R444Q, along with one case of
homozygosity (Table 3).

Eleven probands had only one identifiable mutant allele.
The mutations found in the heterozygous state were p.V320L,
p. A330F, p.V364M, and p.G329S.

In addition to 11 different mutations, 7 previously
reported polymorphisms, c.-13C>T, c.142C>G (p.R48G), c.
319C>G (p.L107V), c.355G>T (p.A119S), c.729G>C
(p.V243V), c.1294G>C (p.V432L), and c.1347T>C (p.
D449D) were detected (Table 4).
Mutational analysis of MYOC: Due to DNA availability,
direct sequencing of MYOC was performed for 79 out of 85
patients. As a result, 2 patients were shown to harbor possible
novel mutations in MYOC: c.683T>C (p.L228S) and c.
719A>G (p.E240G), respectively. Neither of the two
variations was found in 400 normal chromosomes. Five
previously described polymorphisms, including c.34G>C
(p.G12R), c.227G>A (p.R76K), c.624C>G (p.D208E), c.
730+35G>A, and c.1058C>T (p.T353I) were identified
(Table 5). In addition, two novel synonymous variations, c.
864C>T (p.I288I) and c.1110G>A (p.P370P), were each
found once in heterozigosity (0.6%, 1/158). These two
variations were not found in 400 normal chromosomes.

DISCUSSION
Herein, we report on mutation screening of the CYP1B and
MYOC genes in 85 and 79 PCG cases, respectively.
CYP1B1 screening revealed that about 26% of 85 patients had
at least one mutation, although half of them carried only one
mutant allele with the other mutation unidentified.
Homozygisity of the mutant allele was seen in only three cases
and compound heterozygosity in eight cases. Consistent with
other CYP1B1 mutation spectrum studies from populations
where consanguinity is uncommon, we observed a high
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degree of allelic heterogeneity and compound heterozygosity.
To the best of our knowledge, of 11 different CYP1B1
mutations identified in the 85 probands, two are novel.

p.G329S has been previously reported as a pathologic
mutation for hepatocellular carcinoma [11]; however, in this
study, it was reported as a new causative mutation for PCG in

a case of compound heterozygosity with p.T325SfsX104
along with one each case of homozygosity and heterozygosity.
p.G329S occurs at an amino acid position that is highly
conserved among other species and CYP1B1 family members
(Figure 1).

TABLE 3. CYP1B1 MUTATIONS IDENTIDIED IN KOREAN PROBANDS WITH PCG.

Patients Nucleotide change Amino acid change Hetero-/homozygous
PCG 11 c.[243C>G]+[1090G>A] p.[Y81X]+[V364M] Compound

heterozygous
PCG 17 c.[1090G>A]+[1090G>A] p.[V364M]+[V364M] Homozygous
PCG 18 c.[958G>T]+? p.[V320L]+[?] Heterozygous
PCG 20 c.[1090G>A]+? p.[V364M]+[?] Heterozygous
PCG 37 c.[958G>T]+? p.[V320L]+[?] Heterozygous
PCG 40 c.[970_971dupAT]+[985G>A] p.[T325SfsX104]+[G329S] Compound

heterozygous
PCG 45 c.[55C>T]+[1103G>A] p.[Q19X]+[R368H] Compound

heterozygous
PCG 46 c.1090G>A+? p.[V364M]+[?] Heterozygous
PCG 49 c.[243C>G]+[970_971dupAT] p.[Y81X]+[T325Sfs104X] Compound

heterozygous
PCG 53 c.[958G>T]+? p.[V320L]+[?] Heterozygous
PCG 54 c.[988_989delGCinsTT]+[1256_1257delTG] p.[A330F]+[V419GfsX11] Compound

heterozygous
PCG 55 c.[958G>T]+? p.[V320L]+[?] Heterozygous
PCG 6 c.[970_971dupAT]+[970_971dupAT] p.[T325SfsX104]+[T325SfsX104] Homozygous

PCG 69 c.[988_989delGCinsTT]+[1331G>A] p.[A330F]+[R444Q] Compound
heterozygous

PCG 72 c.[988_989delGCinsTT]+? p.[A330F]+[?] Heterozygous
PCG 73 c.[958G>T]+? p.[V320L]+[?] Heterozygous
PCG 74 c.[988_989delGCinsTT]+? p.[A330F]+[?] Heterozygous
PCG 75 c.[970_971dupAT]+[1331G>A] p.[T325SfsX104]+[R444Q] Compound

heterozygous
PCG 78 c.[970_971dupAT]+[1169G>A] p.[T325SfsX104]+[R390H] Compound

heterozygous
PCG 84 c.[988_989delGCinsTT]+? p.[A330F]+[?] Heterozygous
PCG 86 c.[985G>A]+[985G>A] p.[G329S]+[G329S] Homozygous
PCG 100 c.[985G>A]+[?] p.[G329S]+[?] Heterozygous

        *Reported as a causative mutation for hepatocellular adenoma. Bold lettering is used to represent novel mutations identified in
        this study.

Figure 2. Direct sequencing of the CYP1B1 gene. p.V419GfsX11 is a novel deletion mutation detected in a patient in the compound
heterozygous state.
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Among all of the mutations, p.T325SfsX104 was most
frequently found (6/33 mutant alleles). It is interesting to note
that this disease-causing mutation has only been described in
a single Japanese patient with PCG [12]. We speculated that
p.T325SfsX104 might be recurrent among Korean individuals
with PCG, possibly with a founder effect.

Although the presence of heterozygous CYP1B1
mutations in 11 PCG patients does not match a typical
recessive pattern of inheritance in PCG, heterozygous
CYP1B1 mutations have been documented [13-17]. Mutations
such as p.T81N, p.Q229K, p.R368H, and p.R469W have been
described in PCG patients in the heterozygous state [13,
15-18]. The mutations found in the heterozygous state in this
study were p.V320L, p.A330F, p.V364M, and p.G329S. As
described above, p.G329S is a novel mutation. Since
p.V320L, p.A330F, and V364M, have not been reported in
heterozygous state [12,19-22], additionally, we performed
population screening involving 210 control chromosomes. As
a result, p.A330F and p.V364M were not found in any normal
chromosome and p.V320L was occurred in less than 1%
(2/210). As only the coding region of CYP1B1 was sequenced,
we thought that it might be due to mutations in (1) the
CYP1B1 promoter or other non-coding regions; (2) genes
linked to other PCG loci, such as GLC3B and GLC3C; (3)
other glaucoma genes such as MYOC, resulting in digenic
inheritance; or (4) some other unknown genes causing
glaucoma. The presence of double heterozygous variants,
CYP1B1 and MYOC, has recently been described in one PCG
case; however, the role of possible digenism in disease
causation is yet to be established [8,23]. PCG-causing
mutations in latent transforming growth factor beta binding
protein 2 (LTBP2; OMIM 602091) have recently been
identified in Pakistani, European Gypsy, and Iranian patients
[24,25]. LTBP2 lies very close to GLC3C on chromosome 14,
but is not strictly within the locus, as originally defined [26].
As such, it is not clear whether LTBP2 is the PCG-associated
gene within GLC3C, or whether the gene within this locus
remains unknown and LTBP2 defines a fourth locus for PCG.
Observation of unrelated PCG cases with a heterozygous
mutation also raises the possibility that the mutation might be
a dominant cause of PCG [16].

Due to ethnic differences and geographical variations, the
prevalence of CYP1B1 mutations varies in different patient
populations, from ~10% in Mexico [5], to 20% in Indonesia
[27], Australia [28], China [29], and Japan [19]; around 40%
in Turkish patients [13]; approximately 50% in Brazil [20] and
France [16]; and about 100% in consanguineous Saudi
Arabian [30] and Slovakian Gypsy [4] patients. Although
direct comparison between these studies is difficult, it should
be noted that the proportion of CYP1B1 mutations accounting
for PCG in our population is similar to those in Japan and
China. These data also illustrate that the contribution of
defects in this gene varies significantly among human
populations, which highlights the need for analysis of large
groups of PCG from different ethnic backgrounds to ascertain
the role of this gene in a specific population.

Direct sequencing of the coding region of MYOC was
performed in 79 of all PCG probands. As a result, two variants
of unknown significance (p.L228S and p.E240G) were
identified in two PCG patients (2/79; 2.5%). These variations
lead to replacement of leucine by serine at codon 228
(p.L228S) and glutamic acid by glycine at codon 240
(p.E240G), respectively, which involve a highly conserved
region among other species (Figure 3). Neither p.L228S nor
p.E240G was found in 400 control chromosomes, suggesting
that these two variations are possible mutations. In one
previous study, MYOC mutations accounted for 2.6% (3/116)
of Chinese patients with PCG [29].

Of the polymorphisms identified, p.G12R and p.T353I
have been previously reported as possible POAG causing
mutations; however, they were found in control subjects in
this study (Table 5). p.G12R, which has been reported as a
possible disease-causing mutation in a sporadic northern
Chinese case of POAG [31], was found in control subjects in
a few studies [32,33]. p.T353I was found in a Korean family
with POAG [34], a Japanese patient with POAG [35],
seventeen Chinese individuals with POAG [31-33,36], and
one Indian patient with juvenile-onset POAG [37]. However,
this change has been also detected in normal individuals
[33,36,38]. Therefore, p.G12R and p.T353I are rare
polymorphisms rather than disease-causing mutations;
however, it remains possible that they affect the risk of POAG.

Reference SNP number

rs2617266
rs10012

rs56339482
rs1056827
rs9341249
rs1056836
rs1056537
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Location Nucleotide change Amino acid
change

Allele frequency (%)

Intron 1 5′UTR-13C>T NA C 130/170 (76.5) T 40/170 (23.5)
Exon 2 c.142C>G p.R48G C 130/170 (76.5) G 40/170 (23.5)
Exon 2 c.319C>G p.L107V C 166/170 (97.6) G 4/170 (2.4)
Exon 2 c.355G>T p.A119S G 129/170 (75.9) T 41/170 (24.1)
Exon 2 c.729G>C p.V243V G 165/170 (97.1) C 5/170 (2.9)
Exon 3 c.1294G>C p.V432L G 23/170 (13.5) C 147/170 (86.5)
Exon 3 c.1347T>C p.D449D T 27/170 (15.9) C 143/170 (84.1)

               Abbreviations: SNP, single nucleotide polymorphism; UTR, untranslated region; NA, not applicable.

TABLE 4. SINGLE NUCLEOTIDE POLYMORPHISMS OF CYP1B1 IDENTIFIED IN KOREAN PROBANDS WITH PCG.
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To the best of our knowledge, this is the first report on
molecular genetic analysis of PCG in the Korean population.
One fourth of Korean PCG probands were found to have at
least one CYP1B1 mutation and half of the patients with
CYP1B1 mutations had only one mutant allele. We observed
a high degree of allelic heterogeneity in our cohort with
CYP1B1 mutations. Only two patients carried possible
MYOC mutations. These results suggest that CYP1B1 should
be regarded as a potential primary cause of PCG in Korea.
However, due to the relatively low contribution of CYP1B1
to Korean PCG, it is suggested that other genetic factors
remain to be identified and that further work is needed to
identify the causative genes.
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