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Abstract
Purpose of review—We discuss two data analysis issues for studies that use binary clinical
outcomes (whether or not an event occurred): the choice of an appropriate scale and
transformation when biomarkers are evaluated as explanatory factors in logistic regression; and
assessing the ability of biomarkers to improve prediction accuracy for event risk.

Recent findings—Biomarkers with skewed distributions should be transformed before they are
included as continuous covariates in logistic regression models. The utility of new biomarkers
may be assessed by measuring the improvement in predicting event risk after adding the
biomarkers to an existing model. The area under the receiver operating characteristic (ROC) curve
(C-statistic) is often cited; it was developed for a different purpose, however, and may not address
the clinically relevant questions. Measures of risk reclassification and risk prediction accuracy
may be more appropriate.

Summary—The appropriate analysis of biomarkers depends on the research question. Odds
ratios obtained from logistic regression describe associations of biomarkers with clinical events;
failure to accurately transform the markers, however, may result in misleading estimates. Whilst
the C-statistic is often used to assess the ability of new biomarkers to improve the prediction of
event risk, other measures may be more suitable.
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Introduction
Biomarkers may be used to investigate potential biological mechanisms, to improve
diagnosis or assessment of prognosis, or as surrogate endpoints in studies. We restrict this
review to studies that use binary clinical outcomes (i.e., whether or not an event occurred),
and biomarkers that are measured on a continuous scale (i.e., can take any value within a
certain range). We consider two narrowly defined problems: (i) the choice of an appropriate
transformation and scale when biomarkers are evaluated as explanatory factors in logistic
regression; and (ii) assessing improvements in prediction accuracy when new biomarkers are
added to an existing model. Our examples focus on biomarkers that are associated with
increased risk of cardiovascular disease, an area of interest in HIV research.[1,2,3,4]
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Biomarkers as explanatory factors in logistic regression
Logistic regression is widely used to evaluate associations of biomarkers with binary
outcomes. Investigators must decide whether to include the biomarkers as continuous or
categorical covariates. Biomarkers that have heavily skewed distributions should be
“normalized” before they can be included as continuous covariates; often, this can be
achieved by a log transformation. In this section, we give an example where highly sensitive
C-reactive protein (hsCRP) needs to be log-transformed when included as a continuous
covariate, and discuss scaling and categorizing covariates.

Transforming continuous biomarkers: the log scale
When biomarkers are included as continuously-valued covariates in logistic regression, the
model makes the implicit assumption that the biomarker follows a Normal (Gaussian)
distribution among individuals who experience the event (“cases”), and also among those
without the event (“controls”).[5,6]. While many biomarkers have heavily skewed
distributions, values on the log scale often approximate the Normal curve reasonably well;
in these cases, the biomarker should be log-transformed in order to obtain reliable odds ratio
(OR) estimates.

To illustrate the impact of skewed biomarker distributions, we re-analyzed the data of a
case-control study with 255 participants that investigated associations of hsCRP and other
biomarkers with all-cause mortality.[1] Figure 1 shows the frequency distribution of hsCRP
for the 85 participants who died (cases, panel A) and 170 participants who survived
(controls, panel B), along with the fitted Normal curves (bold lines). The distributions of
hsCRP for cases and controls are both heavily skewed, and the Normal curves are a poor fit.
As visual guides, the vertical line marks the median hsCRP for all 255 participants and the
gray and white rectangles show the four quartiles.

Figure 1C demonstrates that OR estimates are incorrect when hsCRP is used on the original
measurement scale. The bold solid line shows the estimated OR of death for patients with a
given hsCRP value relative to patients with hsCRP=0.5 mg/L (the median of the lowest
hsCRP quartile). For example, for patients with hsCRP=9.6 mg/L, the estimated OR is 1.18
(the odds of death are estimated to be 18% higher for these patients, than for patients with
hsCRP=0.5). The lighter lines above and below show 95% confidence limits computed from
the same model.

In contrast, the solid circles denote ORs estimated directly by considering the proportions of
patients who did or did not die in each of the three higher hsCRP quartiles and comparing
these to the proportions in the lowest quartile. The direct estimates differ substantially from
those estimated by the model; none of the direct estimates are contained in the respective
confidence intervals from the model. Using the logistic regression model, we would
substantially underestimate the ORs for the two highest quartiles, and would overstate the
precision of the OR estimates, since the computed confidence intervals are too narrow.

Note that the logistic regression model assumes a linear relationship between the covariate
and the log-odds of death; in our example,
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where phsCRP is the probability of death for a patient with a given hsCRP value, and (1-
phsCRP) is the probability of survival. The linear relationship only holds, however, when the
distributions of hsCRP are Normal for cases and controls.[5]

Figures 1D and 1E show the distributions of log2(hsCRP) and the corresponding fitted
Normal curves; the distributions of log2(hsCRP) more closely approximate Normal curves
than the untransformed hsCRP values. Consequently, the logistic model with log2(hsCRP)
more accurately describes the data (Figure 1F), and provides more reliable confidence
intervals and p-values.

The authors of the original case-control study used log10(hsCRP). We prefer logarithms to
the base 2, as this allows for a more intuitive interpretation of the ORs: each one unit
increase in log2(hsCRP) corresponds to a doubling in hsCRP. The choice of the logarithmic
base does not influence the model fit; Figure 1F would look exactly the same for
log10(hsCRP), except that the scale of the horizontal axis would be multiplied by a constant.

As translating results to the original scale when analyses were performed on a log or
otherwise transformed scale is cumbersome, investigators may be tempted to avoid using
transformations. However, failure to transform biomarkers when appropriate to do so may
lead to incorrect answers.

Standardizing biomarkers
When incorporating biomarkers as continuous-valued covariates, associations are reported
as OR per unit increase in the marker. If the aim of the analysis is to compare the potential
value of several biomarkers measured on different scales, many investigators choose to
report ORs that describe the increased odds of the event per 1 standard deviation (SD) of the
biomarkers.[7*,8*] The distribution of biomarkers may vary across studies, however,
particularly when study populations are different. Thus, in order to facilitate comparisons
across different studies, it is essential that investigators also report the value of the SD in the
manuscript. This will also permit readers to translate results into units that are relevant for
clinical practice.

As an alternative, some authors report ORs per 1 inter-quartile range (IQR) increase.[1] In
general, there is no clear preference for either approach. However, when outliers are present,
the IQR tends to be less sensitive to outliers and is preferable.

Incorporating continuous biomarkers as categorical covariates
In some instances, investigators may prefer to categorize biomarker values and report ORs
that compare the odds of the event in each category to those in some reference category. For
example, hsCRP is often analyzed using clinically relevant thresholds (e.g., <1, 1-3, and >3
mg/L), or may be broken into quartiles (four equally sized groups), tertiles, or quintiles.[9*]
Categories by equally sized groups are particularly useful when several biomarkers are
being compared.

Categorizing biomarkers has advantages and disadvantages. Most importantly, when the
relationship between the risk (log-odds) and the biomarker is nonlinear, then including the
biomarker as a continuous covariate in the logistic regression model would give incorrect
OR estimates, while estimation of ORs for categories would capture the relationship
correctly. Categorization therefore provides an alternative approach for the analysis of
highly skewed biomarkers for investigators who do not wish to use transformations. If the
linear relationship is correct, however, analyzing the biomarker as a continuous covariate
will have greater power.
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Evaluation of biomarkers as prognostic markers
ORs and hazard ratios are useful for explaining the prevalence of clinical events in a given
cohort; they are ill-suited, however, to provide guidance as to whether a new biomarker
should be used in routine clinical practice. For example, treatment guidelines for high
cholesterol consider three levels of 10-year risk of coronary heart disease (CHD), <10%
(low risk), 10-20% (intermediate), and >20% (high), estimated by modified Framingham
risk scores (Adult Treatment Panel III); [10,11,12]. Whilst there is strong evidence that
increased hsCRP is independently associated with a higher risk of CHD [9*,13**,14],
knowledge of the hsCRP level provides only limited improvements to our ability to correctly
predict whether or not an individual will develop CHD.[13**,14,15] Popular measures of
classification accuracy include the area under the curve (AUC) of the receiver operating
characteristic (ROC) curve and reclassification measures.[9*,13**,8*,16**, 17*] Other
measures assess improvement in the prediction of risk on a continuous scale.[18*,19]

ROC curves and C-statistics
ROC curves are a visual means to describe the ability of a model to correctly classify
“cases” and “non-cases”. Assume that we have fitted a model for the risk of an event, and
will predict that an individual will experience an event if his/her estimated risk is above a
given threshold, c. Ideally, our prediction should have both high sensitivity (it should
correctly identify a high proportion of true cases – those who will experience an event) and
high specificity (it should correctly identify a high proportion of true non-cases). However,
in practice, there is a trade-off between the two, depending on the threshold. The ROC curve
plots the sensitivity of our prediction rule against one minus the specificity, for all possible
values of the threshold.

Figure 2 shows a ROC curve for predicting death based on hsCRP, using data from the case-
control study described earlier.[1] The dotted diagonal line is the ROC curve for guessing
the outcome at random; any sensible prediction model should have a ROC curve to the left
of the diagonal line; better models will have curves closer to the upper left corner of the
graph.

The C-statistic is the area under the ROC curve.[20,16**,21**] It summarizes the
sensitivity/specificity trade-off of a risk prediction model over all possible thresholds, c, into
one number. The C-statistic for random guessing (e.g., the diagonal line in Figure 2) would
be 0.5; perfect discrimination corresponds to a C-statistic of 1. C-statistics have been used
extensively to assess the utility of biomarkers for improving classification accuracy, by
comparing C-statistics for risk prediction models fitted with and without the biomarker.[8*,
9*,13**,15,22*] Reasons for the popularity of the C-statistic include:

1. The C-statistic has an intuitive interpretation: if two individuals are selected at
random, one with the event and one without, then the C-statistic is the probability
that the model predicts a higher risk for the individual with the event.[16**,23]

2. C-statistics don't depend on measurement units, and thus provide a common scale
for comparing different markers.[23**]

3. Statistical tests for differences in C-statistics are available in commercial software.
[24,25]

Recently, several authors have warned against indiscriminate use of the C-statistic to assess
the predictive utility of biomarkers.[16**,21**,26*,27,28*] The C-statistic is relatively
insensitive to the added contribution of a new marker when the two models, with and
without biomarker, estimate risk on a continuous scale, because the C-statistic is based on
the rank-order of the predicted risks for cases and non-cases, rather than the size of these
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predicted risks [16**,23] – if the threshold for predicting an event is set at 50%, and
addition of the biomarker increases the estimated risk for an individual from 1% to 49%, the
individual will still be classified as non-case. In fact, many new biomarkers provide only
minimal increase in the C-statistic when added to the Framingham model for CHD risk.[9*,
29] In clinical practice, however, the size of the predicted risk may be important.[16**]
Also, the classical C-statistic assumes that high sensitivity and high specificity are equally
desirable. This is not always the case – for example, when screening the general population
for a low-prevalence outcome requiring invasive follow-up, high specificity is important,
while cancer screening in a high-risk group would emphasize high sensitivity.[21**,26*]

To achieve a noticeable increase in the C-statistic, a biomarker must have a very strong
independent association with the event risk (say ORs of 10 or higher per 1 SD increase). The
reason is that the biomarker values for cases and non-cases will largely overlap for moderate
ORs (see figure 2 in reference [21**]), indicating low power for discrimination.[21**,30*]
In a recent study of 10 biomarkers in 3209 participants in the Framingham Heart Study, the
biomarkers were summarized into a multimarker score; after adjustment for conventional
risk factors, participants in the highest quintile of the score had a 4.08-fold risk of death
compared with participants in the lowest two quintiles. Adding the biomarkers to the
conventional risk factors, however, had minimal impact on the C-statistic, which increased
from 0.80 to 0.82.[8*]

ROC curves do not provide the probability that a patient who is classified as high risk will
develop the disease; this strongly depends on the disease prevalence in the investigated
population. If improvement in predicting the actual risk is the goal, measures of
reclassification accuracy [31**,28*,22*,17*] or model calibration [32**,23,33] are more
appropriate.

Risk reclassification measures
Measures of reclassification accuracy are most useful when predefined, clinically
meaningful risk categories are available (e.g., classification of 10-year risk of CHD as low
[<10%], intermediate [10-20% ] or high [>20% ]). The U.S. Preventive Services Task Force
assessed the utility of hsCRP and other biomarkers for predicting risk of CHD based on
reclassification; they estimated that 11% of men in the intermediate-risk group would be
reclassified as having high risk if information about hsCRP were added to the traditional
Framingham risk factors, and predicted the number of CHD events that could be averted
with intensive therapy for those men. [13**,14] The task force focused on the intermediate-
risk group because reclassification from this group had the highest potential impact on
therapy decisions.[14]

Several studies found that adding hsCRP to traditional risk factors had only minimal effect
on the C-statistic, but resulted in improved classification when several risk categories were
used. [9*,17* ] Summarizing reclassifications in a clinically meaningful way, however, is
challenging, and depends on the question at hand. Ridker et al. (2007) used 4 categories for
CHD risk; adding hsCRP and parental history to a standard model resulted in reclassification
of 8% of individuals.[22*] Among those who were reclassified into the highest risk category
(>20% risk), the estimated event rate was 31%, which was interpreted as evidence for
improved risk prediction. Pencina et al. (2008) argued that the new model would improve
risk classification only for 31 out of 100 persons, while 69 persons should have remained in
the lower risk categories. They suggest measuring net reclassification improvement (NRI),
rewarding correct reclassification and penalizing incorrect reclassification.[31**] Their
integrated discrimination improvement (IDI) is an extension that does not depend on the cut-
offs for risk categories. Gu and Pepe (2009) provide an extensive overview of measures for
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improved risk prediction; they also propose measures which consider the predicted risk on a
continuum.[18*]

Melander et al. (2009) assessed 6 biomarkers for changes in C-statistics, NRI, IDI, and
reclassification; improvements in risk prediction for the intermediate-risk group were mostly
due to down-classification.[7*] The considered summary measures, however, don't
distinguish between correct up-classification or down-classification, while clinical
consequences may differ substantially; one solution may be to weigh reclassifications to
reflect their clinical importance.[26*,32**] Table 1 summarizes several measures that have
been used to assess improvements in risk prediction; see also [32**].

Conclusion
The proper way to assess the utility of a biomarker depends on the research question. ORs
obtained from logistic regression are useful for explaining associations of biomarkers with
clinical events; failure to accurately transform the markers, however, may result in
misleading estimates. Whilst the C-statistic is often used to assess the ability of new
biomarkers to improve the prediction of event risk for individuals, other measures may be
more appropriate.
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Figure 1. Distributions of hsCRP and log2(hsCRP), and estimated odds ratios in a case-control
study.[1]
Panel A shows the frequency distribution of hsCRP for 85 participants who died, panel B
the distribution of hsCRP for 170 participants who survived. Bold lines show the fitted
Normal curves. The dashed vertical line marks the median hsCRP for all 255 participants,
white and gray rectangles mark the four hsCRP quartiles. HsCRP ranged from 0.2 to 82.7
mg/L; the lowest and highest 5% were not displayed, but included in the analyses. Panel C
shows odds ratios estimates (bold solid line) and 95% confidence limits (lighter lines above
and below) obtained in a logistic regression model with continuous hsCRP; odds ratios are
relative to hsCRP=0.5 mg/L, the median of the lowest hsCRP quartile. Circles mark direct
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odds ratio estimates comparing higher hsCRP quartiles to the lowest quartile. Confidence
intervals do not contain the direct estimates, which indicates poor model fit for the logistic
regression with continuous hsCRP. Panels D-F shows the corresponding analyses for
log2(hsCRP); distributions of log2(hsCRP) are closer to Normal. The direct estimates are
closer to the 95% confidence intervals by logistic regression, indicating better model fit and
more reliable inference when analyzing hsCRP on the log2 scale.
Abbreviations: hsCRP, highly sensitive C-reactive protein
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Figure 2. Receiver operating characteristic (ROC) curves
The solid line shows an estimated ROC curve for the univariate prediction rule “predict
death if baseline hsCRP > c”, calculated for data from a case-control study with 255
participants [1]; higher hsCRP was associated with a higher risk of death. The threshold c
determines both the true prediction rate (TPR) and false prediction rate (FPR), and the
estimated ROC curve plots the TPR versus the FPR for all possible values of c. When the
threshold is at the median hsCRP, c=3.0 mg/L, the TPR is 0.59 and the FPR is 0.44 (dashed
lines); this means, 59% of cases and 56% of controls are classified correctly. The C-statistic
is the area under the ROC curve. The diagonal dotted line represents the ROC curve for
random guessing.
Abbreviations: FPR, false prediction rate; hsCRP, highly sensitive C-reactive protein; ROC,
receiver operating characteristic; TPR, true prediction rate
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Table 1
Measures used to assess biomarkers for improvement in risk prediction

Target and measure Comments

Classification of subjects into risk categories

 Proportion of subjects who are reclassified when adding the biomarker to an
existing model [17]

Includes both correct and incorrect reclassifications

 Net reclassification improvement (NCI) [31,32,26] Rewards correct and penalizes incorrect
reclassification; does not distinguish between up- and
down-classification

 Reclassification table: cross-tabulation of the proportion of subjects who are
classified into each risk category by the models with and without biomarker, and
comparison of the observed event rate with the assigned risk category. [28,19,32,17]

Straightforward, clinically relevant interpretation; no
clear ordering of models; sensitive to choice of risk
categories.

Discrimination accuracy

 C-statistic (area under the ROC curve) [16,20,21] Insensitive to moderate improvements in risk
prediction; may not be clinically relevant

 Integrated discrimination improvement (IDI) [31,26] Extension of the NCI; does not depend on cut-points
for risk categories

Graphical presentation

 Plot of predicted risk against the risk percentile for models with and without the
biomarker [19,18,15,16]

Intuitively, a stronger model should show a wider
spread of predicted risks; does not measure the
accuracy of the risk prediction [16]

Model calibration

 Hosmer-Lemeshow statistic [32,33,23,17] Compares estimated with observed proportions of
subjects with events over several risk intervals; may
be too sensitive in large samples. [32]

Global model fit

 Akaike information criterion (AIC), and Bayesian information criterion (BIC)
[32,23,17]

Widely used for variable selection; no direct clinical
interpretation

Abbreviations: ROC, receiver operating characteristic, NCI, net reclassification index
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