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Abstract
Purpose of review—Hepatic ischemia reperfusion injury (IRI) linked to leukocyte recruitment
and subsequent release of cytokines and free radicals remains a significant complication in organ
transplantation. The aim of this review is to bring attention to advances made in our understanding
of the mechanisms of leukocyte recruitment to sites of inflammatory stimulation in liver IRI.

Recent findings—Leukocyte transmigration across endothelial and extracellular matrix (ECM)
barriers is dependent on adhesive events, as well as on focal matrix degradation mechanisms.
While adhesion molecules are critical for the successful promotion of leukocyte transmigration by
providing leukocyte attachment to the vascular endothelium, matrix metalloproteinases (MMPs)
are important for facilitating leukocyte movement across vascular barriers. Among different
MMPs, MMP-9, an inducible gelatinase expressed by leukocytes during hepatic IRI, is emerging
as an important mediator of leukocyte traffic to inflamed liver.

Summary—It is generally accepted that the understanding of the molecular mechanisms
involved in leukocyte recruitment will lead to the development of novel targeted therapeutic
approaches for hepatic IRI and liver transplantation. Here, we review mechanisms of leukocyte
traffic in liver IRI and the role of some of the proteins that are thought to be important for this
process.
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INTRODUCTION
Hepatic ischemia reperfusion injury (IRI) is a pathophysiological process in which the
hypoxic insult is further accentuated by restoration of blood flow to the compromised organ.
Hepatic IRI occurs in all transplanted livers, in trauma, shock, and in elective surgery where
blood supply to liver is temporary interrupted. In human orthotopic liver transplantation
(OLT), IRI is a major determinant of postoperative allograft dysfunction and morbidity as it
causes up to 10% of early transplant failures, and increases the risk of acute and chronic
rejections [1–3]. Furthermore, liver IRI limits the supply of organs available for
transplantation [4;5*].
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The mechanisms of ischemic damage in the liver associated with leukocyte adhesion/
migration and with release of cytokines/free radicals play a central role in post-IR organ
injury. They lead to a decline in liver function and, potentially, to an increase in organ
immunogenicity, which may result in graft loss [2;6]. While the deleterious effects of
cytokines and reactive oxygen species (ROS) released by leukocytes have been fairly
documented, the mechanisms of leukocyte recruitment to sites of inflammation in the liver
are far from being understood.

Overall, the process of leukocyte recruitment across endothelial and extracellular matrix
(ECM) barriers involves complex cascades of adhesive and focal matrix degradation events
leading to leukocyte tethering and rolling, firm adhesion and, finally, transmigration from
the vasculature [7]. Liver is a venous driven vascular bed with slow flow rates and the
recruitment of leukocytes to inflamed liver may require distinct adhesive and deadhesive
mechanisms as compared with other organs with higher flow rates.

SELECTINS
The selectins (E-, L-, and P- selectin) are a family of glycoproteins that mediate low-affinity
endothelial-leukocyte interactions, thus promoting the tethering and rolling of leukocytes
through interactions with specific carbohydrate residues [8;9]. The three members of the
selectin family share a similar structure containing an N-terminal lectin-like domain, an
EGF-like domain, a variable number of consensus repeats, a single transmembrane domain,
and a short cytoplasmic tail [10].

L-selectin (CD62L) is constitutively expressed on many leukocytes [11]. It regulates
lymphocyte homing into the peripheral lymph nodes through interactions with peripheral
lymph node addressins (PNAds), which are constitutively expressed on high endothelial
venules (HEV) and induced in different chronically inflamed venules [12*]. P-and E-
selectins, on the other hand, are mostly inducibly expressed in both acutely and chronically
stimulated endothelium; P-selectin is also present on platelets [13;14]. The expression of
these molecules on the vascular endothelium is induced upon exposure to a variety of
proinflammatory stimuli; among the factors that induce selectin expression by endothelial
cells are shear stress, several cytokines, and complement activation products [15;16].
Leukocytes are considered to first tether to and roll on P- and E-selectins expressed on
activated endothelial cells [14]. Their roll on P- and E-selectins is mediated through
interactions with P-selectin glycoprotein ligand-1 (PSGL-1), and other carbohydrate ligands,
expressed on various leukocyte subsets [14;17–19*]. P- and E-selectins have been shown to
play important roles in leukocyte recruitment in a variety of pathological conditions [20–
22]; however, their role on leukocyte recruitment in liver IRI remains not fully understood.
While a number of reports show that P-selectin blockade is beneficial in liver IRI [23–25],
others minimize its role in the recruitment of leukocytes to sites of inflammation in liver
[26–28]. In this regard, studies performed in mice deficient in P-selectin, or in both P- and
E-selectins, demonstrated a minimal role for selectins in leukocyte recruitment into the
inflamed liver microvasculature [27]. A selectin/rolling dependent leukocyte recruitment
may not be necessary in the low shear conditions that prevail in the hepatic microvascular
bed [29;30*]. Thus, leukocytes moving slowly through the narrow sinusoids may be able to
interact directly with other adhesion molecules early expressed on the endothelium without
the need of an initial selectin-mediated arrest. In view of the observations that steatosis
further decreases sinusoidal blood flow by approximately 50% [31;32], this concept is
perhaps even more relevant for marginal fatty livers, which are highly susceptible to hepatic
IRI [33]. While there is an indication that selectin blockade have a beneficial role in liver
IRI, future studies are still needed to further explain the apparent minimal contribution of
selectins to leukocyte recruitment after inflammatory stimulation in liver.
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CHEMOKINES
Chemokines are a large family of mostly 8- to 12-kDa proteins, which are essential in
regulating directional leukocyte traffic [34]. They can be subdivided in four families
according to the position of their cysteine residues (reviewed in Charo et al. [35]. The
majority of chemokines belong to the CC (CCL1–28) and CXC (CXCL1-16) subfamilies.
The C and CX3C subfamilies have only 2 members (XCL1 and XCL2) and 1 member
(CX3CL1), respectively [36]. Exposure of leukocytes to chemokines released by inflamed
tissues is particularly important for the activation of leukocyte integrins [37], which are key
mediators of leukocyte firm adhesion to the vascular endothelium. There are a growing
number of reports supporting a role for CC and CXC chemokines in the liver
pathophysiology [38*]. Several CC chemokines have been shown to be major attractants for
T cells, B cells and monocytes [35]. CCL2 [also known as monocyte chemotactic protein-1
(MCP-1)] is one of the best characterized chemokines in liver; CCL2 is a ligand for the
receptor CCR2 and is secreted by several cells including hepatocytes, Kupffer cells and
hepatic stellate cells (HSCs) [39]. CCL2 is highly expressed in livers after toxic or biliary
injury and it has been shown that mice with a targeted deletion of the CCR2 gene develop
reduced levels of hepatic fibrosis [40]. CCL2 expression has been detected in relatively high
levels in hepatic IRI [41]. CXCL-1 [also known as keratinocyte-derived chemokine (KC)]
and CXCL-2 [also known as macrophage inflammatory protein-2 (MIP-2)] are considered to
be potent neutrophil chemoattractants in liver IRI [42;43]. The murine chemokines CXCL-1
and CXCL-2 bind to the chemokine receptor CXCR2 and are the functional murine
homologues of the human IL-8 [44;45]. In our own studies in liver IRI, we found a modest
correlation between neutrophil infiltration and the expression of the CXCL-2 chemokine
[46], which is primarily induced by TNF-α [47]. The CXCL9 and CXCL10 chemokines are
believed to mediate the infiltration of virus-specific T cells in liver [48] and their receptor
CXCR3 has been detected on liver infiltrating leukocytes [49]. The CXCL16 chemokine is
able to support lymphocyte adhesion by inducing conformational activation of β1 integrins,
and its receptor CXCR6 is expressed on liver infiltrating lymphocytes [50]. Moreover, a
recent study has provided evidence that CXCL16 may be involved in the recruitment of
inflammatory cells in cholestatic liver disease [51*]. During the last several years,
chemokines have emerged as important mediators in liver diseases; however, there is still
much to be learned about the complexity of chemokine networks involved in leukocyte
traffic in liver IRI.

INTEGRINS AND THEIR LIGANDS
It is well accepted that leukocytes have to acquire strong adhesion interactions to the vessel
wall to migrate across the vascular endothelium [52]. The firm adhesion of leukocytes to the
endothelium is mediated primarily by integrins. Integrins are αβ transmembrane adhesion
receptors that mediate cell-cell and cell-ECM adhesion [53]. Each integrin contains one α
and one β–subunit, and the 24 integrins identified in mammals are formed from
combinations of 18 α-subunits and 8 β-subunits [54*]. The most characterized integrins
expressed on leukocytes belong to the β1 and β2 integrin families. Of the β1 integrins, α4
(CD49d) has a central role; it interacts with the connecting segment-1 (CS-1), which is
located within the V region of fibronectin (FN) [55], and with a recently described segment,
PEDGIHELFP, located in the EIIIA fibronectin splicing domain [56]. In addition, it also
binds to the endothelial Vascular Cell Adhesion Molecule-1 (VCAM-1: QIDSPL),
recognizing yet a different sequence [57]. The α4β1 integrin, in the absence of the α5β1
integrin, is also able to interact with the RGD sequence, which is present in the cell adhesion
domain of FN [55]. Cellular FN is a key ECM protein expressed by sinusoidal endothelial
cells very early after liver injury [58], and its vascular expression precedes leukocyte
recruitment in hepatic IRI [59]. In addition to its widely reported role on leukocyte adhesion
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and migration [60], FN is capable of mediating platelet adhesion [61], and may contribute to
complement activation [62;63]. VCAM-1, the other ligand for the α4β1 integrin, is mostly
detected on large-vessel endothelial cells after liver IRI. α4 integrin is particularly
interesting because of its ability to support both leukocyte rolling and adhesion [64]. Clinical
trials documented that a humanized α4-integrin antibody have been effective in
inflammatory conditions such as multiple sclerosis (MS) [65], and inflammatory bowel
disease [66]. Interestingly, it has been recently shown that the anti-α4 integrin antibody
infused into MS patients reduced the ex-vivo adhesion of their leukocytes to activated
human brain endothelial cells under flow conditions [67*]. Moreover, additional
experiments blocking CS1 FN and VCAM-1 interactions, showed that the ligand of α4
integrin on the activated endothelial cells was FN and not VCAM-1 [67]. Our studies in rats
also support an important role for the α4β1-CS1 FN interactions in leukocyte recruitment
after hepatic IRI [59;68]. Others, using human HSEC and flow-based adhesion in vitro
assays, have shown that lymphocyte adhesion to hepatic sinusoids can also be inhibited by
blocking VCAM-1 [69]. The β2 integrin family is considered to play a role in neutrophil
extravasation from the hepatic microcirculation into the parenchyma [70]. Intercellular
adhesion molecule-1 (ICAM-1), a major endothelial-cell ligand for β2 integrins, is
constitutively expressed on the liver vascular endothelium. However, hepatic IRI has been
shown to be only moderately or not at all improved by anti-ICAM therapies [71].
Observations that leukocyte recruitment within the hepatic sinusoids is likely selectin-
independent [30] have further attracted attention to integrins. However, there is still much to
be unveiled about the role of integrins and their ligands in hepatic IRI.

MATRIX METALLOPROTEINASES
Leukocyte transmigration across endothelial and ECM barriers is dependent on the
expression cell-activating chemokines, adhesive events, as well as on focal matrix
degradation mechanisms. Interactions between ECM components and cell adhesion
receptors regulate leukocyte functions; therefore, enzymatic degradation of ECM can alter
leukocyte behaviors [72]. Leukocyte migration across ECM proteins is dependent on matrix
degradation not only for facilitating “matrix permeability”, but also for generating ECM-
derived fragments, which are biologically active and can be highly chemotactic for
leukocytes [73]. The matrix metalloproteinases (MMPs) are a family of >24 specialized
zinc-dependent proteases that play key roles in the responses of cells to their
microenvironment [74–76*]. It is generally accepted that while MMP-facilitated degradation
of ECM proteins is essential in physiological processes, such as remodeling and tissue
repair, MMP inappropriate, prolonged, or overexpression has harmful consequences.

Among the different MMPs, a specific subset, the gelatinases, MMP-2 and MMP-9 (also
known as gelatinase A and B or 72-kDa and 92-kDa type IV collagenases, respectively) are
of particular interest. MMP-2 and MMP-9 are activated in damaged livers, and are thought
to play a key role in liver injury [77]. MMP-9 is an inducible gelatinase expressed mostly by
leukocytes, whereas MMP-2 is generally expressed constitutively. MMP-2 is thought to be
derived largely from stromal cells, and not usually expressed by leukocytes [78]. These
MMPs are characterized by the presence of fibronectin-like domain of three type II repeats,
which facilitate enzyme binding to ECM substrates [79]. Gelatinases are responsible for the
turnover and degradation of several ECM proteins, including FN and type IV collagen, the
major component of basement membranes [79;80]. Indeed, MMP-9 expression has been
linked to several pathological conditions that require disruption of the basement membrane,
such as tumor invasion [81], inflammation [82], arthritis [83], multiple sclerosis [84],
systemic lupus erythematosus [85], cerebral IRI [86], and traumatic brain injury [87].
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In human orthotopic liver transplantation, MMP-9 has been detected in the serum of patients
after surgery [88–90]; MMP-9 serum levels were found to be significantly increased in a
few minutes after reperfusion [89] and remained elevated for several days after
transplantation [88]. In rat livers, MMP-9 has been shown by our group to be upregulated
after 6h following OLT [68], and by others after 3h of IRI [91]. Further studies from our
laboratory have shown that MMP-9 is a critical mediator of leukocyte migration in liver IRI
[92*]. MMP-9 deficiency and specific anti-MMP-9 antibody therapy clearly depressed the
infiltration of CD4, Ly-6G, and Mac-1 leukocytes in periportal areas after IRI, significantly
ameliorating hepatic IRI. A beneficial effect for MMP-9 inhibition has also been recently
shown in a distinct model of small-for-size liver graft IRI [93*].

There is a growing body of evidence that, despite overlapping activities, MMP-2 and
MMP-9 may have distinct biological functions [94]. For example, it has been demonstrated
that MMP-2 and MMP-9 regulate platelet aggregation in opposite ways [95]. Moreover,
while MMP-2−/− mice develop exacerbated experimentally-induced arthritis and acute
colitis, MMP-9−/− mice show significantly reduced signs of these diseases [96;97]. The
substrate specificities of MMP-2 and MMP-9 are similar but not identical [98], and this may
account, in part, for the different roles that these gelatinases may have. In this regard, it has
been shown that whereas MMP-9 is not able of cleaving monocyte chemoattractant
protein-3 (MCP-3), MMP-2 is, and that the cleaved molecule acts as a general chemokine
antagonist depressing inflammation [99]. Moreover, the same MMP can have opposing
effects based upon the cell type in which is expressed [100].

The regulation of MMP activity is complex and it takes place at transcriptional, post-
transcriptional, and protein levels [72]. Tissue inhibitors of metalloproteinases (TIMPs)
regulate the proteolytic activity of MMPs. There are at least four identified members (TIMP
1–4) in the TIMP family, which vary in tissue specific expression and in their ability to
inhibit various MMPs [81]. TIMP-1, which inhibits MMP-9 with high affinity, has been
detected in the serum of OLT patients [89]. Our unpublished studies (Duarte & Coito)
suggest that TIMP-1 inhibition leads to increased levels of MMP-9 activity and leukocyte
recruitment after hepatic IRI. There is a growing body of evidence supporting the view that
cell attachment to ECM proteins and subsequent degradation are related events. Indeed,
studies from our laboratory have shown that fibronectin interactions with its two α4β1 and
α5β1 integrin receptors, expressed on leukocytes, are capable of regulating MMP-9
expression by leukocytes in hepatic IRI [68;101*]. Others have demonstrated that MMP-9
activation involves nitric oxide (NO)-mediated metalloproteinase S-nitrosylation S [86]. In
liver IRI, the inability of nitric oxide synthase (iNOS) deficient mice to generate iNOS-
derived NO profoundly inhibited MMP-9 activity as well as the recruitment of leukocytes
[102*]. In addition, we also found that pro-inflammatory cytokines such as IFN-γ and IL-6
are capable of regulating MMP-9 activity by cultured neutrophils [102]. It is important to
note that the ECM proteolysis mediated by metalloproteinases may not only facilitate
leukocyte migration, but may also lead to detachment of liver cells resulting in apoptosis, a
phenomenon called “anoikis” [103]. Indeed, MMP-9−/− deficient livers demonstrated
significantly decreased numbers of hepatocytes undergoing apoptosis as compared with
respective MMP-9 +/+ controls after IRI [102]. Thus, it is reasonable to postulate that
MMP-9+ leukocytes infiltrating livers after IRI can cause parenchyma cell detachment from
ECM and, consequently promote apoptosis/anoikis of these cells. Figure 1 illustrates the
concept of a central role for MMP-9 in hepatic IRI [68;92;101;102].

Taken together, these studies emphasize the need for further exploring the individual
functions of MMPs to support the development of potential therapeutic approaches to treat
successfully liver IRI and other inflammatory diseases.
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Conclusions
This review focuses primarily on the transmigration of leukocytes across the vascular
endothelium and ECM barriers during liver IRI, and on the proteins that are thought to be
important for this process. The understanding of leukocyte migration mechanisms remains a
major challenge for the development of targeted therapies to treat pathological conditions
that require modulation of immune responses [104–106]. While studies continue unraveling
the complexity of mechanisms potentially involved in leukocyte traffic in hepatic IRI, recent
developments support an important role for leukocyte-expressed MMP-9 as a key mediator
of leukocyte transmigration and activation leading to liver injury.
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Figure 1. Schematic representation of the role of MMP-9 in hepatic IRI
Interactions between activated α4β1 and α5β1 integrins expressed on leukocytes and
cellular fibronectin, newly synthesized by endothelial cells after injury, favor the induction
of MMP-9 expression by leukocytes. Cytokines and other pro-inflammatory factors, such as
iNOS-derived NO produced during the acute phase of IRI, can also mediate MMP-9
activation. MMP-9 assisted focal matrix degradation facilitates leukocyte transmigration
into the liver. In addition, MMP-9+ leukocytes infiltrating livers after IRI can cause
parenchyma cell detachment from ECM and, consequently promote apoptosis/anoikis of
these cells leading to tissue injury.
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