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Abstract
Composite endpoints are commonly used in clinical trials. When there are missing values in their
individual components, inappropriate handling of the missingness may create inefficient or even
biased estimates of the proportions of successes in composite endpoints. Assuming missingness is
completely at random or dependent on baseline covariates, we derived a maximum likelihood
estimator of the proportion of successes in a three-component composite endpoint and closed-form
variance for the proportion, and compared two groups in the difference in proportions and in the
logarithm of a relative risk. Sample size and statistical power were studied. Simulation studies
were used to evaluate the performance of the developed methods. With a moderate sample size the
developed methods works satisfactorily.
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1. INTRODUCTION
Composite endpoints are frequently used in medical diagnoses, epidemiologic research, and
clinical trials. For example, the test-of-cure of Helicobacter pylori-associated duodenal ulcer
disease could be based on culture, histology, and rapid urease test results. If the results from
the three components are negative, the patient is classified as disease eradicated. A
composite endpoint with more than three components is also used in practice.

If there are no missing data in individual components, the estimation of the proportion of
successes in a composite endpoint and comparisons of proportions between two groups,
such as an intervention or control group, can be performed using classical statistical methods
for binomially distributed variables. However, the presence of missing values in one or more
components will make the estimation of the proportion of the composite endpoint somewhat
complicated. The approach most commonly used for addressing the missing data is the so-
called complete-case analysis, an analysis using the data including subjects with complete
data only and excluding these subjects whose components have missing values. However,
such an approach may discard known composite endpoints and be less efficient, although it
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yields unbiased estimates when missingness is completely at random. In addition, multiple
imputation has been used extensively in many applications with missing values. But the
performance in composite endpoint settings is unknown.

A related missing value problem in contingency tables was studied in a partial cross-
classification setting and with different modeling purposes as early as in the 1970s. In
particular, maximum likelihood estimators (MLEs) of cell probabilities in two-dimensional
contingency tables with both completely and partially cross-classified data were considered
by Chen and Fienberg (1974) and Hocking and Oxspring (1974). Williamson and Haber
(1994) extended this approach to three-dimensional contingency tables. In Chen and
Fienberg (1974), MLEs for Poisson sampling were derived. The MLEs for the Poisson
parameters in general had no closed form. Hence, an iterative procedure was used to obtain
the MLEs. The authors also obtained the MLEs for multinomial sampling and the
asymptotic variances and covariances of the estimated cell probabilities and developed the
goodness-of-fit tests for the models. In Hocking and Oxspring (1974), a multinomial
distribution was used. Assuming that completely classified data followed a multinomial
distribution, the partially classified data also followed a multinomial distribution with
appropriately combined parameters. With an assumption that the two sets of data were
independent, the MLEs of the parameters from the combined data were obtained.

In order to estimate the proportion of success for composite endpoints with missing values,
Li et al. (2007) proposed four estimators, including an MLE, when the missingness is
completely at random. Similarly, Quan et al. (2007) considered comparison of treatment
effects on composite endpoints comprised of two components with missing data. Instead of
defining a composite endpoint for each individual, these methods focus on estimating the
cell probabilities, thereby estimating the proportion of success in a composite endpoint, in
order to avoid the difficulty of defining a composite endpoint for individuals with missing
values.

In clinical trials or observational studies, often interest lies in the comparison of two
proportions of successes for composite endpoints. The comparison could be the difference in
the proportions of successes or the logarithm of a relative risk (i.e., proportion ratio). The
methods for two-component composite endpoints do not easily apply to composite endpoints
with three or more composite components, because the likelihood function and variance
formulas are more complicated. Statistical methods for these very important multiple-
component endpoints in comparative studies are needed. Therefore, in this paper, assuming
that the values of individual components are missing completely at random or missing at
random (dependent upon baseline covariates), we develop methods for estimation of the
proportion of successes in a multiple-component composite endpoint and give an asymptotic
variance for the estimate using a three-component composite endpoint as an example. Two-
sample comparisons in terms of difference in proportions and in the logarithm of a relative
risk in superiority clinical trials are also explored. We examine the performance of the
developed methods, including the performance of confidence intervals, calculating statistical
power and sample size, and type I error for the two measures for comparison.

This article is organized as follows. In section 2, we introduce a mathematical formalization
of the problem and maximum likelihood estimator and asymptotic variance for proportion of
success in a three-component composite endpoint. In section 3, we include the power and
sample size formulas for superiority clinical trials. In sections 4 and 5, we highlight the
results of simulation studies and the results of a hypothetical data analysis, respectively. The
final section is devoted to a summary and discussion of directions for future research.
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2. MATHEMATICAL FORMULATION AND MAXIMUM LIKELIHOOD
ESTIMATOR

For ease of exposition, suppressing subscript t ε (0, 1) for group in notation, we consider K
binary (yes/no) outcomes Y (1), Y (2), … Y (K) and define their associated observed data 0/1
indicators as R(1) R(2) R(K) , where R(k) = 1if Y (k) is observed; otherwise it is 0. The
composite endpoint Y , defined from the K binary outcomes (individual components), is 1 if
Y (1) = 1 or Y (2) = 1,…, or Y K = 1; otherwise it is 0 (Table 1). Mathematically,

Of course, our development trivially extends to the case where the K outcomes are combined
via the Boolean “and” operator by considering the proportion of failures. Moreover, the
composite endpoint could be defined easily in other ways, for example, Y = 1 if two out of
three components are 1, depending on the clinical problems under study.

Let πl1l2…lK be the probability that Y(1) = l1, Y(2) = l2,…, Y(K) = lK and γm1m2…mK indicate

the probability of R(1) = m1, R(2) = m2,…, R(K) = mK where  = 1 and

 = 1. We assume throughout that the components are missing
completely at random, i.e., (Y (1), Y(2),…, Y (K)) ∐(R(1), R(2),… R(K)). However, the
components can be dependent, as well as the observed data indicators.

Of scientific interest is the estimation of p1 – p0, the difference in proportions between the
treatment and control groups, and log (p1/p0), the log relative risk, where p for each group is
defined from group-specific cell probabilities as:

2.1. Likelihood Function
As (R(1), R(2),…, R(K)) are ancillary for π = (πl1l2…lk)′, the maximum likelihood estimate for
π can be found by maximizing the conditional likelihood for the observed data given
(R(1) R(2),…, R(K).

Suppressing i for individual, assuming observations are identically independently
distributed, the contribution from an individual with observed data O to the conditional log-
likelihood l (π; O) is one of the following terms (the plus sign in the subscript of π denotes
the sum over the corresponding dimension(s), for example,π+00 = π000 + π100):

where π(·) = π(Y(b)=+, Y(c)=1Y(d)=0).

In the following part of this paper, we focus on a three-component composite endpoint, for
which the likelihood function can be written as:
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The conditional likelihood for the control or treatment group is (π; O). This likelihood
function uses all observed data, regardless of missing patterns in the components. Therefore,
the estimation is potentially more efficient. As mentioned in Li et al. (2007) in a two-
component composite setting, there are no closed-form solutions for the estimates. The
Newton-Raphson method was used to obtain estimates after re-parameterizing π to eliminate
boundary constraints. In the re-parametrization, β = (log (π001/π000), log(π010/π000), log
(π011/π000), log (π100/π000), log(π101/π000), log(π110/π000), log(π111/π000)). The cell
probabilities and variances can be estimated for each group. The variance for the proportion
of success in each group, var( ) and var( ) can be obtained from the delta method from the
variance–covariance matrix for the estimated cell probabilities.

2.2. Asymptotic Variance of p0 and p1, p1 – p0, and log (p1/p0)
Although there is no closed-form solutions for the proportion, there is a closed-form solution
for its variance. The closed-form asymptotic variance for  each group was developed using
the Fisher's information matrix derived from the conditional log-likelihood function. This
derivation is not presented, but the R program is available from the first author upon request.
Note that, due to missing values in outcomes, the variances of  and  are pt(1 – pt)/nt, t =
0, 1, where nt is the sample size for the treatment and control groups, standard binomial
distribution. However, since the two groups are independent, the variance of  is
simply the sum of variances of the two estimated proportions. Similarly, using the delta
method, the asymptotic variances of log  can be easily obtained as follows: var

.

Based on large-sample theory, the maximum likelihood estimators is approximately
asymptotically unbiased and normally distributed. Therefore, hypothesis testing using a
Wald test, confidence intervals, and statistical power for each measure can be constructed
from the corresponding variances. As in the traditional two-sample proportion comparison,
the pooled proportion and its variance used in power calculation can be simply estimated by
the average of p0 and p1, and their variances, respectively.

2.3. Likelihood Function Under Missing-at-Random Missing Mechanism
When missingness is dependent on baseline variables (missing at random, MAR), but not on
individual components, using the pseudo-likelihood function approach, the likelihood
function can be decomposed into two parts: one being a function with cell probability
parameters, the same as described earlier, and one with nuisance parameters associated
MAR missingness. Therefore, the developed MLE applies directly to the data with MAR
missing mechanisms.
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3. SIMULATION STUDIES
We performed simulation studies to evaluate the performance of the proposed statistical
methods for confidence interval, sample size, statistical power calculation, and type I error.
We considered the following simulation scenarios.

3.1. Completely-at-Random Missingness
Scenario 1: This is the basic simulation scenario. For the control group, π000 = 0.3 and all
other seven cell probabilities are set to be 0.1. Therefore, p0 = 0.70. For the treatment group,
π000 = 0.1 and π111 = 0.3 and all other six cell probabilities are set to be 0.1. Therefore, p1 =
0.90. All γm1m2m3 = 1/8 for the two groups; that is, each component has 50% missing values.
Therefore, the distribution of subjects with missing values in components is a binomial
distribution with (3, 0.5): 12.5% of subjects are with complete component data; 37.5% have
missing values in one component; 37.5% have missing values in two components; and
12.5% have no component data. The sample size used in the simulations is 173 per group,
which is designed to achieve an 80% statistical power for the given difference in proportions
in composite endpoint with a two-sided type I error of .05. If there are no missing values,
only 59 subjects per group are needed to achieve the same statistical power.

Scenario 2: The cell probabilities are same as in Scenario 1, but γ111 = 9/16 and all other
γm1m2m3 = 1/16. Therefore, 1/16 of subjects have no data; 3/16 have two components
missing; 3/16 have one component missing; and 9/16 have complete data. With a large
proportion of subjects with complete information, the sample size needed to have an 80%
statistical power is reduced significantly.

Scenario 3: Compared with Scenario 1, for both groups π001 = 0.05 π010 = 0.15 π011 = 0.05
π100 = 0.15 π101 = 0.05 π110 = 0.15. For the control group, π111 = 0.10. Therefore, p0 = 0.7.
For the treatment group, π111 = 0.30. Therefore, p1 = 0.9. This scenario is designed to have
more unequal cell probabilities.

Scenario 4: For the control group, π000 = 0.2 π111 = 0.2, and all other cell probabilities are
set to be 0.1. Therefore, p0 = 0.80. For the treatment group, values are the same as in
Scenario 1. Missing value probabilities are the same as in Scenario 1. This scenario is
designed to have a smaller difference in proportions.

Scenario 5: Compared with Scenario 1, π111 = 0.35 for the treatment group. All other
parameters remain the same. Since the difference in proportions increases, the sample size to
have a 80% statistical power decreases.

Scenario 6: Compared with Scenario 1, π111 = 0.39 for the treatment group. All other
parameters remain the same. Since the difference in proportions increases, the sample size to
achieve an 80% statistical power decreases.

Scenario 7: Compared with Scenario 1, π111 = 0.30 and 0.39 for control and treatment
groups, respectively. Therefore, the difference in proportion is smaller and a larger sample
size is needed.

3.2. Missing-at-Random Missingness
Under the missing-at-random mechanism, we assumed that missingness is dependent upon
two baseline covariates X1 and X2, which were generated as independent binary variables
with a success probability of 0.5. The cell probabilities for components are the same as in
Scenario 1. The missing probability for each component was generated from a logistic
regression model logit(P(R(j) = 0) = βj0 + βj1X1 + βj2X2. The sample size was 200 for both
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the treatment and control group. In the following scenarios, the intercept βj0 were changed in
different ways.

Scenario 8: Here, (βj0, βj1, βj2) = (−2, 1, 1,) for all j components for two groups. The three
components have same missing probability given a set of baseline covariates. The missing
probability for each component for a subject with X1 1 and X2 = 1 is 50%.

Scenario 9: Compared with Scenario 8, β10 = −1, β20 = −2, and β30 = −3 for the two groups.
The three components have different missing probabilities. However, the two groups have
same missing probabilities.

Scenario 10: Compared with Scenario 8, β10 = −1, β20 = −2, and β30 = −3 for the control
group and β10, = −2, β20 = −1, and β30 = 0 for the treatment group. The three components
have different missing proportions and the two groups have different missing probabilities.

The number of iterations for each scenario was 1000 times.

If there are no missing values in components, given the proportion of 0.7 and 0.9 in the two
groups, only 59 subjects per groups are needed to achieve the same statistical power and
maintain the same level of a type I error. The severe missing value problem in this scenario
makes the sample size almost tripled. In Scenario 1, if we used complete case analysis, to
test the difference in proportions, the statistical power is only 40.8% and the coverage of the
95% confidence intervals (CIs) is 94.4%; to test log relative risk, the statistical power is only
33.0% and the coverage of 95% CIs is 94.3%. In this case, the calculated variance for the
control and treatment groups is 0.0031 and 0.0019, close to the calculated 0.0032, 0.0019
based on the closed-form variance formula, respectively. The MLE performs very well in
the first four scenarios (Table 2). The mean estimates are close to the true values, and the
coverage of 95% CIs is close to 0.95 and the empirical statistical power is close to the
designed power.

Scenario 5 shows that as sample size increases, the statistical power increases. However,
since the sample size of 97 per group is too small given only about 12 patients having
complete data, the empirical statistical power is only 74%, lower than the designed power.
However, as sample size increases, the estimates, coverage of 95% CI, and statistical power
are close to the true values.

Scenario 6 indicates that when a needed sample size is small due to a large difference in
proportions between the two groups, even if it is calculated based on a 80% power by
design, the estimation is not satisfactory. A larger sample size to achieve a greater than 90%
or even a 95% statistical power is needed.

In general, the empirical statistical power using the logarithm of relative risk is slightly
lower than that using the difference in proportions.

Under missing at random mechanism (Scenarios 8–10), the performance of the developed
methods worked very well.

With different missing value proportions, it would be convenient in practice to decide
whether or not to use the developed methods given a sample size. For this purpose, we use a
measure of effective sample size. If we assign weights (1, 2/3, 1/3, 0) to subjects with
complete data, two components available, one component available, and no components
available, respectively, then the effective sample size is defined as the sum of weighted
frequencies of each missing value pattern. For example, in Scenario 1 the effective sample
size is 173(12.5% + 37.5% × 2/3 + 37.5% × 1/3 + 12.5% × 0) = 86.5. Generally speaking,
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the effective sample sizes should be greater than 60 in order to have a satisfactory
performance. This is satisfied by the sample size to achieve an 80% power if the difference
in proportions is small, say, less than 0.20. However, if the difference in proportions is
greater than 0.25, the effective sample sizes should be greater than 100 even if a smaller
sample size is indicated by an 80% statistical power.

In order to examine the performance of the sample size calculation, we calculated and
simulated the statistical power given different sample size for Scenario 1. Figure 1 shows the
calculated and simulated statistical power. The power curve from the developed methods
given a sample size is lower than that from data without any missing values, but
substantially higher than that from complete-case data. When a sample size is greater than
100 or an effective sample size is greater than 50, the simulated statistical power is very
close to the calculated statistical power.

In order to investigate the type I error rate, the treatment group in Scenarios 1–4 had the
same cell probabilities and missing value probabilities as the control group. The type I error
rates are within [0.049, 0.062] with a mean of 0.055, consistent with the 95% confidence
interval of [0.037, 0.064] given 1,000 simulation repetitions.

Finally, the developed methods work only if there are some observations with complete data
(γ111 ≠ 0) and all cell probabilities, except for π000, not equal to 0 (boundary of parameter
space) for both groups. Otherwise, the closed-form variance may not work because some
terms have a zero denominators and identifiability problem may occurs in estimating cell
probabilities. Therefore, if any parameter is believed to be 0, the parameter should not be
estimated and the variance formula and likelihood function need to be modified accordingly.

4. DATA ANALYSIS EXAMPLE
For illustration, we used a hypothetical data set generated based on the results from
randomized placebo-controlled, double-blind clinical trials, which were designed to test the
efficacy of triple therapy (PRILOSEC/clarithromycin/amoxillin) in H. pylori eradication in
patients with duodenal ulcer disease compared with clarithromycin plus amoxicillin (FDA,
2009). In the studies, H. pylori was considered eradicated if at least two of three tests
(CLOtest, histology, and culture) were negative, and none was positive. It is the same as the
definition that H. pylori was positive if any test was positive. Missing values were possibly
encountered in such trials, because the sample sizes from three trials in intent-to-treat
population were different from those in per-protocol population. There were no individual
records available. To illustrate the developed methods, the sample size was set to be 300 per
group, and the values of each component were changed to missing values with a probability
of 0.2. Therefore, only 51.2% of subjects had complete data.

Figure 2 shows the estimated differences in eradication rates between the two groups and
95% confidence intervals from the original data, data with complete case only, and all
available data using the developed methods. The point estimates were very close. However,
the confidence interval derived using the developed methods with all available data was
much (22%) narrower than that from the complete-case analysis. However, given the large
sample size, the differences were statistically significant (p value < 001) from the three
methods.

5. DISCUSSION AND CONCLUSION
Binary composite endpoints are widely used in clinical trials. A binary composite endpoint
is usually defined from its components for each subject in a study. However, when there are
missing values in the components, coding the composite endpoint in different ways may
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yield different and, very often, biased estimates of the prevalence rate in the composite
endpoint.

In order to avoid this problem, instead of defining the composite endpoint for each subject,
new methods using different parametrization approaches have been developed for estimating
each probability of different combinations of the its components (cell probability) using the
maximum likelihood methods (Li et al., 2007; Quan et al., 2007). Then the prevalence of
success in the composite endpoint is derived from the cell probabilities. In this way, even if
one or more components are missing for a subject, the remaining components can still
contribute to the likelihood function through including a function of the cell probabilities.
The comparison of prevalence rates in a two-component composite endpoint was also
investigated (Quan et al., 2007).

In this paper, assuming the missingness is completely at random, we extended the maximum
likelihood estimation methods to a three-component composite endpoint setting. We
estimated the proportion in the composite endpoint and its variance using maximum
likelihood estimation methods. A formula for the variance of proportion was also developed,
which makes possible the use of traditional methods for sample size and statistical power
calculation in two-sample proportion comparison. Furthermore, under the missing at random
mechanism, the likelihood function also applies because the pseudo-likelihood function can
be decomposed into two parts: one being the same as the conditional likelihood function
under completely-at-random missingness, and one being related to baseline-covariate
dependent missingness.

We recommend the maximum likelihood estimation be used in these problems. Simulation
studies indicated that the developed methods performed satisfactorily. A hypothetical
clinical data analysis showed its practical use in real data. Depending on the magnitude of
missing value probabilities, statistical efficiency could be significantly improved compared
with the analysis using subjects with complete data. The likelihood function was
straightforward and easy to use and program.

There are some limitations in the developed methods. Most notably, we only considered
completely at random missingness and missing at random mechanism. We relegate the study
of different missing mechanisms to future research. In addition, the methods are based on
large-sample theory. Therefore, the methods may not be applicable for small sample size,
where both the asymptotics are not necessarily applicable and computational convergence
issues may arise. Exact small sample procedures are another area for future research.
Furthermore, though two- and three-component composite endpoints are the norm,
extension to settings with more components is straightforward and potentially useful in
practice.
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Figure 1.
Sample size and statistical power for Scenario 1.
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Figure 2.
Estimated difference in proportions and 95% confidence interval from three data sets.

Li and Caffo Page 11

J Biopharm Stat. Author manuscript; available in PMC 2011 August 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li and Caffo Page 12

Ta
bl

e 
1

C
el

l p
ro

ba
bi

lit
ie

s a
nd

 d
at

a 
av

ai
la

bi
lit

y 
pr

ob
ab

ili
tie

s f
or

 a
 th

re
e-

co
m

po
ne

nt
 c

om
po

si
te

 e
nd

po
in

t i
n 

on
e 

gr
ou

p

C
om

po
ne

nt
O

bs
er

ve
d 

in
di

ca
to

r

Y(2
)  =

 0
Y(2

)  =
 1

R(2
)  =

 0
R(2

)  =
 1

Y(1
)

Y(3
)  =

 0
Y(3

)  =
 1

Y(3
)  =

 0
Y(3

)  =
 1

R(1
)

R(3
)  =

 0
R(3

)  =
 1

R(3
)  =

 0
R(3

)  =
 1

0
π 

00
0

π 
00

1
π 

01
0

π 
01

1
0

γ 
00

0
γ 

00
1

γ 
01

0
γ 

01
1

1
π 

10
0

π 
10

1
π 

11
0

π 
11

1
1

γ 
10

0
γ 

10
1

γ 
11

0
γ 

11
1

J Biopharm Stat. Author manuscript; available in PMC 2011 August 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Li and Caffo Page 13

Ta
bl

e 
2

C
al

cu
la

te
d 

va
ria

nc
es

 o
f p

ro
po

rti
on

s, 
es

tim
at

ed
 (S

D
), 

95
%

 c
on

fid
en

ce
 in

te
rv

al
 c

ov
er

ag
e 

(C
IC

), 
an

d 
de

si
gn

ed
 p

ow
er

 (P
) a

nd
 e

m
pi

ric
al

 p
ow

er
 (E

P)
 fo

r
es

tim
at

ed
 d

iff
er

en
ce

 in
 p

ro
po

rti
on

s a
nd

 lo
g 

re
la

tiv
e 

ris
k 

fo
r a

 g
iv

en
 sa

m
pl

e 
si

ze
 (n

) p
er

 g
ro

up

M
is

si
ng

 sc
en

ar
io

n 
(e

ffe
ct

iv
e)

10
00

V
ar

(p
1)

 T
ru

e 
(m

ea
n)

10
00

V
ar

(p
0)

 T
ru

e 
(m

ea
n)

p̂ 1
−
p̂ 0

lo
g (
p̂ 1

∕
p̂ 0

)
T

ru
e

M
ea

n 
(S

D
)

95
%

 C
IC

P 
(E

P)
T

ru
e

M
ea

n 
(S

D
)

95
%

 C
IC

P 
(E

P)

M
is

si
ng

 c
om

pl
et

el
y 

at
 ra

nd
om

1
17

3 
(8

7)
1.

90
 (1

.9
3)

3.
18

 (3
.1

3)
0.

20
0.

20
4 

(0
.0

72
)

0.
93

7
0.

80
1 

(0
.8

06
)

0.
25

1
0.

25
9 

(0
.0

96
)

0.
94

3
0.

76
3 

(0
.7

88
)

2
84

 (6
3)

1.
61

 (1
.6

1)
3.

44
 (3

.4
1)

0.
20

0.
19

7 
(0

.0
69

)
0.

94
6

0.
80

4 
(0

.7
93

)
0.

25
1

0.
25

0 
(0

.0
93

)
0.

95
3

0.
75

5 
(0

.7
80

)

3
17

2 
(8

6)
1.

89
 (1

.9
5)

3.
21

 (3
.2

0)
0.

20
0.

20
1 

(0
.0

74
)

0.
93

4
0.

80
0 

(0
.7

95
)

0.
25

9
0.

25
5 

(0
.0

98
)

0.
94

3
0.

76
1 

(0
.7

78
)

4
79

6 
(3

97
)

0.
58

 (0
.5

8)
0.

69
 (0

.6
9)

0.
10

0.
10

0 
(0

.0
34

)
0.

96
6

0.
80

0 
(0

.8
11

)
0.

11
8

0.
13

4 
(0

.0
46

)
0.

94
9

0.
79

2 
(0

.8
08

)

5
97

 (4
9)

2.
28

 (3
.4

9)
5.

66
 (5

.6
2)

0.
25

0.
24

1 
(0

.0
89

)
0.

93
9

0.
80

1 
(0

.7
35

)
0.

30
5

0.
30

0 
(0

.1
21

)
0.

94
5

0.
73

0 
(0

.7
08

)

5
13

0 
(6

5)
1.

70
 (2

.0
5)

4.
23

 (4
.1

8)
0.

25
0.

24
5 

(0
.0

72
)

0.
95

1
0.

90
1 

(0
.8

69
)

0.
30

5
0.

30
5 

(0
.0

98
)

0.
96

1
0.

84
6 

(0
.8

56
)

5
20

0 
(1

00
)

1.
11

 (1
.1

8)
2.

75
 (2

.7
5)

0.
25

0.
24

7 
(0

.0
62

)
0.

94
5

0.
98

1 
(0

.9
70

)
0.

30
5

0.
30

4 
(0

.0
83

)
0.

95
4

0.
95

9 
(0

.9
64

)

6
58

 (2
9)

1.
16

 (4
.5

1)
9.

47
 (1

0.
88

)
0.

29
0.

24
2 

(0
.1

05
)

0.
91

1
0.

80
3 

(0
.5

91
)

0.
34

7
0.

29
9 

(0
.1

44
)

0.
91

4
0.

67
7 

(0
.5

15
)

6
78

 (3
9)

0.
86

 (3
.5

4)
7.

04
 (7

.1
4)

0.
29

0.
26

5 
(0

.1
05

)
0.

92
3

0.
90

4 
(0

.7
70

)
0.

34
7

0.
32

6 
(0

.1
31

)
0.

92
2

0.
80

1 
(0

.7
35

)

6
11

9 
(6

0)
0.

57
 (1

.5
4)

4.
62

 (4
.7

0)
0.

29
0.

27
5 

(0
.0

73
)

0.
94

1
0.

98
1 

(0
.9

37
)

0.
34

7
0.

33
4 

(0
.1

02
)

0.
94

0
0.

93
4 

(0
.9

27
)

6
23

0 
(1

15
)

0.
29

 (0
.9

3)
2.

39
 (2

.3
8)

0.
29

0.
28

7 
(0

.0
51

)
0.

96
1

1.
00

0 
(0

.9
98

)
0.

34
7

0.
34

5 
(0

.0
72

)
0.

95
3

0.
99

8 
(0

.9
98

)

7
38

5 
(1

93
)

0.
18

 (0
.2

6)
0.

86
 (0

.8
7)

0.
09

0.
09

1 
(0

.0
31

)
0.

94
9

0.
80

1 
(0

.8
17

)
0.

09
5

0.
09

7 
(0

.0
35

)
0.

95
0

0.
77

4 
(0

.8
04

)

M
is

si
ng

 a
t r

an
do

m

8
30

0 
(2

13
)

0.
79

 (0
.7

8)
1.

56
 (1

.5
7)

0.
20

0.
20

2 
(0

.0
48

)
0.

95
3

0.
98

4 
(0

.9
88

)
0.

25
1

0.
25

4 
(0

.0
64

)
0.

95
6

0.
98

8 
(0

.9
88

)

9
30

0 
(2

07
)

0.
89

 (0
.8

8)
1.

71
 (1

.7
3)

0.
20

0.
19

9 
(0

.0
51

)
0.

94
6

0.
97

5 
(0

.9
69

)
0.

25
1

0.
25

1 
(0

.0
68

)
0.

94
5

0.
97

9 
(0

.9
68

)

10
30

0 
(1

79
)

1.
74

 (2
.0

4)
1.

71
 (1

.7
3)

0.
20

0.
20

0 
(0

.0
59

)
0.

93
4

0.
92

5 
(0

.9
09

)
0.

25
1

0.
25

1 
(0

.0
76

)
0.

94
3

0.
91

6 
(0

.9
10

)

J Biopharm Stat. Author manuscript; available in PMC 2011 August 17.


