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Abstract

The recent RAF inhibitor trial with PLX4032/RG7204 in late-stage mutant B-RAF melanoma 

patients has been lauded as a success story for personalized cancer therapy since short-term 

clinical responses were observed in the majority patients. However, initial responses were 

followed by subsequent tumor re-growth and a subset of patients showed intrinsic resistance. Bi-

directional translational efforts are now essential to determine the mechanisms underlying 

acquired/secondary and intrinsic resistance to RAF inhibitors.
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Introduction

Metastatic dissemination of melanoma occurs to multiple sites and is associated with 2–16% 

ten-year survival expectancy depending on the site of metastasis. Melanoma is a paradigm 

for chemo-resistance and treatment options have remained limited for decades. Standard 

chemotherapy such as the alkylating agent, dacarbazine, elicits a response rate of only 10% 

(Flaherty, 2010). Immunotherapy options, such as high dose interleukin 2 and anti-CTLA4 

(ipilimumab), have shown improved median survival benefits but again response rates are 

low and the side effects of these treatments can be severe. Recently, targeted therapies have 

been designed to selectively kill melanoma cells harboring mutations in the serine-threonine 

kinase, B-RAF. Approximately 50–60% of melanomas harbor B-RAF mutations (Davies et 

al., 2002); the most frequent mutation is a valine to glutamic acid substitution at codon 600 
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(V600E). V600E, as well as V600K/D mutations, lead to constitutive B-RAF kinase activity 

and elevate downstream signaling through the MEK-ERK1/2 pathway. B-RAFV600E is a 

driver mutation that promotes melanoma growth and survival in a variety of pre-clinical 

models and inhibiting B-RAF expression/activity results in growth inhibition and cell death 

(Dhomen and Marais, 2007). However, B-RAFV600E mutations are also found in benign 

nevi and, hence, are not sufficient for malignancy.

PLX4032/RG7204 was recently developed as a potent ATP-competitive inhibitor of RAFs, 

with modest preference in vitro for mutant B-RAF and C-RAF compared to wild-type B-

RAF (Bollag et al., 2010). However, in cells it acts as a selective inhibitor of mutant B-RAF 

signaling (Bollag et al., 2010) probably due to the higher ATP Km(app) for B-RAFV600E in 

mM cellular concentrations of ATP compared to wild-type forms of B-RAF and C-RAF 

(Hatzivassiliou et al., 2010). In a Phase 1 trial, 81% of melanoma patients harboring B-

RAFV600E showed objective tumor regression by RECIST criteria following PLX4032 

treatment (Flaherty et al., 2010). Additionally, a second ATP competitive RAF inhibitor, 

GSK2118436, is showing promising results in Phase 1 trials with a 63% response rate 

observed in mutant B-RAFV600E/K/D patients (Kefford et al., 2010). However in the 

PLX4032 trial, the clinical effects were temporary and the length of tumor-free survival 

averaged seven months (Smalley and Sondak, 2010). Furthermore, 19% of patients in the 

Phase 1 trial did not show tumor regression greater than 30% (Flaherty et al., 2010). Thus, 

acquired and intrinsic modes of resistance are hampering the clinical efficacy of PLX4032. 

It is critical to understand the mechanisms of resistance in order to optimize PLX4032 

activity and improve the response rates, as well as the duration of clinical benefit. Emerging 

evidence from patient-matched pre-treatment and post-relapse samples (Table 1) highlights 

that multiple mechanisms underlie resistance to PLX4032 and likely other RAF inhibitors 

(Figure 1). These mechanisms can be divided into four non-mutually exclusive categories: 

re-activation of RAF-MEK signaling, alterations in ERK1/2-regulated cell cycle events, 

activation of alternative signaling pathways, and chromatin-regulating events.

Re-activation of the RAF-MEK signaling pathway

The most direct route for a melanoma cell to by-pass RAF inhibitor action is by reactivation 

of the RAF-MEK-ERK1/2 pathway. Indeed, enhanced phosphoERK1/2 levels have been 

observed in mutant B-RAF melanoma cell lines that have acquired resistance to RAF 

inhibitors (PLX4032 and its non-clinical tool compound PLX4720, AZ628, and SB-590885) 

through continued culture in the presence of drug (Montagut et al., 2008; Paraiso et al., 

2010, Tap, 2010 #10676; Villanueva et al., 2010). A notable difference (at least to-date) 

from resistance mechanisms to Abl kinase and EGFR inhibitors in chronic myelogenous 

leukemia and non-small cell lung cancer, respectively, is the lack of secondary gate-keeper 

mutations in the drug target. While mutation of the gatekeeper amino acid, threonine 529, 

renders B-RAFV600E resistant to PLX4720 in cell-based assays (Whittaker et al., 2010), 

deep sequencing analysis indicates that threonine 529 or other sites in B-RAF are not 

mutated in resistant tumor samples and cell lines (Nazarian et al., 2010; Tap et al., 2010). 

Rather up-regulation/amplification of other MAP3Ks appears to be a more prominent 

mechanism. C-RAF and A-RAF are paralogs of B-RAF. Settleman and colleagues showed 

that elevated C-RAF expression was associated with mutant B-RAF melanoma cell 
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resistance to AZ628 (Montagut et al., 2008). Depletion of C-RAF from melanoma cells with 

acquired resistance to AZ628 enhanced susceptibility to RAF inhibition. Conversely, C-

RAF over-expression in parental cells enhanced resistance to AZ628 (Montagut et al., 

2008). AZ628-resistant cells displayed enhanced susceptibility to geldanamycin, an agent 

that reduces RAF protein levels by targeting its chaperone protein, HSP90 (Montagut et al., 

2008). A modest increase in C-RAF expression was also observed in melanoma cells 

acquiring resistance to SB-590885 (Villanueva et al., 2010). In these studies, the authors 

propose that RAF isoform switching mediates the maintenance of elevated ERK1/2 

phosphorylation. This notion is based on the requirement for molecular depletion of A-RAF 

and C-RAF, as well as SB-590885 (which is more potent against B-RAF compared to A- or 

C-RAF) to completely inhibit ERK1/2 phosphorylation in SB-590885-acquired resistant 

cells (Villanueva et al., 2010). However, it should be noted that maintenance of 

phosphoERK1/2 levels in these studies co-occurs with acquisition of alternative resistance 

pathways (see below).

Further support for a role for C-RAF in resistance to B-RAF inhibition was provided by 

Garraway and colleagues utilizing a cDNA screen for kinases that prevent PLX4720-

mediated cell growth arrest (Johannessen et al., 2010). This screen also identified a non-

RAF MAP3K, Cot1/Tpl2/MAP3K8. Cot1 activated MEK-ERK1/2 signaling in PLX4720-

treated mutant B-RAF cell lines and cell lines endogenously expressing elevated levels of 

Cot1 were intrinsically resistance to PLX4720 (Johannessen et al., 2010). Importantly, Cot1 

mRNA levels were increased in two out of three relapsed tumors samples analyzed from 

PLX4032-treated patients, indicating relevance to the in vivo situation (Johannessen et al., 

2010). B-RAF inhibition in cell lines led to increased Cot1 levels, raising the possibility that 

Cot1 up-regulation is an adaptive response to PLX4032. However, RAF inhibitor-induced 

Cot1 up-regulation in cells was independent of mRNA alterations, indicating a distinct 

mechanism to the Cot1 up-regulation observed in patients.

The above studies highlight that compensatory up-regulation of MAP3Ks, such as Cot1, is 

likely to represent one mechanism of resistance to RAF inhibitors in patients. However, 

mechanisms upstream of MAP3Ks also appear likely in a subset of resistant tumors. 

Upstream of RAFs are the RAS GTPases that recruit RAFs to the membrane for activation. 

N-RAS is mutated in approximately 15% of melanomas in a manner that is mutually 

exclusive from B-RAF mutation. The potential role of RAS in altering the effects of RAF 

inhibitors was highlighted by a series of papers showing that RAF inhibitors lead to a 

paradoxical hyperactivation of MEK-ERK1/2 signaling in cells harboring mutant N-RAS/

high RAS activity (reviewed in (Kaplan et al., 2010)). Indeed, ectopic expression of mutant 

N-RAS in a mutant B-RAF colorectal cancer cell line nullifies the inhibitory effects of 

PLX4720 (Poulikakos et al., 2010), a result that is reproducible in B-RAFV600E melanoma 

cells (Johannessen et al., 2010; Nazarian et al., 2010). Knockdown of mutant N-RAS 

reverses the insensitivity of PLX4032-resistant cell lines and, importantly, N-RAS mutations 

were detected in two independent progressing tumors from a PLX4032-treated patient 

(Nazarian et al., 2010). Elevated RAS activity in the absence of RAS mutations was 

detected in cell lines with acquired resistance to PLX4032 indicating that events that 

promote elevated RAS signaling will likely elicit similar effects. Thus, the co-occurrence of 
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B-RAF mutations and RAS mutation/activation is likely to promote resistance to PLX4032 

and other RAF inhibitors.

Another possible mechanism to by-pass the activity of RAF inhibitors is through alterations 

in B-RAF effectors. MEK1 and 2 are phosphorylated and activated by B-RAF and a P124L 

mutation in MEK1 was identified through a MEK1 random mutagenesis screen that confers 

cellular resistance to the MEK inhibitor, AZD6244 (Emery et al., 2009). MEK1P124L 

expression conferred resistance to PLX4720 in cell based assays and was identified in a 

metastasis from a patient with acquired resistance to AZD6244, indicating the clinical 

relevance of this mutation. Interestingly, the combination of PLX4720 plus AZD6244 

overcame the resistance conferred by MEK1P124L expression. These and other data have 

prompted the use of MEK inhibitors in clinical trials enrolling mutant B-RAF melanoma 

patients who were previously treated with or without a BRAF inhibitor.

Alterations in ERK1/2-regulated cell cycle events

Mutant B-RAF signaling via ERK1/2 promotes G1/S cell cycle progression, at least in part, 

through control of cyclin D1 levels which enhance cyclin-dependent kinase (CDK) activity 

to promote hyper-phosphorylation of retinoblastoma (RB) (Bhatt et al., 2005). Studies using 

RB-null fibroblasts and tumor lines have demonstrated the requirement of an intact cyclin-

CDK-RB axis for MEK inhibitor prevention of cell cycle entry (D’Abaco et al., 2002). 

Approximately 25% of mutant B-RAF melanoma cell lines and tumor samples harbor 

amplifications in cyclin D1 (Smalley et al., 2008). Furthermore, over-expression of CDK4 

and cyclin D1 in a SB-590885-sensitive cell line promotes resistance to this RAF inhibitor 

(Smalley et al., 2008). An implication of this work is that mutant B-RAF patients with 

amplification of the cyclin D1 locus or other alteration on the cyclin-CDK-RB axis will 

likely be intrinsically resistant to PLX4032 and, thus, patients stratified on this basis may be 

predictive of the response.

Activation of alternative signaling pathways

Multiple laboratories have generated mutant B-RAF cell lines that have acquired resistance 

to RAF inhibitors but not all of these lines display re-activation of the ERK1/2 pathway 

(Montagut et al., 2008). These findings indicate that input from alternative, ERK1/2-

independent pathways induce RAF inhibitor resistance mechanisms. In the Garraway screen, 

protein kinase C-ε, protein kinase C-η, and ErbB2 individually provided resistance to 

PLX4720 in the absence of ERK1/2 re-activation (Johannessen et al., 2010). Studies from 

Nazarian et al. implicate the PDGFRβ receptor tyrosine kinase in the resistance to PLX4032 

(Nazarian et al., 2010). PDGFRβ is up-regulated in PLX4032 resistant patient biopsies. 

Furthermore, resistant cell lines with up-regulated PDGFRβ were dependent on PDGFRβ for 

proliferation and survival despite PLX4032 inhibition of the ERK pathway remained intact. 

Consistent with an ERK1/2-independent resistance mechanism, the growth of PDGFRβ-

overexpressing resistant cells was insensitive to MEK inhibitors. However, the mechanism 

underlying PDGFRβ-mediated resistance to PLX4032 is currently unclear.

Other studies implicate the PI-3 kinase-Akt signaling pathway in resistance to RAF 

inhibitors. Elevated Akt activity was detected in two out of three cell lines with acquired 
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resistance to PLX4032 (Tap et al., 2010). Additionally, enhanced Akt phosphorylation is 

acquired and associated with increased expression of IGF-1R or depletion of PTEN in 

relapsed tumor samples from PLX4032-treated patients (Villanueva et al., 2010). Consistent 

with activation of the Akt pathway providing resistance to RAF inhibitors, expression of 

constitutively active Akt3 inhibited PLX4720-induced apoptosis in 3D by preventing up-

regulation of the pro-apoptotic BH3-only protein, Bim-EL and Bmf, following B-RAF 

inhibition (Shao and Aplin, 2010). Notably, MEK inhibitors in combination with either an 

insulin-like growth factor receptor (IGF-1R) inhibitor or a PI-3K inhibitor induces cell death 

in RAF inhibitor acquired resistant cell populations (Villanueva et al., 2010). Importantly, 

these data have provided new strategies to overcome resistance to RAF inhibitors and the 

combination of MEK and Akt inhibitors is being pursued in clinical trials.

Chromatin-regulating events

Acquired mutations are rare events and time is required for the resistant cells to outgrow 

from the tumor mass. To account for the ability of cells to withstand drug toxicity in the 

short term, it has been proposed that reversible “drug-tolerant” states exist before the 

acquisition of permanent resistance (Sharma et al., 2010). Tolerance is drug-induced 

suggesting an adaptive response to targeted therapies. Additionally, tolerance is reversible 

and a fraction of tolerant cells revert to a sensitive state during a “drug holiday”. Thus, a 

second round of drug treatment will promote tumor cell death and the cycle will repeat until 

secondary mutations lead to permanent resistance. When challenging tumor cell lines with 

various anticancer agents, Settleman and colleagues detected sub-populations of tumor cell 

lines that display higher (>100 fold) drug tolerance than the remainder of the cells (Sharma 

et al., 2010). This reversible drug-tolerant state is transiently acquired through elevated 

IGF-1R signaling and chromatin remodeling mediated by enhanced expression of JARID1A, 

a histone demethylase (Sharma et al., 2010). JARID1A associates with histone deacetylases 

and treatment of M14 melanoma cells with inhibitors of either IGF-1R or histone 

deacetylases in combination with the RAF inhibitor, AZ628, prevents the emergence of 

AZ628 tolerant cells. Melanoma cells are known for their plasticity and these studies 

indicate that an adaptive chromatin regulation response to targeted therapies that may 

contribute ultimately to the acquisition of a resistant state.

Concluding Remarks

There is a clear need to build on the initial success of the PLX4032 trial in melanoma. As an 

increasing number of patient-matched pre-treatment, during treatment and post-treatment 

samples become available, state-of-the art genomic and proteomic approaches need to be 

utilized to reveal the prominence of the mechanisms described above and reveal novel ways 

to promote resistance to RAF inhibitors. The findings are translational and will drive the 

specification of next generation RAF inhibitors and combinational strategies to provide 

lasting treatment to melanoma sufferers.
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Figure 1. Multiple mechanisms of resistance to RAF inhibitors in mutant B-RAF cells
Resistance to RAF inhibitor (i) blockade of signaling through the MEK-ERK1/2 pathway 

can occur via acquired mutation in N-RAS (Q61K or Q61R) or up-regulation of receptor 

tyrosine kinases (RTK). These mechanisms enhance RAS activity, which promotes C-RAF 

dimerization and activation. MEK-ERK1/2 pathway activation can also occur through 

mutations in the B-RAF target, MEK1 (P124L), and via up-regulation of the MAP3K, Cot1. 

Activation of the parallel PI-3 kinase-Akt pathway is promoted by loss of PTEN expression/

activity often through mutation and up-regulation of RTKs including IGF-1R and possibly 

PDGFRβ. Re-activation of the ERK1/2 pathway and PI-3K-Akt signaling promote G1/S cell 

cycle events including cyclin D1 up-regulation and down-regulation of the cyclin-dependent 

inhibitor, p27Kip1. Additionally, these pathways promote survival events by promoting 

expression of the anti-apoptotic protein, Mcl-1, as well as down-modulating levels of the 
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pro-apoptotic BH3-only proteins, Bim-EL and Bmf. Alterations in the expression of these 

cell cycle and survival proteins may also promote resistance to RAF inhibitors.
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Table 1

Evidence from patient-matched pre-treatment and post-relapse samples

Gene Alteration(s) in patients samples Reference

Cot1 Enhanced Cot1 mRNA levels following PLX4032 treatment in 2 out of 3 patient samples analyzed (Johannessen et al., 2010)

IGF-1R Enhanced IGF-1R staining in relapse samples in 2 out of 5 patients compared to pre-treatment 
samples

(Villanueva et al., 2010)

N-RAS Two out of 16 relapse samples harbored acquired N- RAS mutations. The 2 tumors were independent 
metastases from the same patient.

(Nazarian et al., 2010)

PDGFRβ Four out of 11 PLX4032-resistant tumor samples displayed elevated PDGFRβ staining compared to 
patient-matched samples from the pre-treatment condition.

(Nazarian et al., 2010)
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