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The basic reproductive ratio, R0, is one of the fundamental concepts in mathematical biology. It is a threshold parameter, intended
to quantify the spread of disease by estimating the average number of secondary infections in a wholly susceptible population,
giving an indication of the invasion strength of an epidemic: if R0 < 1, the disease dies out, whereas if R0 > 1, the disease persists.
R0 has been widely used as a measure of disease strength to estimate the effectiveness of control measures and to form the backbone
of disease-management policy. However, in almost every aspect that matters, R0 is flawed. Diseases can persist with R0 < 1, while
diseases with R0 > 1 can die out. We show that the same model of malaria gives many different values of R0, depending on the
method used, with the sole common property that they have a threshold at 1. We also survey estimated values of R0 for a variety of
diseases, and examine some of the alternatives that have been proposed. If R0 is to be used, it must be accompanied by caveats about
the method of calculation, underlying model assumptions and evidence that it is actually a threshold. Otherwise, the concept is
meaningless.

1. Introduction

The basic reproductive ratio—also known as the basic repro-
ductive number, the basic reproduction number, the con-
trol reproduction number, or R0—is one of the foremost
concepts in epidemiology [1–3]. R0 is the most widely used
epidemiological measurement of the transmission potential
in a given population [4]. It is a measure of initial disease
spread, such that if R0 > 1, then the disease can invade an
otherwise susceptible population and hence persist, whereas
if R0 < 1, the disease cannot successfully invade and will die
out. The concept is defined as the number of secondary
infections produced by a single infectious individual in an
otherwise susceptible population [5].

Despite its place at the forefront of mathematical epi-
demiology, the concept of R0 is deeply flawed. Defining R0

proves to be significantly more difficult than it appears.
Few epidemics are ever observed at the moment an infected
individual enters a susceptible population, so calculating the
value of R0 for a specific disease relies on secondary methods.
There are many methods to calculate R0 from mathematical

models, few of which agree with each other and few of
which produce the average number of secondary infections.
Methods to calculate R0 from theoretical models include the
survival function, the next-generation method, the eigen-
values of the Jacobian matrix, the existence of the endemic
equilibrium, and the constant term of the characteristic
polynomial. R0 can also be estimated from epidemiological
data via the number of susceptibles at endemic equilibrium,
the average age at infection, the final size equation and
calculation from the intrinsic growth rate. For an overview,
see Heffernan et al. [2].

Furthermore, there are many diseases that can persist
with R0 < 1, while diseases with R0 > 1 can die out, reducing
the utility of the concept as a threshold. R0 is also used as
a measure of eradication for a disease that is endemic, but
issues such as backward bifurcations, stochastic effects, and
networks of spatial spread mean that an invasion threshold
does not necessarily coincide with a persistence threshold.
This results in a reduction of the usefulness of R0. For exam-
ple, it is possible that a disease can persist in a population
when already present but would not be strong enough to
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invade. Finally, the threshold value that is usually calculated
is rarely the average number of secondary infections, diluting
the usefulness of this concept even further.

In this paper, we outline the problems with R0 and
examine a number of alternatives that have been proposed.
We include a worked example of malaria to demonstrate
the many different results that the various methods give for
the same model. Finally, we survey some of the recent uses
of R0 in the literature. The number of articles that use R0

likely numbers in the tens of thousands, so an exhaustive
review is not feasible. We have restricted ourselves to articles
published since 2005 and which include interesting or novel
explorations of R0.

2. Methods for Calculating R0

In this section, we identify some of the more popular
methods (although by no means all) used to calculate R0. We
also describe the limitations that each method presents and
demonstrate one of the core problems with R0. Specifically,
we address a key problem with R0: how do biologists make
sense of it from mathematical models? (See, for example, the
puzzled discussion in van den Bosch et al. [6].)

Although the “R” in R0 is derived from “reproductive”,
based on the original formulation of the concept as the
average number of secondary infections, many thresholds
have been denoted by “R0”, even when they are not related to
the average number of secondary infections. Thus, in keeping
with the notation, we will use the notation R0,X to denote
an R0-like surrogate associated with a particular method,
symbolised by X .

2.1. The Survival Function. The survival function is given by

R0,S =
∫∞

0

⎛
⎜⎜⎜⎜⎜⎜⎝

the average number of susceptible

individuals that an infected individual

newly infects per unit time

when infected for total time a

⎞
⎟⎟⎟⎟⎟⎟⎠

×

⎛
⎜⎜⎜⎜⎜⎜⎝

the probability that a

newly infected individual

remains infectious

for at least time a

⎞
⎟⎟⎟⎟⎟⎟⎠
da

(1)

The survival function has the advantage that it always
produces the average number of secondary individuals
infected by a single infected individual, in the same class.
Thus, in Figure 1, where one human infects two mosquitoes,
who each infect three humans, the survival function pro-
duces R0 = 6. This is the number of humans infected by a
single infected human via mosquitoes; or, equivalently, the
number of mosquitoes infected by a single mosquito via
humans. The survival function is a generalised method of
calculating the basic reproductive ratio that is not restricted
to ODEs.

However, determining the individual probabilities can
be cumbersome, especially if multiple states are involved.

H

H H H H H H

M M

RM = 3

RH = 2

Figure 1: A example of a two-stage basic reproductive ratio. A single
human infects RH = 2 mosquitoes, each of whom subsequently
infects RM = 3 humans. Thus, a single human results in R0 = 6
infected humans. The next-generation method instead estimates
R0,N = √

6 infected individuals in the subsequent generation,
regardless of whether that generation is human or mosquito; R0,N

is the geometric mean of RH = 2 and RM = 3. (Reproduced with
permission from Smith? [7]).

For a vector-borne infection such as malaria, with two
infection states (human and mosquito), calculating the
first probability involves determining the probability that a
human infected at time 0 exists at time t, the probability
that a human infected for total time t infects a mosquito
and the probability that an infected mosquito lives to be age
a − t, where 0 ≤ t ≤ a [2]. For diseases with more states,
such as Guinea Worm disease, where there is a waterborne
parasite, which can attach itself to copepods, which in
turn are ingested by humans and which subsequently grow
into an internal nematode, the calculations of the survival
probabilities become unwieldy.

Thus, although this method always produces the correct
R0, in practice, it is difficult to use. This is especially true
for models with sufficient complexity, which are often those
encountered most frequently.

2.2. The Jacobian. The Jacobian matrix is used to linearise
a nonlinear system of differential equations. Around the
disease-free equilibrium, the linear system will have the same
stability properties as the nonlinear system if it is hyperbolic;
that is, if no eigenvalues have zero real part. In particular, if
all eigenvalues have negative real part, then the equilibrium
is stable, whereas if there is an eigenvalue with positive real
part, the equilibrium is unstable.

It follows that a threshold is λmax = 0, where λmax is
the largest eigenvalue of the Jacobian matrix (or the largest
real part if the eigenvalues are complex). However, for a
system of n differential equations, this requires solving an nth
order polynomial, which may be impossible. Furthermore,
rearranging the condition λmax = 0 to produce a threshold
R0,J = 1 is not a unique process and does not always produce
the average number of secondary infections.

2.3. Constant Term of the Characteristic Polynomial. When
λmax = 0, the constant term of the characteristic polynomial
will be zero. However, the reverse is not true, as the
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polynomial could have both zero and positive roots. If the
characteristic polynomial is

λn + an−1λ
n−1 + · · · + a1λ + a0 = 0, (2)

then a0 = 0 is a threshold if aj ≥ 0 for all j. More generally,
the Routh-Hurwitz condition allows the coefficients to
take on other signs, under certain restrictions, but the
nonconstant coefficients all being positive is a sufficient
condition. Another sufficient condition is that aj ≥ 0 under
the constraint a0 = 0 (so that the largest eigenvalue at a0 = 0
is 0).

This method is significantly easier to use than finding the
largest eigenvalue, although verifying that a0 = 0 necessa-
rily corresponds to the largest eigenvalue can become
complicated for some models. However, similar to the above,
rearranging a0 = 0 to produce R0,C = 1 is not a unique
process and does not always produce the average number of
secondary infections.

2.4. The Next-Generation Method. The next-generation
method, developed by Diekmann et al. [8] and Diekmann
and Heesterbeek [9], and popularised by van den Driessche
and Watmough [10], is a generalisation of the Jacobian
method. It is significantly easier to use than Jacobian-based
methods, since it only requires the infection states (such as
the exposed class, the infected class and the asymptomatically
infected class) and ignores all other states (such as susceptible
and recovered individuals). This keeps the size of the
matrices relatively manageable.

However, the next-generation method suffers from a lack
of uniqueness. In order to determine the matrices F and V
(where F accounts for the “new” infections and V accounts
for the transfer between infected compartments), biological
insight must be used in order to decide which terms count
as “new” infections and which terms are transfer terms.
While this may seem intuitive for most models, it is easy to
construct a counterexample

I′ = βSI − μI
= βSI + 5I − 5I − μI.

(3)

Here, the term +5I might represent, for example, new infec-
tions arising from vertical transmission, whereas the term
−5I might represent a disease-specific death rate. Although
this construction is clearly arbitrary, it demonstrates that
identifying “new” infections is not a unique process and
relies on the modeller’s judgement.

We would then have

F = βS + 5, V = 5 + μ, (4)

and thus

R0,5 = βS + 5
5 + μ

. (5)

This has the same threshold property as R0,N = βS/μ, but
is clearly not the average number of secondary infections.
In essence, the next-generation method is a mathematical
generalisation of putting the negative values on one side

and dividing (this is what V−1 is) so that the eigenvalue
threshold at zero is transformed into an R0-like threshold
at one. However, as we have seen, this does not produce a
unique result.

van den Driessche and Watmough [10] note that other
decompositions of F and V can be chosen, which lead to
different values for R0,N . They claim that only one choice
of F is epidemiologically correct. However, this is not true,
as the above example shows. Furthermore, it means that the
definition of R0 relies upon the judgement of the modeller as
to what “epidemiologically correct” means.

Furthermore, the next-generation method does not
produce the number of humans infected by a single human if
there is an intermediate host, but rather the geometric mean
of the number of infections per generation.

For example, consider a mosquito-borne disease where
humans infect two mosquitoes, while mosquitoes infect three
humans, as shown in Figure 1. For convenience, label these
RH = 2 and RM = 3. Then the number of humans infected
from a primary human (via mosquitoes) is R0 = 2 × 3 = 6.
(This is also the value calculated by the survival function.)

However, the next-generation method would calculate
R0,N = √

6, which is a weighted average (2 <
√

6 < 3)
of the number of infectives each individual produces in
the next infection event. While mathematically sound, it is
questionable whether this is biologically meaningful.

This example could be extended. Consider a three-stage
disease, such as tularemia, where ticks may transmit between
humans and livestock, but humans may also be infected by
eating livestock. Suppose that a single human directly infects
two ticks (so RH = 2), each tick infects four animals (so RT =
4) and each animal infects three humans (so RA = 3). Then,
a single human has resulted in

R0 = 2× 4× 3 = 24 (6)

infected humans. However, R0,N = 3
√

24 ≈ 2.88, since there
are three infection stages. As the number of infection stages
increase, R0,N becomes a progressively higher surd.

The next-generation method is likely the most frequently
used method to calculate R0. It has been used extensively
to calculate R0-like values from host-vector models (see
Wonham et al. [11], Gaff et al. [12] or Gubbins et al. [13]).
However, it does not produce the number of newly infected
individuals in the same infection class and does not always
produce the average number of secondary infections.

2.5. The Graph-Theoretic Method. In de Camino-Beck et al.
[14], a graph-theoretic method for calculating R0 is given.
Starting from the definition of R0 = ρ(FV−1), they derived
a series of rules for reducing the digraph associated with
Fλ−1 − V to a digraph with zero weight, from which λ = R0.
The rules are as follows.

Rule 1. To reduce the loop −aii < 0 to −1 at node i, every arc
entering i has weight divided by aii.

Rule 2. For a trivial node i on a path j → i → k, the two
arcs are replaced by j → k with weight equal to the product
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c
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Digraph of Fλ−1 −V

Creation of trivial
nodes using Rule 1

Using−1 +
βmλ−1

c
× (βm + 9)λ−1 − 9

b + γ

(βm + 9)λ−1 − 9
b + γ

Rule 2

Figure 2: The graph-theoretical method of de Camino-Beck et al. [14] applied to a vector-host model may not produce a unique R0.

of weights on arc j → i and i → k. Weights on multiple arcs
j → k are added.

The graph-theoretic method has the advantage that it avoids
calculation of V−1, which may be complicated for large
systems. However, it always produces the same threshold
value as the next-generation method.

They considered the simple vector-host model

dI

dt
= βsSW − (b + γ

)
I ,

dW

dt
= βmMI − cW ,

dS

dt
= b− bS + γI − βsSW ,

dM

dt
= c − cM − βmMI ,

(7)

where I , W , S, and M are proportions of infective hosts,
infective vectors, susceptible hosts, and susceptible vectors,
respectively, b is the host birth and death rate, γ is the host
recovery rate, c is the vector birth and death rate, and βs
and βm are disease transmission coefficients. The disease-free
equilibrium is (0, 0, 1, 1)T . They found matrices

F =
⎛
⎝ 0 βs

βm 0

⎞
⎠, V =

⎛
⎝b + γ 0

0 c

⎞
⎠. (8)

From this, they produced a digraph of Fλ−1 − V and
concluded that

R0 =
√√√ βmβs
c
(
b + γ

) . (9)

However, this method still contains the same issues as the
next-generation method. The R0 value calculated is not the
number of humans infected by a single human, but rather the
(less biologically meaningful) geometric mean of the number

of humans infected by the vector and the number of vectors
infected by a human. Furthermore, the creation of F and V
is not a unique process, as we have seen above, and does not
always produce the average number of secondary infections.

For example, consider the mathematically equivalent
model

dI

dt
= (βs + 9

)
SW − 9SW − (b + γ

)
I ,

dW

dt
= βmMI − cW ,

dS

dt
= b − bS + γI − βsSW ,

dM

dt
= c − cM − βmMI ,

(10)

with matrices

F =
⎛
⎝ 0 βs + 9

βm 0

⎞
⎠, V =

⎛
⎝b + γ 9

0 c

⎞
⎠. (11)

The graph reduction then proceeds as in Figure 2. It
follows (either by the graph-reduction method or using the
conventional next-generation method) that

R0 = 1
2

⎡
⎣9
(
βs + 9

)
c
(
b + γ

) +

√√√√81
(
βs + 9

)2

c2
(
b + γ

)2 +
4βm
(
βs + 9

)
c
(
b + γ

)
⎤
⎦. (12)

Thus, the graph-theoretic method inherits the existing
problems from the next-generation method.

2.6. Existence of the Endemic Equilibrium. R0 can also be
calculated from the endemic equilibrium, in the case where
there is a bifurcation at R0 = 1 such that the endemic
equilibrium does not exist for R0 < 1. The existence of
the endemic equilibrium is, thus, a threshold that can be
rearranged to produce an R0-like surrogate.
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Figure 3: A standard model of malaria. Humans can be susceptible
or infected, with birth rate ΛH , background death rate μH and
disease-specific death rate σ . Mosquitoes can be susceptible or
infected, with birth rate ΛM and background death rate μM .

However, for many models, calculating the endemic
equilibrium can be quite difficult. Furthermore, in the case of
a backward bifurcation, the endemic equilibrium still exists
for R0 < 1 (in fact, two endemic equilibria exist in this case,
one of which is stable and the other unstable). It follows
that the endemic equilibrium is not a useful general method
for calculating R0 and does not always produce the average
number of secondary infections.

van den Bosch et al. [6] use the endemic equilibrium to
determine a threshold given by Î = (1/α)(μq−μ+αK) so that
Î > 0 if μq − μ + αK > 0 (where Î represents infected plants
at the endemic equilibrium, α is the transmissibility, μ is the
death rate, q is the fraction of infectious seeds, and K is the
total plant population density). They show that two different
rearrangements of this inequality give

α

μ
(
1− q)K > 1 or

α

μ
K + q > 1, (13)

and note that either would suffice as an R0 value, but were
unable to resolve the question of which was appropriate.

2.7. Summary of R0 Methods. In summary, there are many
methods available for calculating R0, but few of them
agree with each other and almost none reliably calculate
the average number of secondary infections in a wholly
susceptible population. The only method which does is the
survival function, but this method is too cumbersome to be
used except for the simplest of models.

3. A Worked Example

In this section, we take a sample model and apply the various
methods for calculating R0 to it. We show that each method
can produce a different result, all of which have the property
that they have an outbreak threshold at R0 = 1 but otherwise
bear little relation to one another.

Consider the following model for malaria:

H′
S = ΛH − βMHMIHS − μHHS,

H′
I = βMHMIHS −

(
μH + σ

)
HI ,

M′
S = ΛM − βHMMSHI − μMMS,

M′
I = βHMMSHI − μMMI.

(14)

Humans may be susceptible or infected (HS and HI , resp.),
while mosquitoes may be susceptible or infected (MS and
MI , resp.). The birth rates are ΛH for humans and ΛM for
mosquitoes. The background death rates are μH and μM
for humans and mosquitoes, respectively, while the disease-
specific death rate for humans is σ . The transmission rate
from mosquitoes to humans is βMH , while the transmission
rate from humans to mosquitoes is βHM . See Figure 3.

The Jacobian matrix at the disease-free equilibrium is

J =

⎡
⎢⎢⎢⎢⎢⎢⎣

−μH 0 0 −βMHHS

0 −μH − σ 0 βMHHS

0 −βHMMS −μM 0

0 βHMMS 0 −μM

⎤
⎥⎥⎥⎥⎥⎥⎦

, (15)

where HS and MS are the equilibrium values of susceptible
humans and mosquitoes, respectively. Thus, the nontrivial
part of the characteristic polynomial satisfies

λ2 +
(
μH + σ + μM

)
λ + μM

(
μH + σ

)− βHMβMHHSMS = 0.
(16)

Using the Jacobian method, the largest eigenvalue is

λmax = 1
2

[
− μH − σ − μM

+
√(
μM − σ − μH

)2 + 4βHMβMHHSMS

]
.

(17)

Rearranging λmax = 0, we have

R0,J =
√√√√
(
μM − σ − μH

)2 + 4βHMβMHHSMS(
μM + σ + μM

)2 . (18)

Conversely, since the nonconstant coefficients of the
characteristic polynomial are positive, all eigenvalues will be
negative if the constant term of the characteristic polynomial
is positive, whereas there will be an eigenvalue with positive
real part if the constant term is negative. Rearranging, we
have

R0,C = βMHβHMHSMS(
μH + σ

)
μM

. (19)

This is not the only rearrangement possible, so, like the
nonuniqueness of the next-generation method, it is possible
to rearrange by adding and subtracting arbitrary constants.
Thus, for example,

R0,9 = βMHβHMHSMS + 9(
μH + σ

)
μM + 9

(20)
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is also a measure of disease spread with the property that the
disease persists if R0,9 > 1 and is eradicated if R0,9 < 1.

Other rearrangements are possible, so long as the thresh-
old at 0 is transformed into a threshold at 1. Thus,

R0,e = exp
(
βMHβHMHSMS −

(
μH + σ

)
μM
)

(21)

has the same threshold property. A generalised version of this
formulation was used in Smith? et al. [15] called T0.

The endemic equilibrium satisfies

M̂I = βHMM̂SĤI

μM
,

M̂S = ΛM

βHMĤI + μM
,

ĤS =
(
μM + σ

)
μM
(
βHMĤI + μM

)

βMHβHMΛM
,

ĤI = ΛHΛMβMHβHM − μH
(
μH + σ

)
μ2
M

ΛMβMHβHM
(
μH + σ

)
+ βHMμHμM

(
μH + σ

) .

(22)

It follows that there will be a biologically meaningful
endemic equilibrium if ĤI > 0, or

R0,E = βMHβHMHSMS(
μH + σ

)
μM

> 1, (23)

since MS = ΛM/μM and HS = ΛH/μH . As above, this is not
the only rearrangement possible.

The next-generation matrices are

F =
⎡
⎣ 0 βMHHS

βHMMS 0

⎤
⎦, V =

⎡
⎣μH + σ 0

0 μM

⎤
⎦, (24)

since the next-generation method only considered the two
infected classes. Then, using the next-generation method,

R0,N =
√√√√βMHβHMHSMS(

μH + σ
)
μM

. (25)

Thus, for the same model, R0,N , R0,J , R0,C , R0,9, and
R0,e are all distinct. Although R0,E = R0,C in this case, this
does not hold in general. Note that R0,C and R0,E produce
the number of infected humans per infected human (or,
equivalently, the number of infected mosquitoes per infected
mosquito), but this is also not necessarily true in general.
Figure 4 illustrates how these R0-like expressions vary with
σ , when all other parameters are held constant.

Anecdotally, we have found that most biologists believe
that there is one and only one R0 value for a given
disease and, in order to verify an R0 is correct, all that is
required is to check that it has a threshold at 1. We have
demonstrated here that R0 is not a unique concept. Indeed, it
is straightforward to construct simple variations that satisfy
the threshold criterion at 1. Furthermore, since multiple
methods calculate multiple thresholds, it follows that the vast
majority of them cannot be the average number of secondary
infections. However, the nonuniqueness is not the only
problem associated with the concept, as we will demonstrate.
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Figure 4: The changing face of R0. All expressions for R0 were
generated from the same model, using standard techniques. As the
death rate varies, all have the property that if R0 > 1 then an
outbreak will occur, whereas if R0 < 1, then the disease will be
eradicated. However, aside from the common threshold at R0 = 1,
none of these expressions are equal to each other. The curve labelled
“Jacobian” illustrates R0,J , as given by (18). The curve labelled
“Adding and subtracting 9” illustrates the value R0,9 as given by
(20). The curve labelled “Next generation” illustrates R0,N , as given
by (25). The curve labelled “Constant term of the characteristic
polynomial” illustrates R0,C , as given by (19). The curve labelled
“Exponential” illustrates R0,e, as given by (21). In this case, the
values are HS = 45, MS = 30, βMH = 0.05, βHM = 0.03, μH = 0.15
and μM = 0.6.

4. Backward Bifurcations

Backward bifurcations occur when multiple stable equilibria
coexist for R0 < 1. This presents a serious complication
when a disease is already endemic, since lowering the
basic reproduction number below 1 may no longer be
a viable control measure; hence, different prevention and
control measures may have to be considered. In particular,
a backward bifurcation makes the system more complicated,
since the behaviour now depends on the initial conditions.

A backward bifurcation at R0 = 1 may result in persi-
stence of the disease when R0 < 1. In this case, the disease
will always persist for R0 > 1. However, there is a point
Ra < 1 such that the endemic equilibrium exists for Ra <
R0 < 1 and a third, unstable, equilibrium also exists between
the two stable equilibria. Hence, an endemic disease is
only eradicated if 0 < R0 < Ra. For Ra < R0 < 1,
the outcome depends on initial conditions. If the disease
is still in its early stages—that is, if the initial conditions
are sufficiently small—then the system will approach the
disease-free equilibrium and the disease will be eradicated.
However, if the initial conditions are large, then the system
will approach the endemic equilibrium and the disease will
persist. Thus, a backward bifurcation prevents the system
from switching to the disease-free equilibrium as soon as
R0 < 1 is reached. See Figure 5(a).
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Figure 5: The effects of backward bifurcations. Solid curves indicate
stable equilibria, while dashed curves indicate unstable equilibria.
(a) A backward bifurcation at R0 = 1 may result in persistence of
the disease when R0 < 1. There is a point Ra < 1 such that the
endemic equilibrium exists for Ra < R0 < 1 and a third, unstable,
equilibrium also exists. Hence, the disease-free equilibrium is only
globally stable if 0 < R0 < Ra. (b) Backward bifurcations at other
points may also affect the outcome. Although the disease persists
for all R0 > 1 and is eradicated when R0 < 1 (due to the transcritical
bifurcation at R0 = 1), there is a region Rm < R0 < Rn, where three
equilibria coexist. In this region, the outcome depends on the initial
conditions.

Several mechanisms have been shown to lead to back-
ward bifurcation in epidemic models, but backward bifurca-
tions in compartmental models have only recently attracted
serious research attention.

Gómez-Acevedo and Li [16] investigated a mathematical
model for human T-cell lymphotropic virus type I (HTLV-I)
infection of CD4+ T cells that incorporates both horizontal
transmission through cell-to-cell contact and vertical trans-
mission through mitotic division of infected T cells. They
assumed that a fraction σ of the infected cells survive the
immune system attack after the error-prone viral replication.
Under the biologically sound assumptions that the fraction
σ should be very low and the rate of the mitotic division
should be high, their model has a bifurcation that predicts
persistent infection for an extended range of the basic
reproduction R0 > R0(σ0), where R0(σ0) < 1. This model
undergoes a backward bifurcation as σ increases: multiple
stable equilibria exist for an open set of parameter values,
when the basic reproduction number is below one.

Safan et al. [17] studied an epidemiological model under
the assumption that the susceptibility after a primary infec-
tion is r times the susceptibility before a primary infection.

They present a method for determining the control effort
required to eliminate an infection from a host population
when subcritical persistence may occur. This effort can be
interpreted as a reproduction number but is not necessarily
the basic reproduction number.

For r > 1 + μ/α, this model exhibits backward bifur-
cations, where μ is the death rate and α is the recovery
rate. For such models, the authors presented a method for
determining the minimum effort required to eradicate the
infection from the endemic steady state if one concentrates
on control measures affecting the transmission rate constant.

Garba et al. [18] presented a deterministic model for
the transmission dynamics of a single strain of dengue
by realistically adopting a standard incidence formulation
and allowing dengue transmission by exposed humans and
vectors. The model was extended to include an imperfect
vaccine for dengue. A backward bifurcation was observed
in both models. This makes R0 < 1 no longer sufficient for
effectively controlling dengue in a community. However, this
phenomenon can be removed by replacing the standard inci-
dence function in the model with a mass-action formulation.

Reluga et al. [19] proposed a series of epidemic models
for waning immunity that can be applied in many different
settings. With biologically realistic hypotheses, they found
that immunity alone never creates a backward bifurcation.
However, this does not rule out the possibility of multiple
stable equilibria, which can be shown by a counterexample
of the forward bifurcation at R0 = 1. See Figure 5(b).

5. R0 in Spatial Contexts

When R0 is considered in a spatial context, many of its
properties fail to hold. In particular, diseases with R0 > 1
can fail to persist, depending on the nature of the spatial
transmission. Since many diseases are spatially dependent,
this further limits the utility of R0. As R0 increases beyond
1, the probability of disease invading the initially infected
host group increases, but additional criteria are important to
determining the probability of the spreading of the disease to
other groups.

5.1. Networks. Green et al. [20] related deterministic mean-
field models to network models, taking into account the
manner in which the contact rate and infectiousness change
over time. For a node with exactly m connections, the
expected number of secondary infections at infection age u
is given by

R(m,u) = m
(

1− e−βu/k
)

, (26)

where β is the transmissibility and k is the mean number of
connections per node. This model applies when the rate of
infectious contact is independent of k.

If there is a constant rate of generation of new cases, then
the expected number of secondary infections in an infectious
period of length u is given implicitly by

R(m,u) =
∫ u

0
(m− R)CIS(t)ψ(t)dt, (27)
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where CIS(t) denotes the contact per susceptible neighbour
and ψ(t) denotes the infectiousness at time t after infection.

Kao [21] showed that novel pathogens may evolve
towards a lowerR0, even if this results in pathogen extinction.
This is because the presence of exploitable heterogeneities,
such as high variance in the number of potentially infectious
contacts, increases R0; thus, pathogens that can exploit
heterogeneities in the contact structure have an advantage
over those that do not. The exploitation of heterogeneities
results in a more rapid depletion of the potentially suscep-
tible neighbourhood for an infected host. While the low
R0 strategy is never evolutionarily stable, invading strains
with higher R0 will also converge to the low R0 strategy if
not sufficiently different from the resident strain. This is in
contrast to the conventional belief that the emergence of
novel pathogens is driven by maximisation of R0.

In a randomly mixed epidemiological network, R0 can be
approximated by

R0 = 〈linlout〉
〈lout〉 , (28)

where lin and lout are, respectively, the number of inward
and outward “truly infectious” links per node; the angled
brackets represent the expected value of the relevant quantity
[22].

Meyers [23] showed that in a contact network frame-
work,

R0 = T

(〈
k2
〉− 〈k〉
〈k〉

)
, (29)

where T is the mean probability of transmission between
individuals and 〈k〉 and 〈k2〉 are the mean degree and mean
square degree of the network. Here, R0 depends explicitly on
the structure of the network (i.e., on 〈k〉 and 〈k2〉). A single
pathogen may, therefore, have very different transmission
dynamics depending on the population through which it
spreads. If two networks have the same mean degree, k, then
the one with the larger variance in degree, 〈k2〉 − 〈k〉2, will
be more vulnerable to the spread of disease.

In compartment models, infected hosts are assumed
to have potentially disease-causing contacts with random
individuals from the population according to a Poisson
process that yields an average contact rate of β per unit time.
The mass-action assumption of compartmental models is
tantamount to assuming that the underlying contact patterns
form a random graph with a Poisson degree distribution.
Estimates of R0 that assume a mass-action model may, there-
fore, be invalid for populations with non-Poisson contact
patterns and, in particular, will underestimate the actual
growth rate of the disease in highly heterogeneous networks.

5.2. Individual-Level Models. Rahmandad and Sterman [24]
noted that if R0 > 1 in an agent-based model then, due
to the stochastic nature of interactions, it is possible that
no epidemic occurs or that it ends early if, by chance, the
few initially contagious individuals recover before generating
new cases.

Schimit and Monteiro [25] showed that in an individual-
level model, R0 cannot be uniquely determined from some

features of transient behaviour of the infective group. The
value of R0 can be unambiguously determined from the
asymptotical stable stationary concentrations, but this relies
on waiting for the system to reach its permanent regime,
which is not feasible in practice. The same value of R0 can
be associated to networks with distinct values of clustering
coefficients and average shortest path length. This result can
affect the evaluation of the effectiveness concerning different
strategies employed for controlling a disease. Because distinct
values of topological properties can produce the same value
of R0 in a model considering the spatial structure of the
contact network, it is difficult to evaluate the effective
contribution of each control measure. This is because the
correspondences among R0 and the topological properties of
the contact network are not one-to-one.

5.3. Metapopulation Models. Cross et al. [26] showed that
when R0 is based on data collected from simulated epidemics
mimicking epidemiological contact-tracing data, R0 can be
substantially greater than one and yet not cause a pandemic.
In populations with social or spatial structure, a chronic
disease is more likely to invade than an acute disease with
the same R0, because it persists longer within each group and
allows for more host movement between groups.

Under the settings where the rate of host population
turnover was negligible relative to the rate of disease
processes of infection and recovery, they showed that R0 > 1
was insufficient for disease invasion when the product of the
average group size and the expected number of between-
group movements made by each individual while infectious
was less than 1.

Smith? et al. [15] examined a metapopulation model
with travel between two regions, with reproductive ratios R(0)

0,1

and R(0)
0,2 for each region in the absence of travel, and R0,1 and

R0,2 when only susceptibles travel, but infectives do not. They

showed that if both R(0)
0,1 < 1 and R(0)

0,2 < 1, then there are
conditions on the travel of susceptible such that R0,1 > 1 and
R0,2 < 1. Thus, a disease which would otherwise be eradicated
in both regions could be sustained in one of the regions if
there were sufficient travel of the susceptibles (not infectives).
Furthermore, if R(0)

0,1 < 1 and R(0)
0,2 > 1, then there are

conditions on the travel of susceptibles such that R0,1 > 1 and
R0,2 > 1. Thus, if one region sustains the disease on its own,
while the other does not, then sufficient travel of susceptibles
(not infectives) could sustain the disease in both regions.

5.4. Partial Differential Equation Models. Althaus et al. [27]
examined an age-dependent partial differential equation
model of in-host HIV infection. They showed that

R0 = 1∫∞
0 e−rag(a)da

, (30)

where the denominator is the Laplace transform of the
generation time distribution g(a) and r is the growth rate.
They found that estimates for R0 were generally smaller than
those derived from the standard model when the generation
time was taken into account.
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6. Stochastic Effects

When stochastic effects, such as those inevitably found in
nature, are included, the threshold at R0 = 1 may be distur-
bed. This includes assumptions about the distribution of
transition times (assumed to be exponential in most models)
as well as variations in individual parameters.

Heffernan and Wahl [28] derived improved estimates
of R0 for situations in which information about the
dispersal of transition times is available to the clinical or
epidemiological practitioner. Rather than rederiving R0

for a number of models (SIR, SEIR, etc.), they introduce a
“correction factor”, φ: the ratio of R0 when the lifetimes are
nonexponentially distributed to the value of R0 that would
be calculated assuming exponential lifetimes. They were
able to derive limiting values of φ and used this to gauge the
sensitivity of R0 to dispersion in the underlying distributions.

By combining the movement of hosts, transmission
with groups, recovery from infection and the recruitment
of new susceptibles, Cross et al. [29] expanded the earlier
analysis of Cross et al. [26] to a much more broader set
of disease-host relationships, exploring settings where the
duration of immunity ranges from transient to lifelong or
where the demographic processes occur on comparable (or
faster) timescales to disease processes. The focus of this study
was to investigate how recruitment of susceptibles affects
disease invasion and how population structure can affect
the frequency of superspreading events (SSEs). They found
that the frequency of SSEs may decrease with the reduced
movement and the group sizes due to the limited number of
susceptibles available.

The hierarchical nature of disease invasion in host
metapopulations is illustrated by the classification tree analy-
sis of the model results. Firstly, the pathogen must effectively
transit within a group (R0 > 1), and then, the pathogen
must persist within a group long enough to allow for
movement between different groups. Hence, the infectious
period, group size and recruitment of new susceptibles are
as important as the local transmission rates in predicting the
spread of pathogens across a metapopulation. It should be
noted that in 35% of simulations when R0 was greater than
one, the disease failed to invade.

Tildesley and Keeling [30] examined whether R0 was a
good predictor of the 2001 UK Foot and Mouth disease.
They concluded that R0 explained just 29.3% of the standard
deviation of the epidemic impact. They also noted that
R0 = 1 did not act as a threshold: at the value of R0 = 1,
only 20% of initial seedings generated epidemics; this prob-
ability increased to around 50% for the largest reasonable
R0 values. When heterogeneities exist in the population,
infection is most likely to become focused within the
high-risk individuals who are both more susceptible and
more infectious. This highlights the stochastic nature of
the disease in its early stages and the dependence of the
ensuing epidemic on favourable local conditions in the
neighbourhood of the initial infection.

The probability of extinction, assuming exponentially
distributed infectious periods, was

p
exp
ext = 1

R0
, (31)

when an epidemic began with a single infected individual.
Thus, if R0 ≤ 1, then extinction occurs with probability 1,
but if R0 > 1 then extinction occurs with some probability.
See Chiang [31, Chapter 4] for more discussion.

7. R0 Failures

In this section, we note a variety of problems with R0 that are
not covered in the previous sections. These include problems
with the underlying structure of compartment models, the
mismatch between an individual-based parameter and a
population-level compartment model, and the failure of R0

to accurately measure an outbreak of a new disease.
Breban et al. [32] argued that in order to associate an R0

to a model of ODEs, an individual-level model (ILM) which
is compatible to the ODE model must be developed; only
then can the R0 of the ILM be unambiguously calculated.
These ILMs are growing (not static) network models, with
individuals added to a network of who infected whom based
on global or local network rules. Then, R0 is computed as the
limit of the average number of outgoing links of individuals
in a node that no longer accepts new links, as time goes to
infinity. They showed that a broad range of R0 values were
compatible with a given ODE model.

For example, consider the basic model

dS

dt
= −βI ,

dI

dt
= βI − μI ,

(32)

where β is the transmissibility and μ is the disease death
rate; note that the transmission term is equivalent to the
standard term βSI/(S+ I) when the depletion of susceptibles
is negligible so that S/(S + I) ≈ 1.

The expected R0 value from this model using other
methods (such as the next-generation method) is

R0 = β

μ
. (33)

The corresponding ILM consists of an infection rule, where
an individual joining the infectious pool is infected by an
infectious individual who is uniformly randomly selected,
and a removal rule, where a uniformly randomly selected
individual leaves the infectious pool. The flow of newly
infected individuals is βI(t). Thus, the flow per already-
infected individual is β. Since the removed individuals
are randomly sampled from the infectious individuals, the
average length of the infectious period equals the time
expectation of the infectious period, which is 1/β (rather
than 1/μ, as calculated from the next-generation method). It
follows thatR0 = 1, which is independent of the transmission
and death rates from the corresponding ODE. Thus, in this
case, R0 does not signal epidemic growth as anticipated from
other methods.

Roberts [3] noted three fundamental properties com-
monly attributed to R0: (i) that an endemic infection can
persist only if R0 > 1, (ii) R0 provides a direct measure
of the control effort required to eliminate the infection,
and (iii) pathogens evolve to maximise their R0 value.
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He demonstrated that all three statements can be false. The
first, as we have noted, can fail due to the presence of
backward bifurcations. The second can fail when control
efforts are applied unevenly across different host types (such
as a high-risk and a low-risk group), since R0 is determined
by averaging over all host types and does not directly
determine the control effort required to eliminate infection.

The third can fail when two pathogens coexist at a steady
state that exists and is stable whenever both single-pathogen
steady states exist but are unstable. In this case, the order in
which the pathogens are established in the host population
matters. The established parasite has a role in determining
a modified carrying capacity and the pathogen with the
largest basic reproductive ratio does not necessarily exclude
the other.

Breban et al. [33] showed that two individual-level mod-
els having exactly the same expectations of the corresponding
population-level variables may yield different R0 values. They
showed that obtaining R0 from empirical contact-tracing
data collected by epidemiologists and using this R0 as a
threshold parameter for a population-level model could
produce misleading estimates of the infectiousness of the
pathogen, the severity of an outbreak, and the strength of
the medical and/or behavioural interventions necessary for
control. Thus, measuring R0 through contact tracing (as
generally occurs during an outbreak investigation) may not
be a useful measure for determining the strength of the
necessary control interventions.

Many different individual-level processes can generate
the same incidence and prevalence patterns. Thus, assigning
a meaningful R0 value to an ODE model without knowledge
of the underlying disease transmission network may be
impossible. Only an epidemic threshold parameter can be
used to design control strategies. Since R0 fails to possess this
threshold quality, its usefulness may be vastly overstated.

Meyers [23] compared the theoretical calculation of R0

with observed SARS data from China and showed that
estimates of R0 seemed incompatible. The basic reproductive
rate has two critical inputs:

(1) intrinsic properties of the pathogen that determine
the transmission efficiency per contact and the
duration of the infectious period,

(2) the patterns of contacts between infected and suscep-
tible hosts in the population.

While the first factor may be fairly uniform across
outbreaks, the second may depend significantly on context,
varying both within and among populations. The problem
with the SARS estimates stems from the mass-action assump-
tion of compartmental models; that is, that all susceptible
individuals are equally likely to become infected. When this
assumption does not hold, the models may yield inaccurate
estimates or estimates that do not apply to all populations. R0

estimates for SARS in the field were based largely on outbreak
data from a hospital and a crowded apartment building, with
anomalously high rates of close contacts among individuals.

The author suggested that it might be inappropriate
to extrapolate estimates for R0 from specific settings such

as these to the population at large. Conversely, since the
population at large is also unlikely to satisfy mass-action
requirements, it may also be concluded that R0 is not a
meaningful estimate of disease spread.

8. Alternatives to R0

A number of alternatives have been offered over the years,
due to recognised problems with R0. Older examples include
the critical community size [5], the group-level reproductive
number, R∗ [34], the type reproduction number [35] and
the basic depression ratio [36]. See Heffernan et al. [2] for a
summary of these methods. In this section, we review some
of the more recent alternatives to R0.

The actual reproduction number, Ra, is defined as a
product of the mean duration of infectiousness and the ratio
of incidence to prevalence [37–39]. R0 coincides with Ra
when the transmission probability is constant but accounts
for the more general situation when the transmission
probability varies as a function of infection age (as happens
in diseases such as HIV/AIDS).

The effective reproduction number R(t) measures the
number of secondary cases generated by an infectious case
once an epidemic is underway. In the absence of control
measures, R(t) = R0S(t)/N , where S(t)/N is the proportion
of the population susceptible [40, 41]. The estimation of
reproductive numbers is typically an indirect process because
some of the parameters on which these numbers depend
are difficult or impossible to quantify directly. The effective
reproductive number satisfies R(t) ≤ R0, with equality only
when the entire population is susceptible [40].

The effective reproduction number is of practical inter-
est, since it is time dependent and can account for the degree
of cross-immunity from earlier outbreaks. However, since
it is based on the basic reproduction number, the effective
reproduction number inherits many of the issues from R0.

Breban et al. [32] proposed Q0, the average number
of secondary infections over the infectious population. The
average number of secondary infections of actively infectious
individuals, Q0(t), is computed as the average number of
outgoing links of a node in the infected compartment at time
t. Then,

R0 ≡ lim
t→∞R0(t),

Q0 ≡ lim
t→∞Q0(t),

(34)

when the limits exist. Unfortunately, R0(t) is never defined
in the paper, limiting the usefulness of this formulation of
R0. However, by analogy with Q0(t), R0(t) is the average
number of outgoing links of a removed compartment at time
t (Romulus Breban, personal communication).

For the SI model (32), under the assumption that every
infection is uniquely assigned as a secondary infection for
either a removed or an infected individual,

Ni(t) = I(t)Q0(t) +Nr(t)R0(t), (35)

where Ni(t) = ∫ t
0 βI(u)du is the cumulative number of

infected individuals that occur in the time interval (0, t] and
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Nr(t) =
∫ t

0 μI(u)du is the cumulative number of removed
individuals.

Their definition of R0 evaluates the average number of
secondary cases over removed individuals as the distribution
of secondary cases becomes stationary. This definition does
not imply a particular individual-level model; it depends
exclusively on the structure of the disease-transmission
network [42]. However, R0 is not measured at the start of
an epidemic, which may limit its usefulness during an initial
outbreak.

Grassly and Fraser [43] demonstrated that standard
epidemiological theory and concepts such as R0 do not apply
when infectious diseases are affected by seasonal changes.
They instead define

R0 = D
∫ 1

0
β(t)dt, (36)

where β(t) is the transmission parameter at time t and D is
the average duration of infection. Thus, R0 can be interpreted
as the average number of secondary cases arising from the
introduction of a single infective into a wholly susceptible
population at a random time of the year.

They noted that the condition R0 < 1 is not sufficient
to prevent an outbreak, since chains of transmission can
be established during high-infectious seasons if Dβ(t) > 1.
However, R0 < 1 is both necessary and sufficient for long-
term disease extinction.

Meyers [23] noted that in the case of networks, esti-
mating the average transmissibility T may be more valuable
than R0. This means reporting not only the number of new
infections per case, but also the total estimated number of
contacts during the infectious period of that case. Given the
primary role of contact tracing in infectious disease control,
these data are often collected. Unlike R0, T can be justifiably
extrapolated from one location to another even if the contact
patterns are quite disparate.

Instead of R0, the author offered a number of alternatives
to determine whether an outbreak will occur, based on
network modelling. These include the probability that an
individual will spark an epidemic and the probability that a
disease cluster will spark an epidemic.

The probability that an individual with degree k will
spark an epidemic is equal to the probability that transmis-
sion along at least one of the k edges emanating from that
vertex will lead to an epidemic. For any of its k edges, the
probability that the disease does not get transmitted along
the edge is 1− T . The probability that disease is transmitted
to the attached vertex but does not proceed into a full-blown
epidemic is Tu, where u is the probability that a secondary
infection does not spark an epidemic. Thus, the probability
that an individual will spark an epidemic is 1−(1−T+Tu)k.

The probability that an outbreak of size N sparks an
epidemic is

1−
(∑∞

k=1 kpk(1− T + Tu)k−1

∑∞
k=1 kpk

)
, (37)

where pk is the relative frequency of vertices of degree k in
the network.

Kao et al. [22] defined an epidemiological network
contact matrix M whose elements mij are either 1 or 0,
depending on whether an infectious contact between nodes
i and j is possible. The spectral radius of M is an alternative
approximation for R0, which can be calculated via a weighted
version of (28).

This explicitly accounts for the full contact structure of
the network, but the evaluation of extremely large, reason-
ably dense matrices (some highly active nodes may have
hundreds of potentially infectious links) is difficult and time
consuming, particularly when this evaluation process must
be repeated multiple times. However, comparisons between
the two approximations for subsets of a sheep network with
several thousand nodes show little difference between R0 and
the spectral radius of M (typically less than 5%).

Kamgang and Sallet [44] used the special structure of
Metzler matrices (real, square matrices with nonnegative
off-diagonal entries) to define T0, an analytical threshold
condition. T0 is a function of the parameters of the system
such that if T0 < 1, the disease-free equilibrium is locally
asymptotically stable, and if T0 > 1, the disease-free
equilibrium is unstable. T0 has an association with R0,
although it is a stronger condition; however, it has no direct
biological interpretation. The algorithm for deriving T0,
although highly mathematical in nature, allows computation
of a threshold for high-dimensional epidemic models.

Huang [45] defined four reproductive numbers associ-
ated with four types of transmission patterns, each depend-
ing on z, the ratio of the mean infectious period to the
mean latent period. These four reproduction numbers are
the following:

(1) RI0, the minimal reproductive number associated with
the slowest latency process and the fastest recovery
process,

(2) RII0 , the middle reproductive number associated with
mean latency and recovery processes,

(3) RIII0 , the maximal reproductive number associated
with the fastest latency process and the slow recovery
process,

(4) RIV0 , the largest reproductive number associated with
the fastest latency process and the extremely slow
recovery process.

All four reproduction numbers are strictly increasing
functions of z and satisfy

RI0 < R
II
0 < RIII0 < RIV0 . (38)

These numbers allow a disease to be classified as mild (RI0 <
R0 < R

II
0 ) or severe (RIII0 < R0 < R

IV
0 ).

Hosack et al. [46] noted that R0 does not necessarily
address the dynamics of epidemics in a model that has an
endemic equilibrium. They used the concept of reactivity
to derive a threshold index for epidemicity, E0, which gives
the maximum number of new infections produced by an
infective individual at a disease-free equilibrium. They also
showed that the relative influence of parameters on E0 and
R0 may differ and lead to different strategies for control.
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If R0 is derived from the next-generation operator so that

R0 = ρ
(
FV−1), (39)

then the threshold for endemicity is

E0 = ρ

(
F + FT

2
V−1

)
, (40)

such that the system is reactive when E0 > 1 and nonreactive
when E0 < 1. E0 describes the transitory behaviour of
disease following a temporary perturbation in prevalence.
If the threshold for epidemicity is surpassed, then disease
prevalence can increase further even when the disease is not
endemic. This suggests that epidemics can occur even in
areas where long-term transmission cannot be maintained.

Reluga et al. [47] defined the discounted reproductive
number Rd. The discounted reproductive number is a
measure of reproductive success that is an individual’s
expected lifetime offspring production discounted by the
background population growth rate. It is calculated as

Rd = ρ
(
F(δI −V)−1

)
, (41)

where δ is the discount rate, I is the identity matrix, and F
and V are from the next-generation matrix decomposition.
Rd combines properties of both the basic reproductive
number and the ultimate proliferation rate although it
also inherits the nonuniqueness problems from the next-
generation method.

Nishiura [4] developed a likelihood-based method for
estimating R0 without assuming exponential growth of cases
and offers a corrected value of the actual reproduction
number. The author noted that R0 is extremely sensitive to
dispersal of the progression of a disease or variations in the
underlying epidemiological assumptions.

9. Discussion

Despite being a crucial concept in disease modelling, with a
long history and frequent application, R0 is deeply flawed. It
is not a measure of the number of secondary infections, it is
never calculated consistently, and it fails to satisfy the thresh-
old property. Rarely has an idea so erroneous enjoyed such
popular appeal. Why, then, are we so attached to the concept?

The answer is that R0, despite all its flaws, is all that
we have. No other concept has so effectively transcended
mathematics, biology, epidemiology, and immunology. No
other concept is so general that it can be understood in terms
of compartment models, network models, partial differential
equations, and metapopulation models. “The number of sec-
ondary infections” has an intuitive appeal that outlasts even
the inaccuracy of that statement when applied to the concept.

The threshold nature of R0 is used to monitor and
control severe real-time epidemics; control measures are
often concluded if R0 < 1 [48], making the problems with
R0 more than just theoretical. Due to the inconsistencies in
calculation, different diseases cannot be compared unless the
same method was used to calculate R0; if HIV has an R0 of
3 and swine flu has an R0 of 4, we cannot conclude that

swine flu is worse than HIV if different methods were used
to determine these values. All we can conclude is that both
diseases have R0 > 1; however, as we have demonstrated, this
does not necessarily guarantee disease persistence.

Of the many different methods used to calculate R0,
only the survival function reliably calculates the average
number of secondary infections; however, this method is
too cumbersome to use in most practical settings. The next-
generation method is probably the most popular, yet it
suffers from uniqueness problems and does not cope well
with more than one disease state. Since R0 is rarely measured
in the field, it instead relies upon after-the-fact calculations
to determine the strength of disease spread [2]. This limits
its usefulness even further.

Policy decisions are being based upon the concept, with
limited understanding of the complexity and errors that exist
in the very structure of the concept. Funding decisions about
where money should be best spent are based on estimates of
R0, resources are directed towards one disease over another,
and monitoring programmes are abandoned, their objectives
only half-realised, because of R0. Lives may be saved or lost,
based on this imperfect and inconsistent measure.

R0 is a quantity that relates to the initial phase of an
epidemic. This makes practical sense in terms of disease
prevention. However, it is also used to guide eradication
efforts when a disease is endemic. Some methods derive
an eradication threshold from an equilibrium value that
may not be attained for a very long time. This suggests
that different measures are needed in different stages of an
epidemic in order to characterise transmissibility and to
guide intervention strategies. When a new pathogen emerges,
a quantity describing the initial spread is useful. When a
disease is endemic, a quantity that applies to the long-term
equilibrium is more appropriate.

We note that although the definition of R0 is broad, it
is not a universal quantity that applies to all settings. In
different settings, one should use a quantity that satisfies
the following properties: that an endemic equilibrium only
persist if R0 > 1 and that R0 provides a direct measure of the
control effort required for eradication. The contact structure
of the population, the variation of risk factors and the order
of establishing parasites (if applicable) should accompany the
identification of a meaningful R0.

What is urgently needed is a simple, but accurate, mea-
sure of disease spread that has a consistent threshold property
and which can be understood by nonmathematicians. If R0 is
to be used, it must be accompanied by a declaration of which
method was used, which assumptions are underlying the
model (e.g. mass-action transmission) and evidence that it is
actually a threshold, with no backward bifurcation. Without
such caveats, the concept of R0 will continue to fail.

Appendix

A. R0 for Specific Diseases

In this appendix, we illustrate some recent calculations of
R0 for various diseases from the past few years, noting in
particular specific values for R0 that have been given. This
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illustrates the wide variety of values that are presented as
being “the” R0 value for a specific disease.

A.1. HIV. Bacaër et al. [49] developed a mathematical
model of the HIV/AIDS epidemic in Kunming, China. They
considered needle sharing between injecting drug users and
commercial sex between female sex workers and clients. The
basic reproductive ratio is expressed as

R0 ≈ max
{
RIDU

0 ,Rsex
0

}
, (A.1)

where the superscript “IDU” represents injecting drug users
and “sex” represents sex workers. They estimate RIDU

0 = 32
and Rsex

0 = 1.7.
Abu-Raddad et al. [50] examined the population-level

implications of imperfect HIV vaccines. They divided the
population into two groups: unvaccinated and vaccinated,
both of whom could become infected (albeit at different
rates, depending on the efficacy of the vaccine). By forming
two independent next-generation matrices, they derived R0

and R0V , the basic reproductive ratios for the unvaccinated
and vaccinated populations, respectively. They note that
the condition R0V < 1 may not be sufficient for disease
eradication, due to the possibility of a backward bifurcation.
The two formulas are equivalent in the absence of the
vaccine, assuming that risky behaviour does not change.
They estimate R0V = 1.4 in the absence of vaccine protection.

Gran et al. [39] argued that R0 was inappropriate for
long-lasting infections and instead defined the actual repro-
duction number Ra(t). This is a time-dependent measure
defined as the average number of secondary cases per case
to which the infection was actually transmitted during the
infectious period in a population. Thus,

Ra(t) = X(t)
Y(t)

D, (A.2)

where X(t) is the incidence rate at time t, Y(t) is the
prevalence at time t, and D is the average length of the
infectious period. They illustrated their results for a staged
HIV/AIDS progression model for homosexual men in the
UK and showed that Ra was 13.81 and 17.01 in 1982 and
1983, respectively, but was much closer to 1 by the mid 1990s,
due to decreases in risk behaviour.

Smith? et al. [15] used the nonuniqueness of R0-like
thresholds to evaluate the feasibility of eradicating AIDS
using available resources. They developed a linear metapopu-
lation model that has the same eradication threshold as more
realistic models. They defined the threshold as

T0 = es(K), (A.3)

where s(K) is the maximal real part of all eigenvalues of K ,
the Jacobian matrix evaluated at the disease-free equilibrium;
K represents the change of status of infected individuals
in different regions. The model has the property that the
disease will be eradicated if T0 < 1 but will persist if
T0 > 1. The paper stresses that this quantity should be
understood only as a threshold condition for eradication; the
model from which it derives does not quantify the transient
dynamics, the timecourse of the infection or the prevalence

of the disease. However, they showed that the simpler
version of the model has the same eradication threshold
(T0) as more realistic, nonlinear models. The mathematical
analysis results, together with a simple cost analysis, used the
threshold nature of R0 to show that eradication of AIDS is
feasible, using the tools that we have currently to hand, but
action needs to occur immediately and globally.

A.2. Influenza. Chowell et al. [51] used four methods to
calculate R0 using data from the 1918 influenza pandemic in
California. The four methods involved (1) an early exponen-
tial growth rate, (2) an SEIR model, (3) a more complicated
SEIR model with asymptomatic and hospitalised cases, and
(4) a stochastic SIR model with Bayesian estimation. These
yielded average R0 values of (1) 2.98, (2) 2.38, (3) 2.2, and
(4) 2.1 during the first 17 days of the epidemic and then
2.36 for the entire autumn wave. In particular, uncertainty
during the early part of the epidemic leads to a wide range
of estimates for R0 (0.5–3.5, 95% confidence interval), but
uncertainty decreases with more observations.

Wallinga and Lipsitch [52] investigated how generation
intervals shape the relationship between growth rates and
reproductive numbers. For new emerging infectious diseases,
the observed exponential epidemic growth rate r can indi-
rectly infer the value of the reproductive number. The exis-
tence of a few different equations that relate the reproductive
number to the growth rate makes such inference ambiguous.
It is unclear which of these equations might apply to new
infection. The authors showed that these different equations
differ only with respect to their assumed shape of the
generation-interval distribution. They found that the shape
of the generation-interval distribution determines which
equation is appropriate for inferring the reproductive num-
ber from the observed growth rate. By assuming all genera-
tion intervals to be equal to the mean, they obtained an upper
bound on the range of possible values that the reproductive
number may attain for a given growth rate. They also
showed that it is possible to obtain an empirical estimate of
the reproductive number by taking the generation-interval
distribution equal to the observed distribution.

The authors illustrated the impact that various assump-
tions about the shape of the generation interval distribution
may have on the estimated value of the reproduction
numbers for a given growth rate using human infections
with influenza A virus. Observed generation intervals for
influenza A in a Japanese household study excluding pos-
sible coprimary and tertiary cases [53] estimated a mean
generation interval of 2.85 days and a standard deviation
of 0.93 days. Without specific assumptions about the shape
of the generation-interval distribution, they found that the
reproductive number of influenza A is larger than R = 1, but
smaller than R = 1.77.

Chowell and Nishiura [54] reviewed quantitative meth-
ods to estimate the basic reproductive ratio of pandemic
influenza. They use the intrinsic growth rate to estimate R0

in the range from 1.36 to 2.07. They defined the effective
reproduction rate

R(t) =
∫∞

0
A(t, τ)dτ, (A.4)



14 Computational and Mathematical Methods in Medicine

where A(t, τ) is the reproductive power at time t and
infection age τ at which an infected individual generates
secondary cases. If contact and recovery rates do not vary
with time, then this simplifies to

R(t) = S(t)
S(0)

R0, (A.5)

where S(t) is the population of susceptibles at time t.
They also outlined statistical methods of estimation and

showed that the expected number of secondary transmis-
sions is given by

R0 =
∞∑
k=1

kpk, (A.6)

where the pattern of secondary transmission follows a dis-
crete probability distribution pk with k secondary transmis-
sions. This approach accounts for demographic stochasticity,
which can be crucial during the initial phase of an epidemic
when the number of infected individuals is small. This has
been applied to observed outbreak data for avian influenza,
where extinction was observed before growing to a major
epidemic [55].

Tiensin et al. [56] used flock-level mortality data and
statistical back-calculation methods to estimate R0 from an
SIR model for the 2004 avian influenza epidemic in Thailand.
They calculated R0 to be between 2.26 and 2.64, depending
on the length of the infectious period.

A.3. Malaria. Smith et al. [57] revisited the basic reproduc-
tion number of malaria and its implications for malaria con-
trol. Their estimates of R0 are based on two more commonly
measured indices called the entomological inoculation rate,
which is the average number of infectious bites received
by a person in a year, and the parasite ratio, which is
the prevalence of malaria infection in humans. They made
121 estimates of R0 for Plasmodium falciparum malaria in
African populations. The estimates (which do not come from
a mathematical model) range from around one to more than
3000; the median is 115 and the interquartile range is 30–815.

They then revised the formula of R0 to adopt poten-
tial sources of bias when biting is heterogeneous and
when there is some transmission-blocking immunity. Under
the assumption that the transmission-blocking immunity
develops, the estimates of R0 ranged from below one to
nearly 11,000, with a median of 86 and an interquartile
range of 15–1,000. This is because transmission-blocking
immunity and heterogeneous biting skew the probability that
a mosquito becomes infected, per bite. They also showed
that in small human populations, the classical formulas of
R0 approximate transmission when counting infections from
mosquito to mosquito after one parasite generation, but they
overestimate it from human to human.

A.4. West Nile Virus. Wonham et al. [11] examined the
conflicting outbreak predictions for West Nile virus, showing
how the choice of transmission term affects R0. They
concluded that some transmission terms apply biologically

only at certain population densities and showed that six
common North American bird species would be effective
outbreak hosts. All seven models considered shared a similar
compartment structure, but with varying factors, such as
incubation periods, loss of immunity, age structure, and so
forth. They created a core model synthesised from all seven
models and used the next-generation method to calculate

R0 =

√√√√√√√√
βR
dV︸︷︷︸

vector to reservoir ×

βRN
∗
V

dRN
∗
R︸ ︷︷ ︸

reservoir to vector,

(A.7)

where βR is the transmissibility of the reservoir, dR is the
death rate of the reservoir, dV is the death rate of the
vector, N∗

V is the total vector population at the disease-free
equilibrium and N∗

R is the total reservoir population at the
disease-free equilibrium.

The first term under the square root sign represents
the number of secondary reservoir infections caused by one
infected vector. The second term under the square root
sign represents the number of secondary vector infections
caused by one infected reservoir. The square root gives the
geometric mean of the two terms (see Section 2). Using
reported minimum, mean and maximum estimates, 10,000
Monte Carlo estimates were run to generate an estimated
distribution of R0. Mean numerical values for R0 for house
sparrows ranged from 25–1200.

However, these values are enormous, implying that a
single sparrow would infect up to 1.44 million sparrows (i.e.,
1200 × 1200) during its infectious lifetime. Cruz-Pacheco
et al. [58], for example, estimated R0 = 5.08 for the house
sparrow, using data from Komar et al. [59].

A.5. Cholera. Hartley et al. [60] developed a compartment
model of cholera incorporating both a hyperinfective state
and a lower infective state. They used the average age of
infection to estimate R0 from data for four cholera outbreaks
in developing countries during the nineties. R0 values ranged
from 3.1 in Indonesia (1993–1999) to 15.3 in Pakistan (1990–
1995), with an average of 8.7. They then used the next-
generation method to develop a theoretical estimate for R0

that incorporates hyperinfectivity. They show that this raises
R0 from approximately 3.2 when there is no hyperinfectivity
to 18.2 when the contact with hyperinfected water is similar
to contact with nonhyperinfected water, but that R0 could
be significantly larger with more frequent contact with
hyperinfected water.

A.6. Dengue. Nishiura [61] clarified the contributions of
mathematical and statistical approaches to dengue epi-
demiology. This highlighted the practical importance of
the basic reproduction number, R0, in relation to the
critical proportion of vaccination required to eradicate the
disease in the future. The author illustrated three different
methods to estimate R0: (i) the final size equation, (ii)
the intrinsic growth rate, and (iii) age distribution, with
published estimates and examples. The author pointed out
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that, although the estimates of R0 most likely depend on the
ecological characteristics of the vector population, it would
be appropriate to assume a serotype-nonspecific estimate for
R0 is approximately 10, at least when planning vaccination
strategies in endemic areas.

A.7. Rift Valley Fever. Gaff et al. [12] modelled Rift Valley
fever, a mosquito-borne disease affecting both humans and
livestock that currently exists in developing countries but
has the potential to be introduced to the western world.
The disease can be transmitted both horizontally (from
host species to host species via mosquitoes) or vertically
(via parent-to-offspring transmission in mosquitoes). They
expressed the basic reproductive ratio as

R0 = R0,V + R0,H , (A.8)

where R0,V is the basic reproductive ratio for vertical
transmission and R0,H is the basic reproductive ratio for
horizontal transmission. They used the next-generation
method and uncertainty analysis to calculate R0 = 1.19, with
a range from 0.037 to 3.743.

A.8. Bluetongue. Gubbins et al. [13] examined bluetongue
virus, an insect-borne infectious disease of ruminants in
Europe. They used the next-generation method to determine
R0 and then Latin Hypercube sampling and partial rank
correlation coefficients to assess the effect of parameter
variation. Median values for R0 were 0.81 (cattle only), 0.73
(sheep only) and 0.55 (both cattle and sheep), implying that
the disease should not persist. However, the corresponding
maximum values were 18.77, 15.48, and 12.82, respectively,
suggesting that variation in parameters can have an enor-
mous impact on the outcome, including persistence of the
disease. The most significant changes in the estimation of
R0 were due to the mosquito biting rate, the extrinsic vector
incubation period, the vector mortality rate, the probability
of transmission from host to vector, and the ratio of vectors
to cattle and sheep.

A.9. Plant Pathogens. van den Bosch et al. [6] described
a systematic method to calculate the basic reproduction
ratio from knowledge of a pathogen’s life cycle and its
interactions with the host plant. They developed a system
of linear difference equations and rearranged the dominant
eigenvalue to find R0. A fraction q of infected spores are
deposited in location 1, while a fraction 1 − q are deposited
in location 2. This results in

R0 = q
(
γ1α1τ1ρH

)
+
(
1− q)(γ2α2τ2ρH

)
, (A.9)

where the first term represents the number of spores that
successfully germinate in location 1 and the second term
represents the number of spores that successfully germinate
in location 2. Here, γi is the probability that a spore deposited
on location i will germinate, αi is the number of spores
produced per time unit on location i, τi is the infectious
period of a spore-producing lesion on location i, ρ is the
probability that a spore is deposited on a susceptible site, and
H is the density of susceptible sites in a host population.

They included a separate box explaining pitfalls in
calculating the basic reproductive ratio from nonlinear
models and noted its nonuniqueness, calculating two distinct
values for R0. However, they were unable to decide which
value was correct. The authors conclude by stating that
“Although nonlinear differential equations are invaluable
tools for studying epidemics, they should not serve as the
primary basis for the determination of R0.”

Cunniffe and Gilligan [62] considered the effects of host
demography upon the outcomes for invasion, persistence
and control of pathogens in a model for botanical epidemics.
They used the next-generation method to calculate

R0 = R
p
0 + Rs0, (A.10)

partitioned into primary and secondary infection. These
values are unaffected by host demography. However, the
endemic level of infection is highly sensitive to changes in R0

when R0 > 1. If R0 is increased by shortening the infectious
period, then the endemic level of infection increases
monotonically. However, if increases in transmission rates
or decreases in the decay of free-living inoculum increase
R0, then the endemic level of infection first increases (for
1 < R0 < 2) but then decreases (for R0 > 2). Consequently,
increasing the intensity of control can result in more
endemic infection.
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