
FPGA acceleration of rigid-molecule docking codes

B. Sukhwani and M.C. Herbordt
Computer Architecture and Automated Design Laboratory, Department of Electrical and
Computer Engineering, Boston University, Boston, MA 02215, USA, herbordt@bu.edu

Abstract
Modelling the interactions of biological molecules, or docking, is critical both to understanding
basic life processes and to designing new drugs. The field programmable gate array (FPGA) based
acceleration of a recently developed, complex, production docking code is described. The authors
found that it is necessary to extend their previous three-dimensional (3D) correlation structure in
several ways, most significantly to support simultaneous computation of several correlation
functions. The result for small-molecule docking is a 100-fold speed-up of a section of the code
that represents over 95% of the original run-time. An additional 2% is accelerated through a
previously described method, yielding a total acceleration of 36× over a single core and 10× over a
quad-core. This approach is found to be an ideal complement to graphics processing unit (GPU)
based docking, which excels in the protein–protein domain.

1 Introduction
A fundamental operation in biochemistry is the interaction of molecules through non-
covalent bonding, or docking (see Fig. 1). Modelling molecular docking is critical both to
evaluating the effectiveness of pharmaceuticals and to developing an understanding of life
itself. Docking applications are computationally demanding. In drug design, millions of
candidate molecules may need to be evaluated for each molecule of medical importance. As
each evaluation can take many CPU-hours, huge processing capability must be applied;
production facilities typically use large clusters.

Although accelerating docking using heterogeneous parallel processors has clear and
obvious benefits, there has been surprisingly little work thus far. SymBioSys uses the cell
broadband engine in their eHITS software [1], and Servat et al. [2] report using the same
processor to accelerate the FTDock code. With GPUs, the only published work so far
appears to be in a dissertation by Korb [3] and work by Sukhwani and Herbordt [4]. Korb
accelerates the structure transformation and scoring function evaluation phases. Our GPU
work accelerates the PIPER docking code [5]; we summarise this below and compare it with
the FPGA approach presented here. The present authors and collaborators have also
previously used FPGAs to demonstrate proof-of-concept FPGA-based acceleration of
ZDOCK and some other systems [6, 7].

The basic computational task for docking is to find the relative offset and rotation (pose)
between a pair of molecules that gives the strongest interaction (see Fig. 2). Hierarchical
methods are often used; these include: (i) an initial phase where candidate poses are
determined (docking) and (ii) an evaluation phase where the quality of the highest scoring
candidates is rigorously evaluated. This work describes the FPGA-based acceleration of
PIPER, a state-of-the art code that performs the first of these tasks. PIPER advances the art
of rigid molecule docking by minimising the number of candidates needing detailed scoring
with only modest added complexity [5]. Our methods are general, however, and can be
applied to other rigid molecule docking codes.

NIH Public Access
Author Manuscript
IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

Published in final edited form as:
IET Comput Digit Tech. 2010 May ; 4(3): 184–195. doi:10.1049/iet-cdt.2009.0013.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Many docking applications including PIPER assume, at least initially, a rigid structure (see
Fig. 2). This still allows modelling of various force laws that govern the interaction between
molecules, including geometric, electrostatic, atomic contact potential and others. A
standard technique maps the molecules' characteristics to three-dimensional (3D) grids. The
most energetically favourable relative position is determined by summing the voxel–voxel
interaction values for each modelled force at all positions to generate a score, and then
repeating this for all possible translations and rotations. Some other well known rigid
molecule docking codes with public domain servers are Situs [9], FTDock [10], ZDOCK
[11], Hex [12], GRAMM [13], DOT [14] and PatchDock [15]. Some of the many docking
codes that use rigid molecule docking as a preliminary step are Glide [16], ClusPro [17] and
GRAMM-X [18].

The computational complexity of rigid molecule docking is large. With typical grid sizes of
N = 128 in each dimension and 10 000 rotation angles, 1010 relative positions are evaluated
for a single molecule pair. Typically, the outer loop consists of the rotations while the
translations are handled with a 3D correlation. Since the latter require O(N6) operations, this
type of exhaustive search was long thought to be computationally infeasible [19]. The
introduction of the FFT to docking [20] reduced the complexity of each 3D correlation to
O(N3 log N) for steric (shape only) models; further work expanded the method to
electrostatic [10] and solvation contributions [11].

Docking computations are generally used to model one of two types of interactions: between
proteins (protein–protein docking) or between a protein or other large molecule and a small
molecule (small molecule docking). In the latter case the large molecule is referred to as the
substrate or receptor and the small molecule as the ligand. Protein–protein docking is
important for basic science, whereas small molecule docking is the method of primary
interest in drug discovery. In both cases, one molecule has a grid size of up to 1283; in
protein–protein the second molecule is similar, but in small molecule the ligand is typically
an order of magnitude smaller (per dimension). This difference leads to there being a
divergence in optimisations, with docking codes sometimes specialising in one domain or
the other. We have found that this divergence emerges in accelerated docking as well.

In our previous work [6, 7] we showed that, for FPGA-based coprocessors, the original
direct correlation – rather than an FFT – is sometimes the preferred method for computing
rigid molecule docking. Two reasons for this are the inherent efficiency with which FPGAs
perform convolutions and the modest precision (2–7 bits) of the original voxel data. Note
that this precision goes to 48 or 106 bits (single or double precision imaginary floating
point) for the FFT. We also introduced a novel addressing technique for performing rotation
that uses only a modest amount of logic, and whose latency can be entirely hidden. Finally,
we presented an efficient filtering method that computes on-the-fly the biological
importance of the poses and so minimises host–accelerator communication.

In this work, we extend these methods to facilitate integration into PIPER and other docking
codes. In particular, we have added support for (i) pairs of large molecules as necessary for
modelling protein–protein interactions; previously we only supported protein interactions
with small molecules, (ii) the efficient combining of a potentially large number of force
models; previously we had flexibility in the force model, but required it to be simple and
(iii) handling charge reassignment after every rotation; previously we assumed that charge
assignment was done only once. The result is, for small-molecule docking, a 100-fold speed-
up of PIPER's correlation computation and a ten-fold speed-up of the entire application.
Both these numbers are with respect to a four-core processor.

Sukhwani and Herbordt Page 2

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



In this work, we also find the limits of the correlation-based approach for current generation
FPGAs. Since the FFT has the advantage over direct convolution in asymptotic complexity,
the question is at what molecule size does this advantage begin to dominate over other
factors, such as precision. We find that the split occurs almost directly on the small/large
molecule boundary. For ligands less than 253, direct correlation yields significant
acceleration; for ligands larger than 323, the FFT, on a multicore host, is superior.

The particular contributions are modified structures to support these features and the
experiments that determine the optimal configuration with respect to several design
parameters. The overall significance is to reduce the typical running time of evaluating a
drug candidate from days to hours thereby dramatically increasing the throughput of
computational docking experiments. Further significance is the finding with respect to the
cross-over point between 3D correlations and FFTs on FPGAs. This could be of interest in
many other applications where these operations are fundamental. Finally, the comparison
with multicore processors and with GPUs points to the best ways to build cost-effective
heterogeneous rigid-molecule docking systems using the current generation of accelerator
technology.

The rest of this paper is organised as follows. We next give a brief overview of PIPER.
There follows the basic design for 3D correlation on the FPGA. After that we present details
of the novel structures needed to implement complex correlations. Then comes a summary
of other approaches possible using FPGAs, GPUs and multicore. We conclude with results,
a comparison of approaches and discussion.

2 PIPER docking program
2.1 Overview

A primary consideration in docking is preventing the loss of near-native solutions (false
negatives); as a result, rigid molecule codes tend to retain a large number (thousands) of
docked conformations for further analysis even though only a few hundred will turn out to
be true hits. ‘Improving these methods remains the key to the success of the entire procedure
that starts with rigid body docking [5]’. PIPER addresses this issue by augmenting
commonly used scoring functions (shape, electrostatics) with a desolvation computed from
pairwise potentials; the rest of this section is based on the primary reference to that system
[5].

Pairwise potentials represent interactions of atoms (or residues) on the interacting
molecules. Different pairs of atoms have different values; these are empirically determined
(and sometimes called knowledge based). For K atom types, there is a K × K interaction
matrix; each column (or row) can be handled with a single correlation resulting in K forward
and one reverse FFT. Since K is generally around 20 (and up to 160), and since the FFT
dominates the computation, use of pairwise potentials could drastically increase run time. A
fundamental innovation in PIPER is the finding that eigenvalue-eigenvector decomposition
can substantially reduce this added complexity. In particular, ‘adequate accuracy can be
achieved by restricting consideration to the eigenvectors corresponding to the P largest
eigenvalues where 2 ≤ P ≤ 4, and thus performing only 2–4 forward and one reverse FFT
calculations’. In practice, however, up to 18 terms are sometimes used.

PIPER's energy-like scoring function is computed for every rotation of the ligand (smaller
molecule) with respect to the receptor (larger molecule). It is defined on a grid and is
expressed as the sum of P correlation functions for all possible translations α, β, γ of the
ligand relative to the receptor

Sukhwani and Herbordt Page 3

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(1)

where Rp(i, j, k) and Lp(i + α, j + β, k + γ) are the components of the correlation function
defined on the receptor and the ligand, respectively.

For every rotation, PIPER computes the ligand energy function Lp on the grid and performs
repeated FFT correlations to compute the scores for different energy functions. For each
pose, these energy functions are combined to obtain the overall energy for that pose. Finally,
a filtering step returns some number of poses based on score and distribution.

2.2 PIPER scoring functions
The scoring function used in PIPER is based on three criteria: shape complementarity (SC),
electrostatic energy and desolvation energy (through pairwise potentials). Each of these is
expressed as a 3D correlation sum, and the total energy function is expressed as a weighted
sum of these correlation scores

(2)

SC refers to how well the two proteins fit geometrically (see Fig. 2) and here is computed as
a weighted sum of attractive and repulsive van der Waals (Pauli exclusion) terms, the latter
accounting for atomic overlaps: Eshape = Eattr + w1Erep.

Electrostatic interaction between the two proteins is represented in terms of a simplified
Generalised Born (GB) equation [11]. The electrostatic energy is obtained as a correlation
between the charge on the ligand grid and the potential field on the receptor grid. Unlike in
our previous work, charge distribution is recomputed for every rotation.

Desolvation is a measure of change in free energy when a protein–atom/water contact is
replaced by a protein–atom/protein–atom contact. In PIPER, it is represented using pairwise
interaction potentials, as previously discussed, through P correlation functions.

2.3 PIPER program flow and performance profile
Fig. 3 shows the sequence of steps followed by the PIPER program to perform docking of a
ligand to a receptor. The ligand and receptor atoms are read from input files, along with
certain parameters and coefficients. These are used in scoring, filtering top scores, rotation
and charge assignment. Next, PIPER determines the size of the padded FFT grid (based on
the sizes of the ligand and receptor) and generates the receptor and ligand grids for the
various energy functions. Then the receptor grids for the energy functions are assigned
values and their forward FFTs and complex conjugates are computed. The number of
forward FFTs to be performed equals P + 4. The ‘4’ are the following: attractive van der
Waals, repulsive van der Waals, Born component of electrostatic energy and Coulomb
component of electrostatic. The ‘P’s are the top P desolvation terms.

For each rotation, PIPER multiplies the ligand with the next rotation vector and assigns new
values to ligand grids for different energy functions. We leave these two steps to be
performed on the host. After grid assignment, forward FFTs of each ligand grid are
performed and the transformed grid is multiplied with the corresponding transformed
receptor grid. The multiplied grid is then inverse transformed. For the case of the

Sukhwani and Herbordt Page 4

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



desolvation terms, the inverse transformed grids are accumulated to obtain the total score for
desolvation energy. A weighted sum of the scores for the various energy functions is then
computed and the top scores reported. In our FPGA accelerated version, we perform all the
per-rotation steps – except rotation and grid assignment – in the FPGA. This accelerates the
bulk of the work performed by PIPER (see Table 1), but bounds the potential speed up at
about 40×. Accelerating charge assignment is also possible using the methods developed
previously [21]. Note that the FPGA accelerated version, the steps of FFT, modulation and
inverse FFT are replaced with direct correlation.

3 Correlation structure
Fig. 4 shows the systolic 3D correlation array progressively formed starting from a 1D
correlation array [7]. This structure is an extension of the 2D correlation array described in
[22]. The systolic array performs direct correlation at streaming rate. The basic unit of the
systolic array is a compute cell which takes two voxels and computes the voxel–voxel score.
The compute cell then adds this score to the partial score from the previous cell and outputs
the updated partial score. The operation of the compute cell can be written as

where Scorein is the score from the previous compute cell and F(VoxelA, VoxelB) is the
function between the two voxels. For correlation, F(VoxelA, VoxelB) translates to a product
between the two voxels, making the compute cell a simple multiply-accumulate unit (Fig.
4a). In our original implementation, voxels for the ligand grid are stored in the compute cells
on the FPGA and the voxels of the receptor grid are streamed through it, generating one
correlation score per cycle. In this work we have extended the design to support complex
correlations (Sections 4.1 and 4.2) and two large molecules (see Section 4.3).

As shown in Fig. 4a, the 1D correlation structure consists of pipelined compute cells. Every
clock cycle two things happen: one receptor voxel is broadcast to every cell, and the partial
scores computed by each cell are passed to the next cell. The last compute cell generates the
total row score. An advantage of direct correlation is that the function F(VoxelA, VoxelB)
can be non-linear; the FFT method can only handle linear functions.

The number of scores generated by each 1D correlation is (Nx + Mx − 1), where Nx and Mx
are the sizes of the two grids along the x-axis. To form a 2D correlation plane by connecting
multiple 1D correlation rows, the scores from different 1D rows need to be aligned. This is
done by delaying each row score by (Nx + Mx − 1) cycles before feeding it to the next row.
A delay of Nx is inherently provided by the compute cells. To delay the scores by the
remaining Mx − 1 cycles, 1D line FIFOs are used. Similarly, connecting multiple 2D
correlation planes to form a 3D space requires plane FIFOs of size (Mx + Nx − 1) × (Ny − 1).

On typical high-end FPGAs, these first in, first outs (FIFOs) can be implemented using
block RAMs. Note that the size of the FIFO is proportional to the size of the larger grid Mx.
In addition, since the FIFOs are used to delay the correlation score, the width of the FIFOs
depends on the number of bits the correlation score requires. Although enough block RAMs
are present to implement FIFOs for grids of quite large size, incorporating multiple
correlations can pose a problem. This is discussed in the next section and a modified
correlation pipeline is proposed.

Sukhwani and Herbordt Page 5

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4 FPGA algorithms
4.1 Supporting multiple energy functions: overview

There are two obvious ways to extend the structure of Section 3 to combine the multiple
correlations required of PIPER: compute them singly or together. Neither is by itself
preferred. The first method uses the same control structure as before, but, for each different
correlation, the FPGA is reconfigured to the appropriate data types and energy model. The
scores must be saved off-chip and combined. That is, the k FFTs are replaced with k
correlations, plus the overhead of reconfiguration and combining. The second method
involves expanding the structure to perform k different correlations simultaneously. This
method requires only a single pass through the large grid, and generates k independent
correlation scores per cycle. Recall from Section 2.2, however, that the energy functions are
weighted so that for k functions

(3)

Thus combining on-the-fly requires multiplications as well as additions, resulting in
(perhaps) a substantially more complex compute structure. Combining can be done in three
ways: within each compute cell, upon completion or by integrating the weights into the
scoring functions. These options are now examined (see Fig. 5).

Combining within the compute cells requires that the weighted sums be computed within
each one. This makes the compute cell more complex (see Fig. 5a). For each energy
function, the first multiplier multiplies the two voxels to generate the score, which is then
multiplied with the appropriate weight. Weighted scores of different energy functions are
summed up and added to the weighted score from the previous cell. The problem here is the
number of multipliers that this requires: 2k times the number of cells, or between 512 and
4000 additional multipliers. This is problematic for current FPGAs and would end up
drastically reducing the number of compute cells and hence the size of the largest ligand grid
that can be supported.

Combining on completion (see Fig. 5b) means that we must propagate k independent
running scores through the line and plane FIFOs of Fig. 4; the width of the FIFOs must then
be increased by k×. Even with average sized grids, the block RAM requirements to
implement the FIFOs are way over the available block RAMs on present day FPGAs,
making this approach impractical.

Integrating the weights into the grids (see Fig. 5c) requires significantly increasing the
precision throughout the entire system. This reduces the number of compute cells and thus
the throughput. While a plausible solution, it is still not preferred.

4.2 Supporting multiple energy functions: augmented structure
The solution we use is a hybrid: we compute all the energy functions simultaneously and we
combine the running scores once per row (see Fig. 6). The resulting structure results in an
almost 40% savings in block RAM requirements compared to the solution in Fig. 5b and
almost 38% reduction in multipliers compared to Fig. 5a, for typical receptor-ligand grid
sizes. To obtain the augmented structure, the following modifications are required in the
correlation structure of Fig. 4.

Sukhwani and Herbordt Page 6

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



4.2.1 Modified compute cell—The basic compute cell has been extended to compute
multiple correlation functions per cycle. Each cell performs k independent multiply
accumulate operations and outputs k independent partial correlation scores.

4.2.2 Weighted Scorer—At the end of each 1D correlation row, a new weighted scorer
module is added. It takes k independent partial correlation scores (generated by the current
1D correlation row) and the partial weighted score from the previous row and computes a
new partial weighted score. It also checks for saturation of individual scores, setting them to
the positive or negative saturation value if needed. The partial weighted score is then sent to
the line FIFO. Note that the FIFO now carries only one score as opposed to k. To obtain a
high operating frequency, the computation is pipelined into three stages, as shown in Fig. 7.

4.2.3 New FIFO—The scores entering and leaving the FIFO are now weighted sums of
individual correlation scores. The scores computed by the compute nodes are still the k
individual correlation sums. Thus, compute cells cannot simply add the output of the FIFO
to their current score. This distinction requires a modification in the existing pipeline and the
compute cells. The compute rows no longer receive the partial correlation score from the
FIFO; instead, a zero is fed into the first cell of each compute row. The weighted score from
the FIFO of the current row is sent directly to the weighted scorer module at the end of the
next row, where it is added to the partial weighted score of that row (as per (3)). In order to
align this previous weighted score with the scores emerging from the current row, it needs to
be sent through a new FIFO before it enters the weighted scorer. The length of this new
FIFO is equal to the length of the 1D correlation row. For efficient implementation, this new
FIFO is merged with the existing line FIFO. Also, the length of the combined FIFO needs to
be adjusted to account for the delay through the pipeline stages of the weighted scorer.

4.2.4 New voxel data type—In contrast to the earlier design, where each voxel
represented only one value, the new voxel data at every grid point must represent energy
values for different energy functions. To implement the PIPER energy functions, we have
modified the voxel data to contain the following five (or more) energy values: attractive van
der Waals, repulsive van der Waals, Born electrostatics, Coulomb electrostatics, and P
pairwise-potentials. The number of desolvation terms, P, is an input parameter.

In the serial PIPER code, the energies are represented using single precision floating point
numbers. In our FPGA implementation, we use the fixed point numbers shown in Table 2
with no loss of precision.

4.3 Supporting large ligands
In order to support larger ligand grids, we have implemented a scheme to compute
correlation scores in pieces. Note that the receptor size can still be as large as before. We
call this piece-wise correlation, as it involves loading different pieces of the ligand grid into
the FPGA correlation cores and storing the partial scores in score memory. A new ligand
memory is added which stores the entire ligand. This was not needed earlier since ligand
volxels were stored directly in the compute cells. For each ligand piece, the receptor is
streamed through the 3D correlation pipeline and the partial scores are saved. We have
added a new controller to handle the new functions: loading ligand grid-pieces, generating
the correlation scores, and generating the addresses of score memory where the current
partial scores are accumulated. A new-score accumulator has also been added. This fetches
the current score from the score memory, adds the new partial score to it, and stores it back
to the same location in score RAM. The entire scheme is shown in Fig. 8.

Sukhwani and Herbordt Page 7

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Table 3 compares the logic utilisations for the correlation pipelines with and without support
for piecewise correlation. For this example, a simple compute cell is used with an 8 × 8 × 8
on-chip array of cells. The designs in the first two rows both operate on an 8 × 8 × 8 ligand;
the difference is that the second has the overhead hardware for swapping. We see that the
overhead for supporting piecewise correlation is minimal. Also, the clock rate is virtually
unchanged. The last two rows show the support required to operate on 163 and 323 ligands,
respectively, keeping the number of hardware cells constant. Clearly, larger correlations can
be supported without much increase in the resources required.

5 Results
5.1 Target architecture and operation

The target architecture for FPGA-accelerated PIPER described here has the following
characteristics (typical for current products):

• The overall system consists of a host PC or workstation with an accelerator board
plugged into a high-speed socket (e.g. PCI Express). The host runs the main
application program and communicates with the accelerator through function calls
using vendor supplied drivers.

• The accelerator board consists of a high-end FPGA, memory and a bus interface.
On-board memory is tightly coupled to the FPGA either through several interfaces
(e.g. 6 × 32-bit) or a wide bus (128-bit).

• Besides configurable logic, the FPGA has dedicated components such as
independently accessible multiport memories (e.g. 1000 × 1 KB) and a similar
number of multipliers.

Generalising PIPER to multi-FPGA systems for most docking applications is almost
immediate: rotations can be partitioned among accelerators.

Execution of the accelerated code proceeds as follows. Before the correlation between the
receptor and ligand grids is performed, those grids need to be assigned with charges
corresponding to the various energy functions. This is done on the host using the PIPER
code. For the receptor, PIPER assigns the charges only once, since it stays fixed throughout
the entire docking process. This grid is downloaded to the accelerator board memory. For
every rotation, the PIPER program rotates the ligand and updates charges on the ligand grid.
This grid is then downloaded into the correlation cells on the FPGA. In the case of piecewise
correlation, the ligand grid is downloaded into off-chip memory, whence it is loaded as
described in Section 4.3.

Once the ligand is downloaded, the FPGA correlation starts, generating one score per cycle.
These scores are passed to a data reduction filter, which selects a pre-specified number of
top scoring positions and stores them in the on-chip block RAMs. Upon completing the
correlations for one rotation, the host program uploads the highest scores and downloads the
ligand grid for the next rotation.

Each FPGA accelerator has a certain capacity of correlation cells, for example, 83 for the
Altera Stratix-III SL340 when running PIPER with P = 4. For larger ligands and larger P,
the cell array is used multiple times per rotation (piece-wise correlation). For smaller ligands
and simpler energy functions, multiple correlations are executed simultaneously, for
example, 8 for a 43 ligand.

We now briefly describe the non-FPGA overhead, including data transfers.

Sukhwani and Herbordt Page 8

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



• Initialisation: initialisation can take several seconds, but since the overall execution
time is on the order of hours, this time is negligible.

• Host computation: charge is reassigned to the ligand for every new rotation. For
typical ligand sizes this takes 200 ms and can proceed in parallel with the FPGA
computation.

• Host-board data transfers: after initialisation, the only data transfers between host
and FPGA board are the ligand (host-to-board) and results (board-to-host). Both are
negligible. The data per ligand is the bytes per voxel (e.g. 8 for P = 4) times the
number of voxels (e.g. 83). The results are the few highest scoring positions and
their scores.

• Board-FPGA data transfers: during correlation, receptor data are streamed from
board to FPGA in a single stream. Again, this is 8 bytes wide for P = 4, which
represents a fraction of typical board-FPGA transfer capability.

5.2 Validation and FPGA-specific results
All FPGA configurations were created using VHDL. Synthesis and place-and-route were
performed using Altera design tools. The target system used to validate the functionality of
FPGA-accelerated PIPER was an XtremeData XD1000, which contains an Altera Stratix-II
EP2S180 [23]. Validation was performed with respect to the original PIPER serial code:
exact matches were obtained.

Since the Stratix-II is now obsolete we also generated configurations through post place-
and-route for an Altera Stratix-III EPSL340. This method is sufficient to give precisely the
resource usage (see Table 4). For an 83 ligand, the design uses 100% of the DSP blocks and
82% of the combinational logic. The actual number of multipliers required is far more than
those available on the chip: the balance are created from combinational logic. The operating
frequency is predicted to be 100 MHz. For true implementations this number is often
slightly lower. On the other hand, operating frequencies for this generation FPGA are often
in the 200–300 MHz range, so with some optimisation higher performance could be realised.

5.3 Reference codes
Besides the original single core and FPGA-accelerated versions of PIPER, we have
constructed two other versions: a multithreaded and a GPU accelerated. They differ
primarily in the correlation: specifically in the cross-over point where the FFT is preferred
over direct computation. In all cases, the host was a quad-core Intel Xeon 2 GHz processor.
The host codes were compiled using standard optimisation settings. Docking results were
validated against the original code.

For FPGAs, the reasons to implement correlations directly, rather than with an FFT, include
low precision and a regular compute pipeline. The FFT's advantage in asymptotic
complexity, however, means that there must exist a problem size where that method is
preferred. Conversely, for multicore and GPU there may also exist problem sizes small
enough for direct correlation to be preferable to the FFT.

Our reference implementation, the PIPER production code, uses the FFTW package [24].
Running this on a single core of a quad-core Intel Xeon 2 GHz processor, the time for a 1283

FFT is 360 ms. When all four cores are used, the time is 106 ms. Direct correlation on
multicore is slower for all ligand sizes greater than 43, which executes in 44 ms. In separate
work, we performed the same 3D FFT on a current high-end GPU-based system, the
NVIDIA Tesla C1060 (see [4] for details). The Tesla C1060 has a PCIe interface, 4 GB of
memory and a single GPU. The GPU itself has an operating frequency of 1.3 GHz and 240

Sukhwani and Herbordt Page 9

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



streaming processor cores. For this system, using the NVIDIA library function, the time for
a 1283 FFT is 9.3 ms. We also tried direct correlation: this was again slower than the FFT
for all ligand sizes but 43, which executes in 4.1 ms.

5.4 Performance comparisons
5.4.1 Performance with respect to various energy functions—Rigid-molecule
docking programs vary in their energy functions. For example, Situs [9] employs SC,
whereas FTDock [10], DOT [14] and Hex [12] use both SC and electrostatics. PIPER uses
both of these and adds some number of pairwise potential terms. Also, the datatype sizes
vary with the function: for PIPER they range from 4 to 9 bits; some of the other programs
use a simpler SC function that uses only 1–2 bits.

The docking codes generally handle the multiplicity of energy functions by executing
multiple FFTs. Also, there is no advantage to having a small datatype and little advantage to
having a small ligand. The FPGA-accelerated versions differ in three ways: (i) they execute
the multiple functions simultaneously; (ii) the small datatype results in a more efficient
configuration and thus more parallelism and higher performance; and (iii) the performance
is inversely proportional to the number of elements in the ligand. Fig. 9 shows the speed-ups
of the FPGA-accelerated versions of four combinations of energy functions. The series
labelled ‘Simple’ represents the energy functions used in DOT and FTDock while the series
labelled ‘PIPER’ represents the more complex PIPER versions of these functions. ‘DE’
refers to the use of four pairwise potential terms. As expected, the simpler the energy
functions, the greater the speed-up.

5.4.2 Performance of the correlation task for various technologies—We
measure the performance of the correlation task for the PIPER energy functions with four
pairwise potential terms (left panel of Fig. 10). For the GPU, multicore, and single core, the
FFT was faster than direct correlation for all ligand sizes but 43. The leftmost data points
therefore use that method for all the technologies, including the single core reference. The
crossover point for the FPGA version is 16 with respect to the GPU and about 30 with
respect to a four core processor.

5.4.3 Performance of the entire application for various technologies—For
reference we show PIPER run with 10 000 rotations and P = 18 (right panel of Fig. 10). The
total run time on a single core is 27.8 h. When PIPER is used in production, jobs are
executed in batch mode on 1 K node IBM BlueGene L.

When the entire application is run the speed-ups are reduced. The GPU performs filtering as
a separate step, whereas on the FPGA it is pipelined with the correlation and so its latency
hidden. This increases the crossover point slightly. For the FPGA, the limiting factor is the
host overhead (about 200 ms per rotation) which dominates the execution time for ligand
sizes ≤83.

6 Discussion
We have presented an FPGA-based accelerator for a sophisticated, current, production
docking code. In the process, we created a novel addition to our 3D correlation structure to
enable effective computation of complex correlations. This structure reduces FPGA
component utilisation by 38–40%. We also added support for piecewise correlation to
enable efficient computation with large ligands. The overall result for small-molecule
docking is a multi-100-fold speed-up for the correlation, which accounts for 95.4% of the
computation. Acceleration of another 2.3% using an existing filtering method brings the
potential total acceleration up to 42× over a single core; of this we currently obtain 36×.

Sukhwani and Herbordt Page 10

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Since we achieve a speed-up of 3.4× for a four core implementation, the chip-to-chip speed-
up is 10.5×. Accelerating the remaining 2.3% is work in progress – using a previously
developed method for charge-to-grid assignment [21] appears promising. For protein–
protein docking, the GPU's efficient FFT makes it the clear choice.

An important question is what these results say about the relative merit of FPGAs, GPUs
and multicore CPUs for rigid molecule docking and similar computations. With respect to
operating frequency, that of multi-core processors is about twice that of high-end GPUs, and
five times that of an FPGA's peak. For floating point performance, the GPU's peak is four
times that of an FPGA's, and eight times that of a quadcore processor. A more important
measure, however, is the performance achieved for production applications and why. Here
an FPGA has better performance (for small molecules) because its configurability allows a
match between application and hardware. Two aspects stand out. One is that the correlation
elements in the FPGA are built to the precision available in the problem, which enables 512
fully pipelined processors. The other is that this correlation pipeline runs at over 90%
capacity. In contrast, the quadcore CPU and the GPU execute their FFTs (using library
functions as described) at 10% and 4% of peak, respectively.

For large molecules, FFT-based correlation dominates. The 3D FFTs of the GPU and the
multicore are superior to any currently available on FPGAs. It may be possible, however, to
construct a competitive 3D FFT for FPGAs. For example, the Altera 1D FFT IP core
executes a 128 element FFT in 0.89 μs. Since a 3D correlation requires computing
approximately 3N2 1D FFTs of length N, the ideal 3D implementation would take 43.75 ms.
This core, however, occupies less than 10% of the Stratix-III EPSL340. If the entire chip
could be used, then the latency would be reduced to less than 5 ms. Actual performance,
however, depends on a number of factors: memory bandwidth, on-chip storage, and routing
and control structures. For example, the 1D FFT requires a bandwidth of 576 MB/s.
Although current FPGA-based systems support ten times that memory bandwidth, the
interfaces may not have nearly the flexibility required. The lack of such an FPGA-based
FFT is probably indicative of the relative challenge in programming FPGAs against GPUs
and multicore.

The FPGA's place, for the time-being at least, is clearly with small molecule docking: a
factor of 10× speed-up there means that many more drug alternatives can be examined. This
advantage increases substantially for applications with simple energy functions (see Fig. 9).
The highest impact, however, may be in applications that dock very small ligands. Such
molecular fragments are used in computational solvent mapping for the critical application
of determining druggable hot-spots within binding sites [25]. For this application, efficient
charge assignment, would enable speed-ups of over 100×. Since our charge assignment
algorithm depends on complex memory interleaving, the small ligand size is likely to
simplify its implementation.

The significance of this work is in its potential to drastically increase the pace of discovery
in both basic science and in drug discovery. As PIPER gets integrated into the popular
online ClusPRO system [17], the impact of this work should increase further.

Acknowledgments
We thank members of the Structural Bioinformatics group at Boston University for their help in understanding the
PIPER code. We also thank the anonymous reviewers for their many helpful corrections and suggestions. This work
was supported in part by the NIH through award #R01-RR023168-01A1, and facilitated by donations from
XtremeData, Inc., SGI, Altera Corporation, and Xilinx Corporation. Web: http://www.bu.edu/caadlab.

Sukhwani and Herbordt Page 11

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.bu.edu/caadlab


References
1. May M. Playstation cell speeds docking programs. Bio-IT World. July 14.2008
2. Servat H, Gonzalez-Alvarez C, Aguilar X, Cabrera-Benitez D, Jimenez-Gonzalez D. Drug design

issues on the Cell BE. Proc 3rd Int Conf on High Performance and Embedded Architectures and
Compilers. 2008:176–190.

3. Korb, O. PhD thesis. University of Konstanz; 2008. Efficient ant colony optimization algorithms for
structure- and ligand-based drug design.

4. Sukhwani B, Herbordt M. GPU acceleration of a production molecular docking code. Proc General
Purpose Computation Using GPUs. 2009

5. Kozakov D, Brenke R, Comeau S, Vajda S. PIPER: an FFT-based protein docking program with
pairwise potentials. Proteins Struct Funct Genet. 2006; 65:392–406. [PubMed: 16933295]

6. Vancourt T, Gu Y, Herbordt M. FPGA acceleration of rigid molecule interactions. Proc IEEE Conf
on Field Programmable Logic and Applications. 2004

7. Vancourt T, Herbordt M. Rigid molecule docking: FPGA reconfiguration for alternative force laws.
J Appl Signal Process. 2006; 2006:1–10.

8. DeLano Scientific LLC. [accessed: 2 November 2009] PyMOL Molecular Viewer. available:
http://pymol.org

9. Wriggers W, Milligan R, Mccammon JS. A package for docking crystal structures into low-
resolution maps from electron microscopy. J Struct Biol. 1999; 125:185–195. [PubMed: 10222274]

10. Gabb H, Jackson R, Sternberg M. Modelling protein docking using shape complementarity,
electrostatics, and biochemical information. J Mol Biol. 1997; 272:106–120. [PubMed: 9299341]

11. Chen R, Weng Z. A novel shape complementarity scoring function for protein–protein docking.
Proteins, Struct Funct, Genet. 2003; 51:397–408. [PubMed: 12696051]

12. Ritchie D, Kemp G. Protein docking using spherical polar fourier correlations. Proteins Struct
Funct Genet. 2000; 39:178–194. [PubMed: 10737939]

13. Vakser I, Matar O, Lam C. A systematic study of low-resolution recognition in protein–protein
complexes. Proc Natl Acad Sci. 1999; 96:8477–8482. [PubMed: 10411900]

14. Teneyck L, Mandell J, Roberts V, Pique M. Surveying molecular interactions with dot. Proc
Supercomputing '95. 1995

15. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson H. PatchDock and SymmDock: servers
for rigid and symmetric docking. Nucl Acids Res. 2005; 33:W363–W367. [PubMed: 15980490]

16. Friesner RA, Banks JL, Murphy RB, et al. Glide: A new approach for rapid, accurate docking and
scoring.1. method and assessment of docking strategy. J Med Chem. 2004; 47:1739–1749.
[PubMed: 15027865]

17. Comeau S, Gatchell D, Vajda S, Camacho C. ClusPro: an automated docking and discrimination
method for the prediction of protein complexes. Bioinformatics. 2009; 20(1):45–50. [PubMed:
14693807]

18. Tovchigrechko A, Vakser I. GRAMM-X public web server for protein-protein docking. Nucl
Acids Res. 2006; 34:W310–W314. [PubMed: 16845016]

19. Kuntz I, Blaney J, Oatley S, Langridge R, Ferrin T. A geometric approach to macromolecule-
ligand interactions. J Mol Biol. 1982; 161:269–288. [PubMed: 7154081]

20. Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem A, Aflalo C, Vakser I. Molecular surface
recognition: determination of geometric fit between proteins and their ligands by correlation
techniques. Proc Natl Acad Sci. 1992; 89:2195–2199. [PubMed: 1549581]

21. Gu Y, Herbordt M. FPGA-based multigrid computations for molecular dynamics simulations. Proc
IEEE Symp on Field Programmable Custom Computing Machines. 2007:117–126.

22. Swartzlander, E. Systolic signal processing systems. Marcel Dekker, Inc.; 1987.
23. XtremeData, Inc. [Accessed February 2009] XD1000 Development System. www.xtremedata.com
24. FFTW Web Page. [accessed January 2009] Available at www.fftw.org
25. Landon M, Lancia D Jr, Yu J, Thiel S, Vajda S. Identification of hot spots within druggable

binding regions by computational solvent mapping of proteins. J Med Chem. 2007; 50(6):1231–
1240. [PubMed: 17305325]

Sukhwani and Herbordt Page 12

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://pymol.org
http://www.xtremedata.com
http://www.fftw.org


Figure 1. Docked complex of two proteins generated using Pymol [8]

Sukhwani and Herbordt Page 13

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. Examples of shape complementarity (from [6])

Sukhwani and Herbordt Page 14

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Program flow of PIPER
Blocks in dark grey with bold border indicate steps accelerated on the FPGA

Sukhwani and Herbordt Page 15

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Structures to compute 3D correlations
a standard 1D systolic array
b extension to 2D extension with delay lines
c full 3D correlation with delay planes

Sukhwani and Herbordt Page 16

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5. Shown are three methods of combining multiple correlations in a single pass
a Within a compute cell
b Upon completion
c Integrated into the scoring function

Sukhwani and Herbordt Page 17

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6. Shown is the 2D correlation pipeline modified to support complex correlations
The 3D extension is analogous

Sukhwani and Herbordt Page 18

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7. Shown is detail of the end-of-row weighted scorer
It is pipelined to enable high operating frequency

Sukhwani and Herbordt Page 19

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 8. Block diagram of piece-wise docking for computations with large second molecules

Sukhwani and Herbordt Page 20

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 9. Graph shows speed-up of the FPGA accelerator over a single core against ligand size
for various energy function combinations
Only the correlation task is evaluated

Sukhwani and Herbordt Page 21

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 10. The left panel shows speed-up of the PIPER correlation task for various technologies
The right panel shows end-to-end speed-up. Eighteen pairwise potential terms are used

Sukhwani and Herbordt Page 22

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sukhwani and Herbordt Page 23

Table 1
PIPER run times for one rotation using a single core of a 2008 2 GHz quad-core Xeon
processor

Phase Run time (s) % total

ligand rotation 0.00 0

charge assignment 0.23 2.3

FFT of ligand grids 4.51 45.4

modulation of grid pairs 0.22 2.2

IFFT of ligand grids 4.51 45.4

accumulation of desolvation terms 0.24 2.4

scoring and filtering 0.23 2.3

Total 9.94 100

P = 18 so 22 correlations are computed. Steps performed once are negligible over thousands of iterations

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sukhwani and Herbordt Page 24

Table 2
Number of bits per voxel for computing various energy functions

Energy term Data type Number of bits

Receptor Ligand

attractive van der Waals integer 8 4

repulsive van der Waals integer 4 4

electrostatics fixed point 9 9

pairwise potentials fixed point 9 9

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sukhwani and Herbordt Page 25

Table 3
Resource utilisation for piecewise correlation for the Altera Stratix-III family

Design Resource utilisation

ALUTs Registers

no piecewise support 8 × 8 × 8 ligand 14650 15694

piecewise support 8 × 8 × 8 ligand 14987 15920

piecewise support 16 × 16 × 16 ligand 15035 15934

piecewise support 32 × 32 × 32 ligand 15132 15953

There is little overhead due to piecewise support

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Sukhwani and Herbordt Page 26

Ta
bl

e 
4

R
es

ou
rc

e 
ut

ili
sa

tio
n 

pe
r 

ce
ll 

fo
r 

va
ri

ou
s e

ne
rg

y 
fu

nc
tio

ns

E
ne

rg
y 

fu
nc

tio
n

N
um

be
r 

of
 c

or
re

la
tio

ns
C

el
l o

pe
ra

tio
n

R
es

ou
rc

es
 u

se
d

A
L

U
T

s
R

eg
is

te
rs

D
SP

s

SC
 (2

 b
its

)
1

bi
tw

is
e 

A
N

D
15

17
0

SC
 +

 d
es

ol
va

tio
n 

(Z
D

O
C

K
)

2
bi

tw
is

e 
op

er
at

io
ns

50
41

0

SC
 +

 e
le

ct
ro

st
at

ic
s (

FT
D

oc
k,

 D
O

T)
2

bi
tw

is
e 

op
s +

 o
ne

 m
ul

tip
lic

at
io

n
32

74
1

PI
PE

R
 e

ne
rg

y 
fu

nc
tio

n 
w

/o
 p

ai
rw

is
e 

po
te

nt
ia

l
4

bi
tw

is
e 

op
s +

 tw
o 

m
ul

tip
lic

at
io

ns
59

97
2

PI
PE

R
 e

ne
rg

y 
fu

nc
tio

n 
w

/tw
o 

pa
irw

is
e 

po
te

nt
ia

ls
6

bi
tw

is
e 

op
s +

 fo
ur

 m
ul

tip
lic

at
io

ns
93

10
9

4

PI
PE

R
 e

ne
rg

y 
fu

nc
tio

n 
w

/fo
ur

 p
ai

rw
is

e 
po

te
nt

ia
l

8
bi

tw
is

e 
op

s +
 si

x 
m

ul
tip

lic
at

io
ns

12
7

15
7

6

IET Comput Digit Tech. Author manuscript; available in PMC 2011 August 17.


