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Abstract
We sought to describe change in cardiorespiratory (CR) fitness over 2 years in those with early–
stage Alzheimer’s disease (AD) and nondemented aging and assess the relationship of CR fitness
with cognitive decline, brain atrophy and dementia progression. Individuals with early-stage AD
(n=37) and without dementia (n=53) attended clinical evaluations, cognitive and exercise tests,
and MRI at baseline and 2 years later. CR fitness was lower in those with AD over the study
period. Lower baseline CR fitness was associated with progression of dementia severity in AD.
Declining CR fitness over 2 years was associated with brain atrophy in AD, especially in the
parahippocampus. In nondemented participants, there was a trend for lower baseline fitness to be
related to cognitive decline. Both lower baseline CR fitness and declining CR fitness over 2 years
were associated with regional brain atrophy. We conclude that CR fitness is chronically reduced in
those with AD. Further in those with AD, CR fitness is associated with progression of dementia
severity and brain atrophy in AD, suggesting a link between progression of dementia severity and
cardiorespiratory health.
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INTRODUCTION
The benefits of physical activity for brain health are receiving increased attention.(Kramer et
al., 2005) In animals, exercise increases neuronal survival and resistance to brain insults,
(Carro et al., 2001; Stummer et al., 1994) promotes vascularization,(Black et al., 1990;
Isaacs et al., 1992) stimulates neurogenesis,(van Praag et al., 1999) and mobilizes gene
expression profiles predicted to benefit brain plasticity.(Cotman and Berchtold, 2002)
Additionally, running increases brain-derived neurotrophic factor levels in the hippocampus
and dentate gyrus and influences long-term potentiation.(Neeper et al., 1995; van Praag et
al., 1999) In humans, several randomized controlled trials have examined the cognitive
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effects of increasing activity in healthy, older adults and found a beneficial impact on
cognitive performance.(Dustman et al., 1984; Hassmen and Koivula, 1997; Hill et al., 1993;
Kramer et al., 1999; Williams and Lord, 1997) Several longitudinal studies report a positive
relationship between self-reported physical activity and cognitive function.(Laurin et al.,
2001; Pignatti et al., 2002; Weuve et al., 2004; Yaffe et al., 2001)

There is an increasing interest in assessing the therapeutic role of exercise and physical
activity in individuals with Alzheimer’s disease (AD). Recently, greater physical activity
and exercise in adults without dementia was associated with lower levels of AD biomarkers
such as Pittsburgh compound B binding.(Liang et al., 2010) Additionally, a recent report
showed that increased physical activity in those with dementia was associated with lower
mortality risk.(Scarmeas et al., 2010) Epidemiological studies suggest regular physical
activity may prevent cognitive decline and dementia, and in midlife is associated with a
reduced risk of developing mild cognitive impairment and AD.(Friedland et al., 2001; Geda
et al., 2010) One such study found that dancing, an aerobic activity, was associated with
lower risk for developing dementia.(Verghese et al., 2003) Others have demonstrated in
randomized controlled trials that aerobic fitness training improves cognitive performance in
mild cognitive impairment (Scherder et al., 2005; Baker et al., 2010)

Limitations to previous studies include a reliance on reported activity levels and a lack of
standard objective measures of physical activity. Physical activity and exercise influence
cardiorespiratory (CR) fitness, an objective measure of an individual’s peak level of oxygen
consumption during a graded exercise test. CR fitness is associated with lower rates of
cognitive decline in nondemented older adults (Colcombe and Kramer, 2003) but there is a
paucity of data on individuals with AD regarding the relationship of CR fitness with
dementia progression and structural brain change.(Rolland et al., 2008) We previously
reported cross-sectional data suggesting that CR fitness relates to whole brain (Burns et al.,
2008) and medial temporal lobe volume (Honea et al., 2009) in individuals with AD.
Additionally, we reported that CR fitness levels were lower in those with AD compared to
nondemented peers. (Burns et al., 2008) We now extend these findings by reporting the
results of a 2-year observational study of individuals with early-stage AD and nondemented
controls. We hypothesized that individuals with AD would have greater CR fitness decline
compared to non-demented control subjects and that CR fitness would be associated with
progression of dementia severity and brain atrophy.

METHODS
Sample

Participants were enrolled in the University of Kansas Brain Aging Project for baseline and
follow-up evaluations (mean follow-up time 2.1 [SD 0.2] years). Data used in these analyses
were from nondemented individuals (Clinical Dementia Rating [CDR] 0, n=53) and
individuals with early-stage AD (CDR 0.5 and 1, n=37) aged 60 years and older. Study
exclusions at baseline included neurologic disease other than AD with the potential to impair
cognition (i.e., Parkinson disease), current or past history of diabetes mellitus (defined as a
clinical diagnosis, use of an ant-diabetic agent, or 2-hour post-load serum glucose > 199),
recent history of cardiovascular disease (e.g. diagnosis of congestive heart failure, acute
coronary artery event or angina in the 2 years previous to the baseline evaluation), clinically
significant depressive symptoms, use of investigational medications, significant visual or
auditory impairment, systemic illness that may have impaired completion of the study,
current or past history of alcoholism, and MRI exclusions (e.g. pacemakers). Baseline
measures of these individuals have been reported previously as part of a larger cohort.(Burns
et al., 2008; Honea et al., 2009) Informed consent was obtained from all participants or their
legal representative as appropriate before enrollment into the study.
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Clinical assessment
The clinical assessment included a semi-structured interview with the participant and a
collateral source knowledgeable about the participant. Medications, past medical history,
education, demographic information and family history were collected from the collateral
source. Dementia status of the participant was based on clinical evaluation.(Morris et al.,
2001) Diagnostic criteria for AD require the gradual onset and progression of impairment in
memory and at least one other cognitive and functional domain.(McKhann et al., 1984) The
CDR (Morris, 1993) assesses function in multiple domains and was used to assess dementia
severity. The ratings in each of the six domains can be summed (“CDR Sum of Boxes”) to
expand the CDR scale. The range of Sum of Boxes extends from 0 (no impairment) to 18
(maximum impairment). A Global CDR score is derived from individual ratings in each
domain such that CDR 0 indicates no dementia, CDR 0.5 indicates very mild, CDR 1
indicates mild, CDR 2 indicates moderate, and CDR 3 indicates severe dementia.
Nondemented status was defined as having a Global CDR 0 at both timepoints. Individuals
with AD met criteria for very mild or mild dementia and had persistent impairment at follow
up (Global CDR 0.5 or greater). These methods have a diagnostic accuracy for AD of 93%
and have been shown to be accurate in discriminating those with mild cognitive impairment
who have early stage AD.(Berg et al., 1998; Morris et al., 2001)

Cognitive Assessment
A trained psychometrician administered a psychometric battery including standard measures
of memory, language, working memory, executive function, and visuospatial ability as
described previously.(Burns et al., 2008) All cognitive performance scores were
standardized (Z-score) to a larger set (n=82) of nondemented subjects (positive scores
represent better performance). The mean of each participant’s Z-scores was calculated to
create an index of Global Cognition, a composite measure of performance on the battery.
The Mini-Mental State Examination (MMSE) (Folstein et al., 1975) was also administered
to facilitate comparison across the literature.

Cardiorespiratory Fitness Assessment
CR fitness was assessed as peak oxygen consumption (VO2 peak; ml*kg−1*min−1) during a
symptom-limited, graded treadmill test using a modified Bruce protocol (Burns et al., 2008;
Hollenberg et al., 1998) and metabolic cart (Parvomedics, Sandy, UT) to measure the
concentration of oxygen and carbon dioxide in expired air as described previously.(Burns et
al., 2008) Oxygen consumption was averaged over 15-second intervals. VO2 peak was
considered the highest observed value during the exercise test. Individuals included in these
analyses terminated the test at voluntary exhaustion and met criteria for peak exercise
(respiratory exchange ratio of 1.0 or greater during the test).(Gibbons et al., 1997)

Neuroimaging
Baseline and follow-up whole brain structural MRI data were obtained using a Siemens 3.0
Tesla Allegra MRI Scanner. High-resolution T1 weighted anatomical images were acquired
(magnetization-prepared rapid gradient echo [MPRAGE]; 1×1×1mm3 voxels, repetition
time [TR]=2500, echo time [TE]=4.38ms, inversion time [TI]=1,100ms, field of
view=256×256, flip angle=8 degrees) and processed for voxel-based morphometric (VBM)
analysis. Every scan was checked for image artifacts and gross anatomical abnormalities;
eighteen data sets (9 from each group) were excluded.

We examined regional brain atrophy over the 2-year study period using SPM8 algorithms
(Wellcome Department of Cognitive Neurology, London, UK) running under MATLAB 7.2
(The MathWorks, Natick, MA, USA) on Linux. VBM was used to compare changes over
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time in regional tissue volume. In this technique, a deformation field characterizes the high
dimensional warp required to approximate baseline and follow-up T1 images within subject.
First, the follow-up MRI of a subject was rigidly registered onto the subject’s baseline image
to remove position differences. Then we used a high dimensional deformation field to warp
the follow-up T1 image to the baseline T1 image.(Ashburner et al., 2000) The result of this
deformation was a field map describing changes that occurred between baseline and follow-
up. The local volume change was measured in each voxel by computing the determinant of
the Jacobian matrix of the deformation field. The baseline gray matter segment and Jacobian
determinants (containing information about the follow-up image) were multiplied, voxel-by-
voxel, to form a product image, or gray matter volume change image (GM Change).

The baseline and follow-up images were segmented using the unified segmentation (“New
Segment”) model in SPM8.(Ashburner and Friston, 2005) To compare regional volume
change between groups it was necessary to spatially normalize the baseline segmentation
images to a common stereotactic space to ensure that the same voxel in different subjects
sampled an approximately corresponding neuroanatomic structure. To do this we used
DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie algebra),
which is a suite of tools for achieving more accurate inter-subject registration of brain
images, (Ashburner, 2007) increasing localization as well as sensitivity for VBM studies.

All subjects’ gray matter volume segmentations were imported into DARTEL and used to
create a customized template. This is a nonlinear image registration procedure, which
involves iteratively matching all the selected images to a template generated from their own
mean. This DARTEL template, as well as the estimated spatial normalization parameters, or
flow fields from the template creation, were normalized to Montreal Neurological Insitute
(MNI) standard space. The flow fields from the template creation, as well as parameters
from normalization to MNI space were then applied to the GM Change images. To preserve
the original tissue volumes, the normalized GM Change images were modulated and
smoothed with an 8mm isotropic Gaussian kernel to accommodate inexact spatial
normalization. The normalized, modulated and smoothed GM Change maps for each
individual were used in the statistical analysis outlined in the next section.

Statistical Analysis
Group differences in demographic measures (age, gender, race and education) were tested
with Student’s t or Chi square tests as appropriate. To test for differences between groups
and over the study period, Group (AD, nondemented) and Time (baseline, follow-up) effects
were examined using repeated measures ANOVA across the study for CR fitness (VO2
peak), cognition (Global Cognition score) and dementia severity (CDR Sum of Boxes)
corrected for age and gender.

To assess the relationship of baseline CR fitness (VO2 peak) with cognitive change (change
in Global Cognition score) and progression of dementia severity (change in CDR Sum of
Boxes; AD group only) we used a multi-step, hierarchical linear regression with CR fitness
as the predictor variable, separately for AD and nondemented groups. We adjusted all
analyses for age and gender. In AD analyses we also controlled for baseline CDR Sum of
Boxes (F=3.94; P<0.05 to retain age, gender, and CDR SB). Using the same multi-level
hierarchical approach, we then explored the relationship of change in VO2 peak (follow-up –
baseline) with CDR Sum of Boxes change and Global Cognition change as response
variables.

To assess the relationship of CR fitness with brain atrophy, we used a full-factorial multiple
regression model in SPM8 within each group (nondemented and AD separately). Baseline
and change in VO2 peak served as the variables of interest, and age and gender (and baseline
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CDR Sum of Boxes in the AD group only) served as covariates of no interest, similar to the
clinical model. The relationship between CR fitness and GM atrophy was considered
significant at p≤0.05 corrected for multiple comparisons (family wise error, [FWE] and
cluster size k>100), with trends presented at p<0.001, uncorrected.

We also examined the relationship of change in CR fitness with medial temporal cortex
atrophy in both the AD and nondemented groups. The medial temporal region of interest
was selected a priori as it is affected early in AD, (Braak and Braak, 1991) is considered a
valid biomarker of AD neuropathology,(Jack et al., 2002) and may be related to CR fitness.
(Honea et al., 2009; Tong et al., 2001) A mask of the region was created by combining
bilateral hippocampus and parahippocampus, derived from the Wake Forest University
Pickatlas (http://www.fmri.wfubmc.edu).(Maldjian et al., 2003) To correct for multiple
comparisons in this restricted region of interest, small volume correction was employed
(SVC) and results were considered significant at p≤0.05 FWE. Voxels are reported with
reference to the MNI standard space and anatomic labels are reported with reference to the
computerized Talairach Daemon (Lancaster et al., 1997) within the Pickatlas.(Maldjian et
al., 2003)

RESULTS
Demographics and Cognition

AD and nondemented groups were not significantly different in age, gender, or race (p>0.2,
Table 1). All nondemented participants identified as white, with one reporting Hispanic
ethnicity. Thirty-five participants with AD identified as white, 1 as African-American and 1
as Native American. Individuals with AD had approximately 1 year less of formal education
(p=0.04). At baseline evaluation 34 participants with AD had Global CDR of 0.5 and 3 had a
Global CDR of 1. At follow-up, 23 participants with AD had a Global CDR of 0.5, 11 had a
Global CDR of 1, and 3 individuals had a Global CDR of 2. Dementia severity (CDR Sum
of Boxes) progressed over the 2-year study period by an average of 1.8 points. As expected,
cognitive performance was lower in AD (Global Cognition, Group main effect F=117.9,
p<0.001) and significantly declined over 2 years compared to the nondemented group
(Group × Time interaction, F=21.2, p<0.001). The results of the MMSE score analysis
paralleled the results of the Global Cognition analysis (Group × Time interaction, F=16.9,
p<0.001).

Relationship of CR Fitness with Dementia
We then assessed between group differences in CR fitness (VO2 peak) over the course of the
2-year study period. CR fitness was lower in the AD group compared to the nondemented
group (Group main effect, F=9.2, p=0.003, Table 1). There was no Time × Group interaction
(p=0.2).

We next assessed the relationship of baseline CR fitness to cognitive change and progression
of dementia severity. In the AD group, lower baseline levels of CR fitness were associated
with greater progression of dementia severity over the study (increase in CDR Sum of
Boxes, β=−0.42, p=0.03, Table 2), controlling for age, gender and baseline CDR Sum of
Boxes. Figure 1 depicts the relationship of baseline VO2 peak and change in CDR Sum of
Boxes. Baseline fitness was not associated with decline in Global Cognition in the AD
group. We also examined the relationship of change in CR fitness over the study period with
cognitive change and progression of dementia severity, again controlling for age, gender and
baseline CDR Sum of Boxes. CR fitness change was not associated with progression of
dementia severity or change in Global Cognition in the AD group.
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In the nondemented group there was a trend for baseline CR fitness to be associated with
change Global Cognition (β=0.36, p=0.06), with lower CR fitness associated with a decline
in Global Cognition after controlling for age and sex. Two-year change in CR fitness was
not associated with decline in Global Cognition.

CR Fitness and Regional Brain Atrophy
We then assessed the relationship of baseline and 2-year change in CR fitness with atrophy
patterns in AD. Though baseline CR fitness was not significantly related to regional gray
matter atrophy in AD, we observed several trends (p<0.001, uncorrected, k>100) where
decline in CR fitness over the 2-year study period was associated with atrophy in the left
parahippocampus, bilateral insular lobes, right lingual gyrus, right putamen and right
inferior temporal gyrus (Table 3A, Figure 2). When our analysis was restricted to our a
priori region of interest, the medial temporal lobe, there was a significant relationship of
change in CR fitness and atrophy in left parahippocampus (SVC, p<0.05 FWE), with 2-year
decline in CR fitness associated with greater atrophy, controlling for age, gender, and
baseline CDR Sum of Boxes).

In the nondemented group, there was a trend for lower baseline CR fitness to be associated
with regional atrophy in bilateral occipital and temporal cortices and right uncus (p<0.001,
uncorrected, k>100, Table 3B, Figure 3A). There was also a trend for an association
between decline in CR fitness and atrophy in the left frontal cortex and putamen and right
caudate nucleus (Table 3C, Figure 3B). Neither baseline CR fitness nor change in CR fitness
was associated with significant atrophy in the medial temporal region of interest in the
nondemented group.

DISCUSSION
Our data show that higher baseline CR fitness in individuals with AD was associated with
attenuated progression of dementia severity, independent of age, gender and baseline
dementia severity. Additionally, decline in CR fitness over 2 years most notably associated
with greater rates of medial temporal atrophy. In nondemented older adults, lower baseline
levels of CR fitness were marginally associated with cognitive decline (p=0.06) and atrophy
in temporal and posterior regions, whereas declining fitness was associated with frontal and
subcortical atrophy.

CR Fitness Change Over Time
Our first aim was to characterize CR fitness change in a population with early-stage AD.
The AD group demonstrated consistently lower CR fitness levels than the nondemented
group over the course of the study, extending our previously reported cross-sectional
findings.(Burns et al., 2008) However, our data do not demonstrate exacerbated decline in
CR fitness in the AD group compared to the nondemented group. These results suggest
preclinical AD may impact physical activity and CR fitness levels before the clinical
recognition of the disease. Early disease-related changes in physical activity may influence a
cycle of decline that includes reduced CR fitness, brain and body changes and functional
decline that may exacerbate the AD syndrome. Alternatively, individuals with a lifetime
history of physical inactivity may be at increased risk of developing the disease and thus are
over-represented in our AD cohort. This is consistent with prior reports linking low levels of
physical activity, even in midlife, with mild cognitive impairment and dementia.(Geda et al.,
2010; Larson et al., 2006; Podewils et al., 2005; Rovio et al., 2005)

Vidoni et al. Page 6

Neurobiol Aging. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Cardiorespiratory Fitness, Physical Activity and Dementia Progression
Our second aim was to explore the relationship of fitness with dementia progression. In the
AD group we found that higher baseline CR fitness was associated with less progression of
dementia severity (CDR box score) over the 2-year study period, independent of age, gender
and baseline dementia severity. This is consistent with the hypothesis that higher CR fitness
may be associated with slower disease progression. CR fitness was not related to decline in
cognitive performance despite the relationship with dementia severity. We suspect that CR
fitness more closely reflects the functional domains assessed in the CDR. It is possible that
individuals with higher CR fitness have greater physical function reserve that may reduce
the functional impact of disease. Future studies may wish to use more robust statistical
techniques to accurately assess the relationship of CDR constructs to physical and cognitive
measures.

When assessing change in CR fitness over the 2-year study period, we found that declining
CR fitness was associated with brain atrophy in several regions in the AD group, including
those most affected by AD neuropathology. The findings extend our prior cross-sectional
report and suggest a relationship between a validated neuroimaging marker of AD
neuropathological burden, atrophy in the medial temporal lobes,(Barnes et al., 2004; Jack et
al., 1998; Wang et al., 2003) and maintenance of CR fitness. We found specific regional
brain volume associations with CR fitness in the left parahippocampus. This is interesting as
this region is recruited to a greater degree during verbal memory tasks in those with mild
AD and MCI than nondemented controls.(Hamalainen et al., 2007; Peters et al., 2009) If the
parahippocampal areas provide compensatory activity for task execution, CR fitness may
further support sustained cognitive function in early AD, although it is important to note
these data do not establish a causal relationship between physical activity and
parahippocampal function.

While the observational nature of this study is unable to assess causal relationships, these
data are consistent with the possibility that interventions to maintain CR fitness, such as
exercise, may slow brain atrophy related to AD. This hypothesis is supported by data from
animals that suggest exercise enhances neurogenesis, is anti-apoptotic and promotes
angiogenesis.(Kim et al., 2010; Pereira et al., 2007) Exercise has also been reported to
influence imaging markers of neurogenesis in human hippocampus.(Pereira et al., 2007)

The relationship of CR fitness and brain health is also moderately supported in our
nondemented group, where greater baseline CR fitness was associated with less cognitive
decline (p=0.06) and lower rates of brain atrophy in the occipital and temporal lobes,
supporting previous reports.(Colcombe et al., 2003; Erickson et al., 2010; Yaffe et al., 2001)
Additionally, worse decline in CR fitness over 2-years was associated with atrophy in
frontal and subcortical regions in our nondemented group. Some frontal and temporal
atrophy is common in aging,(Colcombe et al., 2003; Fjell et al., 2009) and moderate exercise
has previously been shown to attenuate this change (Colcombe et al., 2006) and result in
improvements in executive cognitive function.(Colcombe et al., 2004; Kramer et al., 1999)

An alternative possibility to explain our observed relationship between CR fitness and
disease progression is that an underlying effect of AD pathology concomitantly drives
decline in cognition, brain atrophy and CR fitness. For example, muscle mitochondria are
responsible for a substantial degree of muscle oxygen consumption, and AD subjects have
systemically reduced mitochondrial function.(Swerdlow and Khan, 2009; Swerdlow et al.,
1997) Over the course of the 2-year study period, AD subjects whose oxygen uptake
capacity (VO2peak) declined the most had the greatest degree of brain atrophy suggesting
these factors may be inter-related. It is important to note that our cohort is composed only
those individuals capable of satisfactorily completing an exercise test (RER > 1.0) and
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reasonably reflects near maximal physiological capacity for oxygen consumption rather than
motivation during the test. Thus, our findings suggest the possibility that declining
respiratory function is a manifestation of the AD process, and emphasizes an emerging
recognition of systemic biochemical dysfunction in AD.

In conclusion, we report that lower CR fitness seen early in AD persists over 2 years. Those
with the lowest CR fitness in the earliest stages of AD experienced more severe AD
progression. Further, declining fitness over 2 years was associated with greater brain atrophy
in regions affected by AD neuropathology. The results support prior findings of a link
between fitness and brain health in AD and indicate the need to further investigate the
interaction of CR health and function and mechanistic links between CR fitness and brain
change in AD.
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Figure 1.
Scatter plot of baseline CR fitness (VO2peak) plotted against progression of dementia
severity (Change in CDR Sum of Boxes), full model adjusted r2=0.356, p=0.001. Higher CR
fitness level (positive values along the x-axis) are associated with less progression in
dementia severity over the course of the study (negative values along the y-axis), β = −0.42,
p=0.03. Variables are adjusted for age, gender and baseline CDR Sum of Boxes.
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Figure 2.
Statistical parametric maps showing regions of brain atrophy associated with decline in CR
fitness in the AD group over 2 years. Anatomic locations are in Table 3A. Color bar
represents T-statistics, with voxels presented at p<0.001 uncorrected, cluster size (k) > 100.
Slices are presented inferior to superior at the location identified by the blue lines on the
sagittal image on the right. The cluster in the right parahippocampal gyrus is significant
(FWE p<0.05) under small volume corrected analysis of the medial temporal lobe.

Vidoni et al. Page 13

Neurobiol Aging. Author manuscript; available in PMC 2013 August 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Statistical parametric maps showing regions of brain atrophy associated with CR fitness in
the nondemented group. Anatomic locations are in Table 3B-C. Regional atrophy is related
to lower baseline (A) and decline (B) in CR fitness in the nondemented group. Color bar
represents T-statistics, with voxels presented at p<0.001 uncorrected, cluster size (k) > 100.
Slices are presented inferior to superior at the location identified by the blue lines on the
sagittal image on the right.
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Table 2

Standardized Coefficients (β) Predicting Progression of Dementia Severity and Change in Global Cognition
After Controlling for Age, Sex and Baseline Dementia Severity.

Dementia Progression Change in Global Cognition

Baseline VO2 peak −0.42* 0.27

Change in VO2 peak −0.15 0.02

Baseline VO2 peak -- 0.36^

Change in VO2 peak -- 0.19

*
p<0.05,

^
p=0.06
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