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Aberrantly hyperactivated STAT3 has been found in
human liver cancers as an oncogene; however, STAT3
has also been shown to exert hepatoprotective effects
during liver injury. The balancing act that STAT3 plays
between hepatoprotection and liver tumorigenesis re-
mains poorly defined. In this study, the diethyl-
nitrosamine (DEN)-induced liver tumor model and
the chronic carbon tetrachloride (CCl4)–induced
liver fibrosis model were both used to investigate
the role of STAT3 in liver tumorigenesis. Hepato-
cyte-specific STAT3 knockout mice were resistant to
liver tumorigenesis induced by a single DEN injec-
tion, whose tumorigenesis was associated with min-
imal chronic liver inflammation, injury, and fibro-
sis. In contrast, long-term CCl4 treatment resulted
in severe hepatic oxidative damage, inflammation,
and fibrosis but rarely induced liver tumor forma-
tion in wild-type mice. Despite the oncogenic func-
tion of STAT3 in DEN-induced liver tumor, hepato-
cyte-specific STAT3 knockout mice were more
susceptible to liver tumorigenesis after 16 weeks of
CCl4 injection, which was associated with higher
levels of liver injury, inflammation, fibrosis, and
oxidative DNA damage compared with wild-type
mice. These findings suggest that the hepatoprotec-
tive feature of STAT3 prevents hepatic damage and
fibrosis under the condition of persistent inflam-
matory stress, consequently suppressing injury-
driven liver tumor initiation. Once liver tumor cells
have developed, STAT3 likely acts as an oncogenic
factor to promote tumor growth. (Am J Pathol 2011,
179:714–724; DOI: 10.1016/j.ajpath.2011.05.005)
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Hepatocellular carcinoma (HCC) is the third leading
cause of cancer-related deaths worldwide and one of the
fastest growing cancers in terms of incidence in devel-
oped countries.1,2 Despite recent progress in under-
standing its pathogenic mechanisms,2–4 HCC is still con-
sidered one of the deadliest cancers worldwide with a
poor prognosis, as very few patients are eligible for po-
tential curative treatment, such as surgical resection and
liver transplantation.5–8 Various etiologies, including
hepatotropic viruses (eg, hepatitis B and C viruses),
chronic alcohol consumption, nonalcoholic steatohepati-
tis, and toxins (eg, aflatoxin B), can lead to chronic liver
injury, inflammation, or fibrosis/cirrhosis, which can then
culminate in liver cancer.1–3 Although the close contrib-
utory relationship between chronic liver inflammation and
carcinogenesis has been well documented,2,3 the exact
mechanisms that direct inflammation-induced liver can-
cer remain elusive.

Recent evidence suggests that liver cancer formation
can be generally divided into three stages: initiation, pro-
motion, and progression. Liver tumor initiation can be
induced by many initiators, including hepatitis B virus,
cirrhosis, and aflatoxin B. These factors can induce irre-
versible genetic mutations that subsequently cause
proto-oncogene activation and/or loss of tumor suppres-
sion. For tumor development to take place, initiation must
be followed by a committed tumor promotion process
that requires interactions between initiated cells and their
microenvironment,9 of which inflammation is an important
factor.10 Although HCC usually appears after exposure to
carcinogens such as aflatoxin B, viral hepatitis, and al-
cohol intake, it may take many years, even decades, to
develop HCC from liver cirrhosis after chronic liver injury
and fibrosis.2,3 Although the early etiologic events in-
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volved in liver tumorigenesis have been well docu-
mented, little is known about mechanisms underlying the
progression from premalignant lesions to overt carcino-
mas. Without greater knowledge of these mechanisms, it
is impossible to improve current unsatisfactory and sub-
optimal therapeutic options for HCC.

Recent results of a phase 3 clinical trial showed that
sorafenib, a multikinase inhibitor that blunts multiple sig-
naling pathways, markedly improved survival in patients
with advanced HCC tumors.11,12 This pivotal study has
stimulated scientific research on novel molecular thera-
pies targeting specific signaling pathways to treat this
malignancy.6 A growing body of evidence suggests that
persistent activation of STAT3 is oncogenic and is prev-
alent in a variety of human cancers, including liver can-
cer.13 Hepatic activation of STAT3 occurs through vari-
ous cytokines, growth factors, hormones, and hepatitis
viral proteins.14 Among them, IL-6 and IL-22 are two
potent inducers of STAT3 activation in hepatocytes.14

Activation of STAT3 begins on binding of IL-6 to its cor-
responding receptor on hepatocytes, resulting in
dimerization of the signal transducer protein, gp130. The
gp130-associated Janus kinases then combine to form
dimers and phosphorylate each other, the gp130 protein,
and cytoplasmic STAT3 monomers. IL-22 binds to IL-
22R and IL-10R2 on hepatocytes, followed by inducing
Janus kinase phosphorylation and subsequently
STAT3 phosphorylation. Consequently, phosphorylated
STAT3 (pSTAT3) monomers interact with each other and
form dimers that translocate into the nuclei to induce
transcription of genes involved in cell survival and prolif-
eration.15 Activation of STAT3 by IL-6 or IL-22 has been
shown to contribute to the tumorigenesis of a variety of
tumors, including HCC.13,16–19 Thus, intense efforts have
been made to identify suitable anti-STAT3 agents to treat
human cancers such as HCC.20 However, historically,
evidence from a wealth of previous studies has confirmed
the hepatoprotective function of STAT3 in numerous
models of liver injury.14 Thus, an understanding of the
pathologic/oncogenic versus protective functions of
STAT3 in liver tumorigenesis is needed to carefully as-
sess the risks and benefits of anti-STAT3 treatment for
HCC in the clinical setting.

A previous study reported that conditional deletion of
STAT3 in hepatocytes prevents liver tumor development
induced by a single diethylnitrosamine (DEN) injection at
age 15 days,21 which was also confirmed in the present
study. However, this DEN model is not associated with
significant chronic liver injury, inflammation, and fibrosis,
which is different from most human liver cancers that
develop after chronic hepatocellular damage, inflamma-
tion, and fibrosis/cirrhosis.2,3 Thus, by using liver-specific
STAT3 knockout mice, we also explored the role of he-
patic STAT3 in a model of liver tumor induced by chronic
carbon tetrachloride (CCl4) treatment that is associated
with strong chronic liver injury, inflammation, and fibrosis.
The present results suggest that hepatic STAT3 protects
against CCl4-induced chronic liver injury and conse-

quently against tumorigenesis.
Materials and Methods

Animals

Hepatocyte-specific STAT3 knockout mice (STAT3Hep�/�)
(AlbCre�/� STAT3flox/flox) and littermate wild-type con-
trols (AlbCre�STAT3flox/flox) were described previ-
ously.22 STAT1�/� and STAT1�/�STAT3Hep�/� mice
were generated as described previously.23 All the animal
experiments were approved by the Institutional Animal
Care and Use Committee of the National Institute on
Alcohol Abuse and Alcoholism.

DEN-Induced Liver Cancer Model

The DEN-induced liver tumor model was established as de-
scribed previously.24,25 Briefly, 15-day-old STAT3Hep�/�

mice and their littermates were injected with 5 or 20
�g/g of DEN (Sigma-Aldrich, St. Louis, MO). After 4 or
9 months on normal chow, the mice were sacrificed.
Their livers were then removed, separated into individ-
ual lobes, analyzed for the presence of HCCs, and
subjected to analysis of histologic and immunochemi-
cal parameters.

CCl4-Induced Chronic Liver Injury, Inflammation,
Fibrosis, and Liver Tumor

Eight- to 10-week-old male STAT3Hep�/� mice and their
wild-type littermates were injected i.p. with 2 mL/kg body
weight of 10% (v/v) CCl4 (Sigma-Aldrich) dissolved in
olive oil three times a week for up to 16 weeks. Control
groups were treated with vehicle (10% olive oil, 2 mL/kg).
The mice were sacrificed at different time points after the
last injection of chronic CCl4 treatment, and liver tissues
were harvested for experiments. No mortality was ob-
served in these mice after chronic CCl4 treatment. As-
cites were reported in the mice after chronic CCl4 treat-
ment plus phenobarbital in drinking water, especially
after the inhalation protocol.26 Chronic i.p. administration
of CCl4 plus phenobarbital in drinking water also induced
ascites but to a lesser extent.26 No obvious ascites were
observed in the mice treated with i.p. injection of CCl4
alone in the present protocol.

Liver Tumor Analysis

The whole liver was carefully removed from the eutha-
nized animal, washed, and placed in cold PBS. The num-
ber of surface liver tumor nodules was counted for all the
liver lobes in a blinded manner. Some reasonably sized
tumor nodules (�2 mm in diameter) were carefully re-
moved from the liver lobes using fine forceps and were
placed in fresh cold PBS. These separated nodules were
then halved using a sterile razor blade and were split into
samples for RNA and protein extraction. Histologic sec-
tions, including larger tumor nodules (�2 mm in diame-
ter), were collected and fixed in 10% formalin. Tissue
section slides were stained with H&E using standard
protocols. Liver nodules typically presented as baso-

philic foci with crowded nuclei and were classified as
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atypical foci (HCC) or hepatocellular adenomas. Adeno-
mas were distinguished from atypical foci based on the
presence of clearly defined margins and compression of
surrounding parenchyma.

Histologic Analysis of Liver Injury and Fibrosis

Formalin-fixed liver samples were processed, and paraf-
fin sections were stained with H&E. The score of liver
injury (necrosis and inflammation) was evaluated blindly
by two pathologists as described previously.27 Liver fi-
brosis was determined by Sirius red staining for colla-
gens or by immunohistochemical (IHC) staining for acti-
vated hepatic stellate cells with anti–�-smooth muscle
actin (Dako, Carpinteria, CA) and were quantified by
digital imaging using NIH Scion Image and Adobe Pho-
toshop (Adobe Systems Inc., San Jose, CA).28,29

Blood Chemistry

Serum alanine transaminase (ALT), aspartate amino-
transferase (AST), and albumin levels were determined
using a chemistry analyzer (Prochem V; Drew Scientific
Co., Barrow-in-Furness, UK). Serum levels of C-reactive
protein were analyzed by immunoperoxidase assay (Im-
munology Consultants Laboratory, Newberg, OR). Serum
cytokine levels were measured by Cytometric Bead Array
(BD Biosciences, San Diego, CA).

TUNEL Assay

Hepatocyte apoptosis was detected by using the
ApopTag TUNEL apoptosis detection kit (Chemicon
International, Temecula, CA).

Hepatocyte Proliferation in Mice after Chronic
CCl4 Treatment

Hepatocyte proliferation in vivo was determined using the
bromodeoxyuridine (BrdU) incorporation assay. Briefly,
mice were injected (i.p) with BrdU (50 �g/g body weight)
and euthanized 2 hours later, and the livers were har-
vested for IHC staining of BrdU using a kit (BD Biosci-
ences). BrdU-labeled hepatocytes in each slide were
counted in five low-power (�100) fields.

Real-Time PCR

Real-time PCR was performed with the indicated primers
as described previously.22

Western Blotting

Western blot analyses were performed as described pre-
viously22 using STAT3, STAT1, glyceraldehyde-3-phos-
phate dehydrogenase (Cell Signaling Technology Inc.,
Danvers, MA), and anti-CYP2E1 (Chemicon International,

Billerica, MA) antibodies.
Measurement of Hepatic Malondialdehyde,
Glutathione, and 8-Hydroxy-2-Deoxyguanosine

Malondialdehyde (MDA) was measured using the thio-
barbituric acid method and is expressed as nanomoles of
MDA per milligram of protein.30,31 Glutathione (GSH) was
measured as described previously.32 The hepatic GSH
concentrations were adjusted according to the original
wet weight of liver tissue (nanomoles per milligram of liver
tissue). Hepatic 8-hydroxy-2-deoxyguanosine (8-OHdG)
was measured using an enzyme-linked immunosorbent
assay kit (OXIS Health Products Inc., Portland, OR) ac-
cording to the manufacturer’s manual.

Statistical Analysis

Data are expressed as mean � SD (n � 5 to 12 in each
group). Student’s t-test was performed to compare val-
ues from two groups. To compare values obtained from
three or more groups, one-factor analysis of variance was
used, followed by Tukey’s post hoc test. Statistical sig-
nificance was taken at the P � 0.05 level.

Results

Deletion of STAT3 in Hepatocytes Ameliorates
DEN-Induced HCC

To address the function of hepatic STAT3 in the devel-
opment of DEN-induced HCC, STAT3Hep�/� mice and
their wild-type littermates were injected with DEN at age
15 days. Figure 1A shows hepatic expression of STAT3
that was significantly lower in STAT3Hep�/� mice than in
wild-type mice, confirming hepatic STAT3 deletion in
STAT3Hep�/� mice at age 15 days. In the initial experi-
mental design, we were unsure of the susceptibility of the
strains of wild-type and STAT3Hep�/� mice to DEN-in-
duced HCC development, so we injected mice with 5 or
20 �g/g of DEN. As illustrated in Figure 1B, injection of
both doses induced significant liver tumor formation 9
months after injection. Injection of 20 �g/g of DEN induced
a slightly higher number and larger size of tumors than did
injection of 5 �g/g of DEN, but this difference did not reach
statistical significance. The number and size of tumors were
much smaller in STAT3Hep�/� mice than in wild-type mice
after injection of either 5 or 20 �g/g of DEN.

Tumor and nontumor tissues from wild-type and
STAT3Hep�/� mice were collected and subjected to real-
time PCR (Figure 1C) and Western blot analyses (Figure
1D). Figure 1C shows that expression of the typical cell
cycle protein cyclin D was reduced and that expression
of cell cycle regulatory protein p21 was higher in tumor
and nontumor samples from STAT3Hep�/� mice than from
wild-type mice. Hepatic expression of p27 was detected
at low levels and was comparable in wild-type and
STAT3Hep�/� mice (data not shown). Western blot anal-
yses in Figure 1D show that pSTAT3 expression was
elevated in nontumor and tumor tissues in DEN-treated
wild-type mice. Such expression, as expected, was

barely detected in STAT3Hep�/� mice. Expression of
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pSTAT1 was elevated in nontumor tissues and, to a lesser
extent, in tumor tissues in DEN-treated wild-type mice
compared with that in nontreated control mice. In addi-
tion, expression of pSTAT1 and STAT1 was comparable
between STAT3Hep�/� and WT mice.

Figure 1E shows representative images of liver, H&E
staining, Ki-67 immunostaining, and TUNEL staining from
DEN-treated wild-type and knockout mice. Microscopically,
the tumors in both groups formed discrete nodes sur-
rounded by almost normal liver tissues. Histologic analyses
show that the tumors from both groups had a similarly mod-
erate degree of differentiation, with an increased nuclear-
to-cytoplasmic index, enlarged and hyperchromatic nuclei,
and expansive growth. In the area of tumor tissues, the
normal liver architecture, such as bile duct and portal tract
formation, was lost. In addition, wild-type mice had greater
numbers of Ki-67� and TUNEL� hepatocytes than did
STAT3Hep�/� mice 9 months after DEN exposure.

To explore the role of STAT1 in DEN-induced liver
tumor formation, wild-type, STAT1�/�, STAT3Hep�/�, and
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As illustrated in Figure 2A, elevation of serum ALT and
liver oxidative stress MDA and 8-OHdG levels and down-
regulation of hepatic GSH levels were observed only 24
hours after a single dose of acute DEN injection. Such
changes were comparable between wild-type and
STAT3Hep�/� mice. H&E staining shows that no obvious
hepatocyte necrosis and inflammatory foci were detected
in the livers 4 or 9 months after DEN injection (Figure 2B).
Sirius red staining revealed no obvious liver fibrosis in
these DEN-treated mice (Figure 2B). Only in the very late
stage of HCC, when the liver tumor grows too fast, were
necrotic tumor tissue and inflammation seen in the large
tumor tissues (data not shown).

Real-time PCR analyses in Figure 2C show that expres-
sion of CCR2, F4/80, tumor necrosis factor (TNF)-�, in-
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ever, most human liver cancers develop after chronic
liver injury, inflammation, and fibrosis.2,3 To further ex-
plore the role of STAT3 in liver tumorigenesis that is
associated with chronic liver injury and fibrosis, a model
of chronic liver injury and fibrosis induced by chronic
CCl4 treatment was used. As illustrated in Figure 3A, the
expression of STAT3 protein in the liver was barely detected
in STAT3Hep�/� mice, confirming STAT3 deletion in these
mice. Furthermore, expression of CYP2E1 was similar in
livers from untreated wild-type and STAT3Hep�/� mice. Af-
ter 4-week CCl4 challenge, expression of CYP2E1 de-
creased significantly in wild-type mice. A similar down-reg-
ulation was also observed in STAT3Hep�/� mice. These
findings suggest that CCl4 metabolism is similar in wild-type
and STAT3Hep�/� mice.

Next we compared the liver injury in wild-type and
STAT3Hep�/� mice at different time points after 4-week
CCl4 treatment. As illustrated in Figure 3B, STAT3Hep�/�

mice had accelerated hepatocellular damage, as evi-
denced by elevation of higher levels of serum ALT and
AST at early time points (peak at 12 hours), whereas
wild-type littermates had peak serum ALT and AST levels
24 hours after 4-week CCl4 treatment. There was no sig-
nificant difference in albumin levels between these 2
groups. Morphologic analyses showed prompt hemor-
rhagic necrosis, more extensive aberrant architecture
characterized by vacuolization, and more inflammation in
STAT3Hep�/� mice than in wild-type controls (Figure 3C).
The necrotic and inflammatory scores were higher in
STAT3Hep�/� mice 6 and 24 hours after 4-week CCl4
treatment (Figure 3C). In addition, STAT3Hep�/� mice
had greater numbers of apoptotic hepatocytes (Figure
3D) but lower numbers of Brdu� hepatocytes (Figure 3E)
in the liver compared with wild-type mice after 4-week
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trophil-attracting chemokine (KC), and C5. Figure 4
shows that the expression of C5, serum amyloid A, and
KC mRNAs and serum levels of C-reactive protein were
lower in STAT3Hep�/� mice than in wild-type mice after
CCl4 treatment. Finally, serum levels of TNF-�, monocyte
chemotactic protein-1, and IL-6 were comparable be-
tween these two groups after CCl4 treatment (Figure 4B).

Loss of STAT3 in Hepatocytes Promotes Liver
Fibrosis

Sirius red (Figure 5A) and �-smooth muscle actin (Figure
5B) staining show that STAT3Hep�/� mice displayed a
higher degree of liver fibrosis compared with wild-type
mice 4 and 16 weeks after CCl4 administration. Real-time
PCR analyses also confirmed that expression of several
forms of collagens and �-smooth muscle actin was
higher in the liver from STAT3Hep�/� mice than in that
from wild-type mice (Figure 5C).

Development of Liver Tumorigenesis in
STAT3Hep�/� Mice after Prolonged CCl4
Treatment

It has been well established that most HCCs develop as
a result of chronic liver inflammation and cirrhosis in
clinical practice.2,3 Given the enhanced hepatocyte dam-
age, inflammation, and fibrosis in STAT3Hep�/� mice, we
hypothesized that loss of STAT3 in hepatocytes facilitates
tumor development after prolonged injury and repair cy-
cles. To explore this, we prolonged the CCl4 injection
course to 16 weeks in wild-type and STAT3Hep�/� mice.
Approximately 60% of STAT3Hep�/� mice had developed
multiple surface nodular tumors after 16 weeks of CCl4
treatment, whereas no obvious nodules were detected
in the surface of livers in wild-type mice (Figure 6,
A and B). Histologic analysis revealed that adenomas

were found in most STAT3Hep�/� mice and that
highly differentiated HCCs were found in only three
STAT3Hep�/� mice (Figure 6A).

Western blot analyses show that STAT3 protein was
detected at high levels in wild-type mouse livers but at
very low levels in tumor and nontumor liver tissues in
STAT3Hep�/� mice (Figure 6C), indicating that the tumors
in STAT3Hep�/� mice were originated from STAT3-de-
leted hepatocytes. Wild-type and STAT3Hep�/� mice had
comparable levels of STAT1 protein but undetectable
levels of pSTAT1 protein in the liver. Weak pSTAT3 expres-
sion (STAT3 activation) was detected in nontumor liver tis-
sue but not in tumor liver tissue of STAT3Hep�/� mice. The
elevated pSTAT3 in nontumor liver tissues in STAT3Hep�/�

mice may be due to infiltrated inflammatory cells.

Enhanced DNA Damage and Oxidative Stress in
STAT3Hep�/� Mice

To explore the mechanisms underlying the enhanced
tumorigenesis in STAT3Hep�/� mice, DNA damage and
oxidative stress were measured. Levels of 8-OHdG, a
marker of oxidative DNA damage, and MDA, a marker of
oxidative stress, were elevated in the liver of wild-type mice
after chronic CCl4 treatment (Figure 7). Such elevation was
more profound in STAT3Hep�/� mice. In contrast, hepatic
levels of the anti–oxidative stress enzyme GSH were de-
creased in wild-type and STAT3Hep�/� mice after chronic
CCl4 administration, with lower levels in the latter group.

Discussion

STAT3 is a transcription factor that is activated by a variety
of factors, including cytokines, growth factors, hormones,
and hepatitis viral proteins in the liver.14 In almost all rodent
models of liver injury, hepatic STAT3 activation has been
reported, playing an essential role in protecting against
hepatocellular damage and promoting liver regeneration.14

Figure 5. STAT3Hep�/� mice are more suscep-
tible to CCl4-induced liver fibrosis. Mice were
treated with CCl4 for 4 or 16 weeks and were
euthanized 24 hours after the last injection.
Liver tissue samples were collected for Sirius
red staining (A) and IHC with �-smooth muscle
actin (�-SMA) antibodies (B). The areas stained
with Sirius red or �-SMA were quantified and
are shown on the right. C: Real-time PCR
analyses. The value from wild-type (WT) mice
with 4-week oil treatment was set as onefold.
Values represent mean � SD (n � 6). *P �
0.05, **P � 0.01.
It has been reported that deletion of hepatic STAT3 reduces
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DEN-induced tumorigenesis,21 which was also confirmed in
the present study, suggesting that hepatic STAT3 promotes
liver tumor development in this model. In contrast, deletion
of hepatic STAT3 exacerbated CCl4-induced chronic liver
inflammation and tumorigenesis, suggesting that hepatic
STAT3 may also prevent hepatic tumorigenesis, especially
in the condition of nonresolving inflammation.

STAT3 Is a Pro-Oncogenic Factor That
Promotes Liver Tumorigenesis in a Model of
DEN-Induced Liver Tumor

The pro-oncogenic role of STAT3 has been well docu-
mented in many types of tumors, including liver cancer.13

The first evidence of this was the detection of constitu-
tively activated STAT3 in human hepatoma cells and hu-
man liver tumor tissues.13,33 In addition, it was deter-
mined that inhibition of STAT3 using chemical inhibitors
or small-interfering RNA induced liver cancer cell apop-
tosis and cell cycle arrest in vitro and inhibited growth of
transplanted liver cancer cells in vivo.33 Other evidence
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suggesting a role of STAT3 in tumorigenesis included
findings that deletion of hepatic SOCS3, an inhibitor of
STAT3, elevated STAT3 activation in the liver and accel-
erated DEN-induced liver tumorigenesis,34 whereas
overexpression of SOCS3 inhibited HCC cell growth.35

Moreover, several cytokines (IL-6, IL-6 family cytokines, IL-
22, leptin, etc) that activate STAT3 in hepatocytes have also
been shown to promote HCC cell growth in vitro and in
vivo.17–19,36 Finally, as we show in this study, deletion of
STAT3 in hepatocytes prevents DEN-induced HCC devel-
opment, which was also reported previously.21 Deletion of
hepatic STAT3 also reduced hepatitis C virus core protein–
mediated hepatocarcinogenesis in transgenic mice.37

In the hepatic environment, the opposing functions of
STAT3 and STAT1 in controlling cell apoptosis and pro-
liferation have been well documented.38,39 As deletion of
STAT3 up-regulates STAT1 in several models of liver
injury, and vice versa,38 it suggests that the proliferative,
antiapoptotic, and anti-inflammatory effects of STAT3 are
mediated, at least in part, via inhibition of STAT1, a tran-
scription factor that induces cell cycle arrest and apop-
tosis and promotes inflammatory responses. Moreover,
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Figure 6. Loss of STAT3 in hepatocytes facilitates tumor devel-
opment after chronic CCl4 treatment. Wild-type (WT) and
STAT3Hep�/� mice were treated with CCl4 for 16 weeks and
were euthanized 24 hours after the last injection. A: Liver
tissue samples were collected for Sirius red staining and H&E
staining. The arrow in A indicates a tumor nodule. The small
arrows on the right side of A indicate enlarged and hyper-
chromatic nuclei. B: Tumor number, size, and incidence were
determined. C: Western blot analyses. NT, nontumor tissues;
T, tumor tissues; KO, knockout; GAPDH, glyceraldehyde-3-
phosphate dehydrogenase. In the WT group, no tumor tissues
were available. **P � 0.01.
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STAT1 is often considered a tumor suppressor.13 How-
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ever, it was unexpectedly determined that STAT1 activa-
tion (pSTAT1) and protein expression were not enhanced
in STAT3-deficient tumor and nontumor tissues. In addi-
tion, the added deletion of the STAT1 gene did not further
reduce tumor numbers or size induced by DEN injection
(Figure 1). These results suggest that the pro-oncogenic
function of STAT3 in DEN-induced liver tumor is not me-
diated by suppression of STAT1.

STAT3 Prevents Liver Tumorigenesis in a Model
of CCl4-Induced Chronic Liver Injury and
Fibrosis

Tumorigenesis induced by a single DEN injection is not
associated with significant inflammation, injury, and fibro-
sis,40,41 and, therefore, it is less representative of the type
of pathogenesis occurring in most human liver cancers
that develop after chronic injury, inflammation, and fibro-
sis/cirrhosis.2,3,6 By using a model of CCl4-induced
chronic liver injury, we demonstrated that STAT3Hep�/�

mice exhibited enhanced liver injury, inflammation, and
fibrosis compared with wild-type mice after chronic CCl4
treatment, which is consistent with the well-documented
hepatoprotective role of STAT3.14 CCl4 is a weak carcin-

Figure 7. Enhanced oxidative stress and DNA damage in STAT3Hep�/� mice
after CCl4 challenge. Wild-type (WT) and STAT3Hep�/� mice were treated
with CCl4 for 4 weeks and were euthanized 24 hours after the last injection.
Liver tissue samples were collected for measurement of 8-OHdG, MDA, and
GSH levels. Values represent mean � SD (n � 6). *P � 0.05.
ogen and is able to induce HCC development in some
strains of mice after a long-time chronic injection.42–44

For example, Fujii et al45 reported that treatment with
CCl4 for 15 weeks induced liver fibrosis and well-differ-
entiated HCC in male A/J strain mice. Furthermore, Hosui
et al46 reported that chronic injection of CCl4 for 8 weeks
induced HCC in 10% of liver-specific STAT5 knockout
mice but not in wild-type mice. The present study shows
that after 16-week CCl4 treatment, no HCC development
was found in wild-type mice but approximately 60% of
STAT3Hep�/� mice developed multiple surface nodular
tumors (Figure 6). These findings indicate that hepato-
cyte STAT3 plays a protective role in preventing liver
tumorigenesis induced by chronic CCl4 challenge.

Potential Mechanisms Underlying STAT3
Promotion and Inhibition of Liver Tumorigenesis
in DEN- and CCl4-Induced Liver Injury Models,
Respectively

As mentioned previously herein, activation of STAT3 in
hepatocytes plays an important role in promoting liver
tumorigenesis in many models, including DEN-induced
liver tumor. The pro-oncogenic function of STAT3 is likely
mediated via up-regulation of a variety of genes involved
in cell cycle progression (cyclin D1, c-myc), cell survival
(Bcl-xL, Bcl-2), angiogenesis (VEGF), and tissue remod-
eling (Mmp-1, Mmp-3).13 In addition, a previous study
showed that treatment of mice with an antioxidant before
a single DEN injection at age 18 days prevented liver
tumor development,47 suggesting that DEN induction of
oxidative stress contributes to hepatic tumorigenesis.
Herein, we showed that a single DEN injection induces a
transient elevation in 8-OHdG and MDA levels in the liver,
which returned to basal levels 4 and 9 months after in-
jection, respectively (Figure 2A). There was no difference
in hepatic levels of MDA and 8-OHdG between wild-type
and STAT3Hep�/� mice at all time points examined (Fig-
ure 2A). This suggests that the decreased DEN-induced
liver tumorigenesis in STAT3Hep�/� mice is not caused by
a decrease in oxidative stress.

In contrast to weak and transient induction of oxidative
stress in the liver tumor model induced by a single DEN
injection, chronic CCl4 challenge induced sixfold and
twofold higher levels of 8-OHdG and MDA, respectively,
in the liver compared with a single DEN injection (Figure
7 versus Figure 2A). In addition, hepatic levels of
8-OHdG and MDA were higher in STAT3Hep�/� mice than
in wild-type mice. Elevation of 8-OHdG, a mutation prone
to inducing G-C to T-A transversion during DNA replica-
tion, has been implicated in tumorigenesis in many types
of tumors, including liver tumors.48 Furthermore, com-
pared with wild-type mice, STAT3Hep�/� mice had
greater liver injury, inflammation, and fibrosis after
chronic CCl4 administration. Each of these changes in
the liver is a risk factor for developing liver cancer.2,3,6

Therefore, enhanced liver tumorigenesis in STAT3Hep�/�

mice may be caused by higher levels of liver injury,
inflammation, oxidative stress, and DNA damage in these
mice compared with wild-type mice. It would be interest-

ing to test whether treatment with antioxidants, such as
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N-acetylcysteine, prevents CCl4-induced chronic liver in-
jury and tumorigenesis in STAT3Hep�/� mice in a future
study.

STAT3 and Inflammation in the DEN and CCl4
Models

It has been documented that STAT3 signaling is a major
intrinsic pathway whereby cancers induce transcription
of a variety of inflammation-related genes.13,49 Such can-
cer cell STAT3-mediated inflammation was observed in
the DEN-induced liver tumor model. As shown in Figure
2C, expression of CCR2, F4/80, TNF-�, IFN-�, and TGF-�
was only slightly elevated in the nontumor tissues of wild-
type mice, confirming a lack of overt injury and inflam-
mation in this model. In contrast, these inflammatory me-
diators were markedly up-regulated in the liver tumor
tissues of wild-type mice. The observed induction was
not found in STAT3-deficient tumor tissues, indicating
that the activation of STAT3 observed in these tumor
tissues (Figure 2C) contributed to induction of inflamma-
tion in the tumor tissues. At present, how this STAT3-
associated inflammation affects the pathogenesis of liver
tumor is unknown.

Previously, we showed that compared with wild-type
mice, STAT3Hep�/� mice had enhanced liver injury but
reduced liver inflammation after acute CCl4 injection,
suggesting that hepatic STAT3 protects against hepato-
cellular damage but promotes liver inflammation in CCl4-
induced acute liver injury.50 In contrast, chronic CCl4
injection induced higher levels of liver inflammation in
STAT3Hep�/� mice than in wild-type mice (Figures 3 and
4), which might be indirectly caused by the greater hep-
atocellular damage in STAT3Hep�/� mice than in wild-
type mice. We did not compare the role of STAT3 in
inflammation in tumor tissues between wild-type and
STAT3Hep�/� mice in this model because of a lack of liver
tumors in wild-type mice.

Conclusions and Clinical Implications

Most human liver cancers develop after chronic liver in-
jury, inflammation, and cirrhosis. Activation of hepatic
STAT3 in the early stage of liver injury likely plays an
important role in protecting against hepatocyte death and
DNA damage, thereby acting as a tumor suppressor to
prevent liver tumorigenesis. However, once tumor cells
have developed, STAT3 likely acts as an oncogenic fac-
tor to promote liver tumor cell proliferation and survival.

In recent years, intense efforts have been made to
develop STAT3 inhibitors for treating various types of
tumors. It has been reported that treatment with STAT3
inhibitors effectively blocks the growth of transplanted
liver tumor cells in nude mice.33 However, the effects of
STAT3 inhibitors on nontransplanted solid liver tumor and
liver injury remain unknown and should be further inves-
tigated. Clinical application of STAT3 inhibitors in treating
HCC should be cautious with monitoring hepatocellular

damage.
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