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Tryptophan metabolism by the kynurenine pathway
(KP) is important to the pathogenesis of inflamma-
tory, infectious, and degenerative diseases. The 3-hy-
droxykynurenine (3-HK) branch of the KP is activated
in macrophages and microglia, leading to the gener-
ation of 3-HK, 3-hydroxyanthranilic acid (3-HAA), and
quinolinic acid, which are considered neurotoxic ow-
ing to their free radical-generating and N-methyl-p-as-
partic acid receptor agonist activities. We investigated
the role of 3-HAA in inflammatory and antioxidant
gene expression and neurotoxicity in primary human
fetal central nervous system cultures treated with cy-
tokines (IL-1 with or without interferon-y) or with
Toll-like receptor ligands mimicking the proinflam-
matory central nervous system environment. Results
were analyzed by microarray, Western blot, immuno-
stain, enzyme-linked immunosorbent assay, and neu-
rotoxicity assays. 3-HAA suppressed glial cytokine
and chemokine expression and reduced cytokine-in-
duced neuronal death. 3-HK also suppressed cytokine-
induced neuronal death. Unexpectedly, 3-HAA was
highly effective in inducing in astrocytes the expression
of hemeoxygenase-1 (HO-1), an antioxidant enzyme
with anti-inflammatory and cytoprotective properties.
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Optimal induction of HO-1 required 3-HAA and cyto-
kines. In human microglia, 3-HAA weakly induced HO-1
and lipopolysaccharide suppressed microglial HO-1 ex-
pression. 3-HAA—mediated HO-1 expression was con-
firmed in cultured adult human astrocytes and in vivo
after 3-HAA injection to mouse brains. Together, our
results demonstrate the novel neuroprotective activity
of the tryptophan metabolite 3-HAA and have implica-
tions for future therapeutic approaches for neuroin-
flammatory disorders. (AmJ Patbol 2011, 179:1360-1372;
DOI: 10.1016/j.ajpath.2011.05.048)

Indoleamine-2,3-dioxygenase (IDO) is an interferon
(IFN)-y—inducible, rate-limiting enzyme in the kynurenine
pathway (KP) of tryptophan metabolism generating vari-
ous downstream metabolites collectively termed “kynure-
nines”! (Figure 1). This process is compartmentalized
due to cell-specific expression of the KP enzymes. For
example, kynurenine monooxygenase (KMQO) is ex-
pressed in macrophages and microglia,®>* whereas
kynurenine aminotransferase Il (KAT Il) is present in as-
trocytes.® A well-appreciated biological activity of IDO is
T-cell suppression. IDO expressed in antigen-presenting
cells (dendritic cells, macrophages, and microglia) can
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Figure 1. The KP of tryptophan metabolism. A simplified version of the KP
demonstrating the major enzymes and intermediates.

suppress T-cell immunity against viruses, tumors, or
transplanted tissues by suppressing T-cell prolifera-
tion.™®7 IDO induces immune tolerance through trypto-
phan depletion from T cells but also through generation
of KP metabolites, such as 3-hydroxyanthranilic acid (3-
HAA).2° In line with these findings, administration of
3-hydroxykynurenine (3-HK), 3-HAA, or its synthetic an-
alog in mice has been shown to induce a T-cell pheno-
type change from T 1 to T;,2 and to ameliorate experi-
mental autoimmune encephalomyelitis in an animal
model of multiple sclerosis.’®

In contrast to its well-defined roles in T-cell immunity, the
role of IDO and the KP metabolites in innate immunity is less
well understood. Microglia are the main cell type engaged
in the innate immune response in the central nervous sys-
tem (CNS), in part due to their abundant immune receptor
expression.’™™"* Microglial kynurenines, such as 3-HK,
3-HAA, and quinolinic acid (Figure 1), have been implicated
as neurotoxins in a number of neurologic diseases due to
their free radical-generating and N-methyl-p-aspartic acid
(NMDA) agonist activities.'>™'® Because of the reported
neurotoxic properties of microglial kynurenines, KP en-
zymes such as KMO are currently being targeted for drug
development for neurodegenerative diseases, such as
Huntington’s disease.'”2°

Microglial response to a number of brain insults could
also promote injury by establishing a cytokine cascade in
the CNS through positive feedback mechanisms (IL-1
induces itself) and activation of astrocytes.®'2% IL-1 is
required for human astrocyte inducible nitric oxide syn-
thase (INOS) and tumor necrosis factor (TNF)-a release®®
and is critical for neurotoxicity.?”2° The prolonged pres-
ence of proinflammatory cytokines, such as IL-1 or
TNF-«, could comprise a common mechanism underly-
ing neurodegeneration. In the current study, we exam-
ined the role of 3-HAA, a redox regulator, in cytokine
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production and neurotoxicity in primary human brain cell
cultures to define its potential role during neuroinflamma-
tory processes. We found that 3-HAA suppresses cyto-
kine and chemokine production and neurotoxicity in-
duced by IL-1/IFN-y and Toll-like receptor (TLR) ligands.
We also found that this effect is in part mediated by the
unique and potent ability of 3-HAA to induce hemeoxy-
genase-1 (HO-1) in human glial cells. HO-1 is an induc-
ible enzyme with proven anti-inflammatory and cytopro-
tective activities, but little is known about its regulation of
expression in primary human brain cells.3° Thus, our
results have important implications for human CNS dis-
eases.

Materials and Methods

Human Fetal Brain Cell Culture

Human CNS cell cultures were prepared from 16 to 22
weeks of human fetal abortuses as described with minor
modifications.®' All tissue collection was approved by the
Albert Einstein College of Medicine Institutional Review
Board. Primary mixed CNS cultures were prepared by
enzymatic and mechanical dissociation of the cerebral
tissue followed by filtration through nylon meshes of 230-
and 130-u pore sizes. Single-cell suspension was plated
at 1to 10 X 10° cells/mL in Dulbecco’s modified Eagle’s
medium (DMEM) (Cellgro) supplemented with 5% fetal
calf serum (FCS) (Gemini Bio-products, Woodland, CA),
penicillin (100 U/mL), streptomycin (100 wg/mL), and am-
photericin B (0.25 ug/mL) (Gibco, Carlsbad, CA) for 2
weeks, and then microglial cells were collected by aspi-
ration of the culture medium. Monolayers of microglia
were prepared in 60-mm tissue culture dishes at 1 X 10°
cells per 5 mL of medium or in 96-well tissue culture
plates at 4 X 10* per 0.1 mL of medium. Four to 16 hours
later, cultures were washed to remove nonadherent cells
(neurons and astrocytes). Microglial cultures were highly
pure, consisting of more than 98% CD68™ cells. Highly
enriched human astrocyte cultures were generated by
repeated passage of the mixed CNS cultures, as de-
scribed previously.?® Mixed neuronal and glial cultures
(mixed cultures) were generated by replating the initial
CNS cell cultures once in 60-mm or 96-well tissue culture
plates after collecting microglia.?” Mixed cultures con-
sisted primarily of neurons and astrocytes at a ratio of
approximately 1:2 or 1:3 and a minor population (1% to
2%) of microglia. All cultures were kept as monolayers in
DMEM with 5% FCS and antibiotics (complete medium).

Fetal Culture Treatment

Lipopolysaccharide (LPS) and poly(l:C) (PIC) were pur-
chased from Sigma-Aldrich (St. Louis, MO). Recombinant
human IFN-y (specific activity, 1 ng = 20 U), IL-18, and
IL-10 were purchased from Peprotech (Rocky Hill, NJ). All
cultures were treated in complete medium with PIC at 10
rg/mL, LPS at 100 ng/mL, or cytokines at 10 ng/mL. 3-HAA,
3-HK, hemin, and cobalt protoporphyrin IX (CoPP) were
purchased from Sigma-Aldrich. Stock solutions of 3-HAA
were prepared in HCI, then further dilutions were made in
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complete medium. Cultures were treated with 3-HAA at 100
wmol/L, unless otherwise specified.

Adult Human Glial Cell Culture

Adult human brain cell cultures were prepared as previ-
ously described.®23% Brain tissues were obtained from
adults undergoing surgical resections performed as
treatment for non-tumor-related intractable epilepsy in
accordance with the guidelines set by the Biomedical
Ethics Unit of McGill University. The material came pre-
dominantly from temporal lobe white matter and did not
include subependymal regions. Tissue specimens were
enzymatically digested and separated on a linear 30%
Percoll density gradient (Pharmacia Biotech, Piscataway,
NJ). Floating cells were collected after two sequential
24-hour periods during which microglia selectively ad-
here to culture vessels. The floating cells were grown on
glass chamber slides coated with poly-L-lysine (5 X 10%
cells per well) in DMEM/F12 supplemented with N1
(Sigma, Oakville, Canada), 0.01% bovine serum albumin,
1% penicillin-streptomycin, and B27 supplement (Invitro-
gen, Burlington, Canada). The derived cell population
consists of 90% to 95% oligodendroglial cells and ap-
proximately 5% astrocytes [glial fibrillary acidic protein
(GFAP)—positive cells]. The initial adherent cell popula-
tion served as a source of microglia.

Adult Culture Treatment

After 1 week in culture, individual wells were either left
untreated or treated with 100 wmol/L 3-HAA or a combi-
nation of IL-18 and IFN-y, 10 ng/mL each, for 24 hours.
Individual coverslips were then fixed with 4% paraformal-
dehyde and stained with monoclonal anti-GFAP antibody
conjugated with Alexa 488 and rabbit anti-rat HO-1 IgG
(Assay Designs, formerly Stressgen, Plymouth Meeting,
PA) followed by goat anti-rabbit Cy3 (also see below for
HO-1 immunostain).

ELISA

Cell culture supernatants were harvested and subjected
to protein assay by enzyme-linked immunosorbent assay
(ELISA) using commercially available antibody pairs
(R&D Systems, Minneapolis, MN). Standard curves were
generated with known concentrations of recombinant cy-
tokines and chemokines, and the samples were diluted
until the optical reading (OD) values fell within the range
of the ELISA detection.

Neurotoxicity Assay

Primary human fetal neuronal and glial cultures (mixed
cultures) at an in vitro age of approximately 3 to 4 weeks
were plated in 96-well tissue culture plates and treated
with cytokines or TLR ligands in low serum medium
(DMEM and 0.5% FCS). Seventy-two hours later, neuro-
nal death was assayed by vital dye exclusion test, as
previously described.?” Both propidium iodide and trypan

blue exclusion tests were performed without appreciable
difference in the results. The results were scored by count-
ing the number of dead (trypan blue positive or propidium
iodide positive) neurons in 4 different X200 microscopic
fields per well in 4- to 6-replicate wells. The selective neu-
ronal death (MAP2 positive) in these cultures, the kinetics of
cell death, the roles of TNF-«, nitric oxide, and NMDA re-
ceptor antagonist, and the comparison of several different
neurotoxicity assays [vital dye exclusion, lactate dehydro-
genase (LDH) efflux, terminal deoxynucleotidyl transferase-
mediated dUTP nick-end labeling (TUNEL), etc] have all
been published.?”

HO-1 Knockdown by siRNA

Mixed neuronal glial cultures were transfected with 10
nmol/L control nontargeting small-interfering RNA (siRNA)
or human HO-1-specific siRNA (Dharmacon, Chicago, IL)
with Trans/T-TKO transfection reagents from Mirus (Madi-
son, W), following the manufacturer’s instructions. After in-
cubation with siRNA for 2 to 5 days, cells were washed with
fresh medium and then treated with cytokines with or
without 3-HAA for an additional 3 days. Immunocyto-
chemistry or commercial ELISA from Stressgen were
used to confirm suppression of HO-1 expression by
SiRNA.

Western Blot Analysis

Western blot analysis was performed as previously de-
scribed.®* Briefly, cell cultures in 60-mm dishes were
scraped into lysis buffer [10 mmol/L Tris-HCI (pH 8.8), 50
mmol/L NaCl, 0.5 mmol/L NagVO,, 30 mmol/L Na,P,O-,
50 mmol/L NaF, 2 mmol/L EDTA, and 1% Triton X-100] at
various time points. Thirty to 70 ug of protein was sepa-
rated by 10% SDS-PAGE and then transferred to polyvi-
nylidene difluoride membrane. The blots were blocked in
Tris-buffered saline and 0.1% Tween-20 containing 5%
nonfat milk and then incubated with antibodies at 4°C for
16 hours.®* Primary antibodies were HO-1 [Abcam (Cam-
bridge, MA) 1:2000 or Stressgen 1:1000], HO-2 [Santa
Cruz (Santa Cruz, CA), 1:300], iINOS (Santa Cruz,
1:1000), and IDO (gift of Osamu Takikawa, mouse 1gG1,
1:3000).3* The secondary antibody was either horseradish
peroxidase—conjugated anti-mouse or anti-rabbit 1gG
(Pierce Biotechnology, Rockford, IL) and was used at
1:2000 to 1:10,000 for 1 hour at room temperature. Sig-
nals were developed using enhanced chemilumines-
cence (Pierce Biotechnology). All blots were reprobed
with vinculin (Santa Cruz) to control for protein loading.
Densitometric analysis was performed using Scion Na-
tional Institutes of Health Image software (Scion, Freder-
ick, MD).

Real-Time PCR

Quantitative real-time RT-PCR was performed as de-
scribed previously,®*3° using porphobilinogen deami-
nase (PBDA; cell culture) or B-actin (mouse brain tissue)
as an internal control. Primer sequences for human HO-1
were as follows: forward: 5’-ATGACACCAAGGACCA-



GAGC-3" and reverse: 5-GTGTAAGGACCCATCG-
GAGA-3'. Primer sequences for mouse HO-1 were as
follows: forward: 5'-CTTTCAGAAGGGTCAGGTGTCC-3'
and reverse: 5'-GTGGAGACGCTTTACATAGTGC-3'.
Briefly, total RNA was extracted with TRIzol (Invitrogen
Life Technologies, Carlsbad, CA), following the manufac-
turer’s instructions. PCR was performed using a SYBR
Green PCR mix and conducted with the ABI Prism
7900HT (Applied Biosystems, Carlsbad, CA). All values
were expressed relatively to PBDA or B-actin. The me-
dian value of the replicates for each sample was calcu-
lated and expressed as the C; (cycle number at which
each PCR reaches a predetermined fluorescence thresh-
old, set within the linear range of all reactions). AC; was
calculated by subtracting the C; of the target gene from
the C; of the endogenous control gene (PBDA or p-actin)
in each sample. The relative amount of target gene ex-
pression in each sample was then calculated as 22¢T,
Fold change was calculated by dividing the 22T value of
test sample by that of control sample (control = 1).

Microarray Analysis

Highly enriched astrocyte cultures were subjected to mi-
croarray analysis using the lllumina platform. Briefly, for
each total RNA sample, linear amplification and biotin
labeling of total RNA (500 ng) were performed using the
[llumina TotalPrep RNA Amplification Kit (Ambion Applied
Biosystems, Austin, TX). Whole-genome expression anal-
ysis was performed by hybridization of amplified RNA to
an lllumina HumanHT-12 v3 Expression BeadChip (lllu-
mina Inc., San Diego, CA). With this bead chip, we inter-
rogated >48,000 probes per sample, targeting genes
and known alternative splice variants from the RefSeq
database release 17 and UniGene build 188. Controls for
each RNA sample (>1000 bead types) confirmed sam-
ple RNA quality, labeling reaction success, hybridization
stringency, and signal generation. All expression data
were quantile normalized and background subtracted
before analysis using BeadStudio software (lllumina Inc.).

Mouse in Vivo Experiment

C57BL6 mice of approximately 8 weeks of age were
manually injected with 3-HAA or vehicle alone (n = 4,
each) aiming at the right caudate putamen, using the
approximate coordinates (0.5 mm anterior, 2 mm lateral,
and 3 mm depth from the bregma) as previously de-
scribed.®®37 3-HAA was solubilized first in 1N HCI fol-
lowed by pH adjustment to 7.5 using 1M Tris-HCI, pH 8.8.
The amount of 3-HAA administered in each mouse was
40 pg, determined empirically by adjusting for vehicle
toxicity. Brain tissues were harvested at 4 and 24 hours
for quantitative PCR. For histochemistry, brains were har-
vested at 24 and 72 hours after injection and were fixed
in formalin for 48 hours. Serial coronal sections of approx-
imately 2-mm thickness were made through the entire
brain and embedded in paraffin. Sections (5 umol/L
thick) were examined with H&E stain (four different levels
through the entire block), TUNEL staining, and HO-1 im-
munohistochemistry (IHC; see below).
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HO-1 IHC and Immunofluorescence

Serial, 5-um coronal sections of formalin-fixed, paraffin-
embedded mouse brain tissues were subjected to IHC as
previously described.®® Briefly, sections were treated
with Target Retrieval Solution (Dako, Carpinteria, CA) for
antigen retrieval and then with rabbit anti-HO-1 antibody
(Stressgen) at 1:200 for 2 hours at room temperature.
ImMmMPRESS anti-rabbit Ig peroxidase kit (Vector Labora-
tories Ltd., Burlingame, CA) in combination with diamino-
benzidine was used to develop a brown reaction product.
For immunofluorescence, sections were incubated simul-
taneously with rabbit anti-HO-1 and rat anti-GFAP IgG2a
(Invitrogen, Camarillo, CA) at 1:100 for 2 hours at room
temperature followed by 16 hours at 4°C. They were then
incubated with a cocktail of goat anti-rabbit 1gG-Alexa
Fluor 488 and goat anti-rat IgG-Alexa Fluor 568 conju-
gated secondary antibody at 1:1000 for 1.5 hours at room
temperature and then coverslipped in Vectashield Hard
Set mounting medium with DAPI (Vector Laboratories).
Sections were viewed with an Inverted Olympus [1X81
electronically motorized microscope and photographed
with a Sensicam QE cooled CCD camera.

Statistical Analysis

For ELISA and neurotoxicity data, results shown are
pooled data from multiple independent experiments us-
ing different brain cases. Values (protein levels) were
normalized to those induced by cell stimuli (IL-18, IFN-y,
IL-1 plus IFN-vy, LPS, or PIC) alone within an individual
experiment, then the percentage of inhibition by 3-HAA
was calculated. Data from multiple experiments were
pooled and the significance of the 3-HAA effect was
examined by a single-sample t-test. When representative
results from a single experiment are shown, one-way
analysis of variance was performed followed by Bonfer-
roni post test. P < 0.05 was considered significant. These
results were representative of two to four separate exper-
iments with similar results using cells from different donor
brains. All statistics were run using the GraphPad Prism
4.0 software (GraphPad Software, La Jolla, CA).

Results

3-HAA Suppresses Cytokine and Chemokine
Production

We determined the effect of 3-HAA on cytokine and
chemokine production in primary human fetal glial cell
cultures. For microglial cultures, the TLR ligands PIC (10
wg/mL) and LPS (100 ng/mL) were used as stimuli.®® For
astrocytes, three different combinations of stimuli were
applied (IL-1B alone, IL-1 and IFN-vy, or PIC) based on
previously determined gene expression patterns 2#:27-34
Human astrocytes respond minimally to LPS; therefore,
we excluded this stimulus for astrocytes.*® A pilot exper-
iment for dose response showed that 3-HAA at 100
pmol/L maximally inhibited IFN-y inducible protein 10
(IP-10) production in astrocytes (Figure 2A), and thus all
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Figure 2. Cytokine suppressive effects of 3-HAA. A: Dose response of
3-HAA. Primary human astrocyte cultures were treated with varying concen-
trations of 3-HAA (0 to 100 wmol/L) and 10 ng/mL of IL-18. Culture super-
natants were collected 24 hours later, and the levels of the two a-chemokines
IP-10 and IL-8 were determined by ELISA. Data shown are mean * SD from
triplicate cultures. IP-10 production was dose dependently suppressed by
3-HAA, but IL-8 was not affected by 3-HAA. B and C: 3-HAA suppression of
TNF-a and IP-10 in microglia and astrocytes. Primary human microglia (B)
were stimulated with PIC (10 ug/mL) or LPS (100 ng/mL) with or without
3-HAA (100 wmol/L). Astrocytes (C) were stimulated with IL-1 (10 ng/mL),
PIC (10 pg/mL), or IL-1/IFN-y (10 ng/mL) with or without 3-HAA (100
umol/L). Levels of TNF-q, IP-10, and IL-8 were measured in triplicate wells
in each culture, then the percentage of inhibition by 3-HAA was calculated
from the mean values. Each symbol represents an independent experiment
using different brain case. P values were obtained using the single-sample
-test.

subsequent experiments were performed using 100
wmol/L 3-HAA. High micromolar concentrations have
been found in the plasma of mice and humans treated
with a 3-HAA analog (supplemental material of Ref. 10);
therefore, these concentrations are therapeutically rele-
vant.

All cultures were pretreated with 3-HAA for 1 hour, and
culture supernatants were harvested at 24 hours or 72
hours after stimulation for ELISA for TNF-«, IP-10, and
IL-8. Data were expressed as percentage of inhibition by
3-HAA calculated as follows: 100 X (1 — cytokine pro-
duced in the presence of 3-HAA/cytokine produced by
stimulus alone). The compiled results from multiple®”
independent experiments are shown in Figure 2, B and C.
A single-sample t-test was performed to determine
whether the inhibition by 3-HAA was significant.

The results showed that although microglial TNF-« and
IP-10 production was significantly inhibited by 3-HAA,
IL-8 production was not inhibited. The inhibition was
highly significant in both LPS- and PIC-stimulated cul-
tures, with a similar degree of inhibition for both (approx-
imately 50%). In astrocyte cultures, TNF-a and IP-10 pro-
duction by IL-1 or IL-1/IFN-y was significantly inhibited,
whereas TNF-a and IP-10 production by PIC was variably
inhibited. The degree of inhibition was higher in cultures
stimulated with IL-1 alone compared with IL-1/IFN-v, with
IL-1—induced TNF-a and IP-10 production showing near-
complete inhibition in several cases of astrocytes (Figure

2C). 3-HAA did not inhibit IL-8 production in astrocytes.
Together, these results show that 3-HAA suppresses cy-
tokine and chemokine production from microglia and as-
trocytes but that the suppression is also target protein
(and stimulus) specific.

3-HAA and 3-HK Protect Neurons from
Cytokine- or TLR Ligand-Induced Death

We have previously shown that in primary human fetal
brain cultures composed of neurons and glia cytokine
treatment containing IL-18 (with or without IFN-v) induces
highly reproducible neuronal death that is detectable at
72 hours (delayed death) and that the neuronal death is
attributable in part to endogenous TNF-«, nitric oxide,
and NMDA receptor activity.?” There is evidence that
3-HAA (and related KP intermediates) may have toxic
effects on neurons.’ ' However, these experiments
were performed in the absence of added cytokines
and/or in highly enriched neuronal cultures. In light of the
cytokine-suppressive effects that we see in our culture,
we next examined whether 3-HAA modulated neuronal
survival in mixed CNS cultures treated with cytokines or
TLR ligands, which induce neuronal death via glial inflam-
matory mechanisms.?” Mixed cultures were treated with
IL-1 (with or without IFN-vy) or PIC with or without 3-HAA
for 72 hours, then neurotoxicity was assessed by vital dye
exclusion. Pooled data derived from multiple indepen-
dent experiments and representative photographs are
shown in Figure 3, A and B. The results show that 3-HAA
protected human neurons against cytokine- or TLR li-
gand-induced death. We also tested 3-HK, another mi-
croglial KP metabolite upstream of 3-HAA (Figure 1), and
these experiments also show that neurons were also pro-
tected from cytokine-induced death in the presence of
3-HK in a dose-dependent manner (Figure 3C). We also
tested the effect of 3-HAA on cell death in control cultures
and found no significant effect on cell death (Figure 3D).
In addition, we see no cytologic evidence of astrocyte
cytotoxicity by 3-HAA (see Figure 3A, for example). The
results together suggest that the role of 3-HAA (and
3-HK) in neurotoxicity is likely dependent on the inflam-
matory environment of the CNS.

Microarray Analysis of Astrocyte Gene
Modulation by 3-HAA

To search for potential genes responsible for the cyto-
protective activities, we next performed microarray anal-
ysis of 3-HAA-treated astrocyte cultures. Two different
astrocyte cases were examined after treatment with
3-HAA (or IL-1/IFN-y for comparison) for 6 hours, as
described in Materials and Methods. Astrocytes treated
with 3-HAA showed few genes that were up- or down-
regulated. The genes that were up- or down-regulated by
at least 50% (3-HAA to control ratio >1.5 or <0.5) at 6
hours in both astrocyte cultures are listed in Table 1.
These included IL-11, a gp130 family neuropoietic cyto-
kine with known neurotrophic activities,*'*? TGF-1, a
pleiotropic immunoregulatory cytokine with neuroprotec-
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Figure 3. Neuroprotective effects of 3-HAA and 3-HK. Primary human
mixed glial and neuronal cultures were stimulated with IL-1 or IL-1/IFN-y
with or without 3-HAA (100 wmol/L) for 72 hours to induce neurotoxicity, as
described in Materials and Methods. Control cultures were not treated with
cytokines. Culture medium was changed to low serum medium (0.5% FCS)
24 hours before cytokine treatment. A: Representative cultures examined
with trypan blue exclusion test show induction of neuronal death with IL-1
or IL-1/IFN-vy (blue nuclei, arrows; cultures derived from two different cases
are shown). The number of dead neurons is lower in 3-HAA-treated cultures.
B: The effect of 3-HAA on cytokine- or PIC-induced neuronal death was
determined in mixed cultures derived from several different brain cases, and
the results show significant neuroprotection by 3-HAA in all three conditions
(single-sample #test). C: The effect of 3-HK on IL-1/IFN-y-induced neuro-
toxicity was also determined. 3-HK dose dependently (100 wmol/L >10
umol/L) inhibited neuronal death. 3-HK at 1 wmol/L had no effect (not
shown). Data are presented as mean = SD from quadruple values, and
statistics were performed by analysis of variance with Bonferroni posttest
(***P < 0.001). Shown is one of three experiments with similar results. D: The
effect of 3-HAA on cell survival or death in control mixed cultures. No
difference was noted by LDH measurements in culture supernatants col-
lected at 72 hours. Data are OD values pooled from three different cases.

tive properties,?® and tissue inhibitor of matrix metallo-
proteinase 3 (TIMP3). Three redox enzymes were found
to be up-regulated by 3-HAA, and these included phase
Il detoxifying antioxidant enzyme hemeoxygenase-1
(HMOX-1, HO-1), thioredoxin reductase 1 (TXNRD-1),
and astrocytic NADPH oxidase 4 (NOX4). Immediate
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early response 3 (I[ER3, IEX-1), a stress-induced gene
with regulatory roles in mitochondrial oxidative phosphor-
ylation and reactive oxygen species release,*> was also
up-regulated. Also up-regulated by 3-HAA were the tran-
scription factor C/EBPB and a potassium channel protein
KCNK12 (THIK-2). The expression of amyloid precursor
protein was reduced by 3-HAA. In addition, IP-10 and
IL-8 were decreased and increased, respectively, by
3-HAA.

3-HAA Induces HO-1

HO-1 is an inducible antioxidant enzyme with known cy-
toprotective effects; we therefore asked whether HO-1
might be responsible for the observed neuroprotective
activity of 3-HAA. We first validated HO-1 expression
further by Western blot, immunostain, and real-time PCR.
Astrocyte or mixed cultures were treated with IL-1, IL-1/
IFN-v, or PIC as described for ELISA and neurotoxicity
assays in the presence or absence of 3-HAA. Initial anal-
ysis showed that astrocytes expressed sustained levels
of HO-1 between 16 and 72 hours after 3-HAA treatment;
therefore, all subsequent experiments were performed at
a 24-hour time point. Figure 4 shows representative West-
ern blots in three different types of cultures. In pure as-
trocyte cultures (Figure 4A), HO-1 was induced only
when 3-HAA was added. Cytokines and PIC synergized
with 3-HAA to induce higher levels of HO-1. We also
probed the Western blots for two inducible enzymes
(iINOS and IDO) that are known to be regulated by im-
mune factors in a redox-sensitive manner. Astrocyte
iNOS was induced by IL-1/IFN-y, and IDO was induced
by PIC and IL-1/IFN-y as reported,?®** but 3-HAA had no
appreciable effects on the expression of either enzyme.
The pattern of induction of HO-1 in mixed neuronal glial
cultures was similar to that in astrocyte cultures, except

Table 1. Effects of 3-HAA on Astrocyte Gene Expression by
Microarray Analysis

3-HAA versus
control (fold

IL-1/IFN~y versus
control (fold

change) change)
Gene symbol Case1 Case?2 Casel1 Case?
IL11 3.2 2.4 14.3 10.5
TGFB1 2.8 2.6 0.9 0.5
TIMP3 2.0 2.1 1.5 0.7
HMOX1(HOT) 19 3.8 1.0 0.8
TXNRD1 2.2 1.5 1.3 0.9
NOX4 19 1.8 0.8 0.7
IER3 (IEX1) 6.3 2.3 34.7 14.0
C/EBPB 2.3 1.8 8.8 6.2
KCNK12 4.4 2.2 0.5 0.2
APP 0.5 0.5 0.7 0.5
CXCL10 (IP10) 0.8 0.3 233.0 61.8
IL8 3.6 1.2 109.0 57.7

Highly enriched human astrocyte cultures were treated with medium
alone (control), 3-HAA (100 umol/L), or cytokines (IL-18 and IFN-y at 10
ng/mL each) for 6 hours. Microarray analysis was performed with lllumina
HumanHT-12 v3 Expression BeadChip as described in Materials and
Methods. Data shown are fold change (ratio) of mRNA expression (test
sample versus control, untreated sample). 1, no change;>1, increase;
<1, decrease. Results from two separate astrocyte cases are shown.
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Figure 4. HO-1 expression in human fetal CNS cell cultures. Cultures of
astrocytes (A), mixed neurons and glia (B), and microglia (C) were prepared
as described in Materials and Methods and treated with 3-HAA (100 umol/L),
recombinant cytokines (all 10 ng/mL), or TLR ligands for 24 hours as de-
scribed in the Figure 2 legend. Hemin (10 wmol/L) was included as a known
inducer of HO-1. Western blotting was performed using a polyclonal rabbit
IgG against HO-1 (from Abcam, originally from Stressgen). The blots were
stripped and reprobed for iNOS, IDO, HO-2, vinculin, or B-actin (controls for
protein loading). The numbers are densitometric ratios of HO-1 to vinculin
(A and B) or B-actin (C). The results together indicate that 3-HAA is a strong
stimulus for HO-1 induction in human astrocytes and that proinflammatory
cytokines and TLR ligands synergize with 3-HAA in the induction of HO-1.
However, microglial HO-1 expression was much lower and was regulated
differentially by IL-10 and TLR ligands (LPS). The results are representative of
five independent experiments for A and B and two for C, with identical
results.

for detectable induction of HO-1 by cytokines or PIC
alone (Figure 4B).

We next examined human fetal microglial cultures with
stimuli that have previously been shown to induce HO-1
in murine and human monocyte-lineage cells.**~46 As
shown in Figure 4C, unlike astrocytes, control microglia
showed high basal levels of HO-1, which were further
increased and decreased by IL-10 and LPS, respec-
tively. Microglial HO-1 was also induced by 3-HAA, al-
though to a smaller degree than in astrocytes. LPS inhib-
ited microglial HO-1 induced by IL-10 or 3-HAA.
Stimulation with hemin was used as a positive control for
microglial HO-1 induction. As previously reported, LPS
induced microglial IDO expression (Figure 4C) and iNOS

was not induced in human microglia by any of the stim-
uli.?82° The expression of HO-2 (the constitutive isoform
of hemeoxygenase) in microglia paralleled that of B-actin.
Figure 5 shows representative quantitative PCR anal-
ysis of HO-1 mRNA expression in mixed neuronal glial
cultures and microglial cultures. Cultures were treated as
described for Western blot analysis and total RNA har-
vested at 6 or 16 hours with similar results (16 hours
shown). Results are expressed as fold induction over
control, and they show that the mRNA induction profile in
each culture resembles that of protein very closely. In
mixed cultures, HO-1 mRNA was induced by 3-HAA, and
3-HAA showed synergism with cytokines and PIC, with
the IL-1/IFN-y combination being the most effective. Cy-
tokines or PIC alone also induced small amounts of HO-1
mRNA. In microglial cultures, both IL-10 and 3-HAA in-
duced HO-1 and the TLR ligands (LPS or PIC) sup-
pressed HO-1. The amount of HO-1 induction was much
higher in mixed cultures compared with microglia.

3-HAA Induces HO-1 in Adult Human
Astrocytes in Culture

In light of the finding that in human fetal cultures HO-1
expression was readily induced in astrocytes, we asked
whether human astrocytes of adult origin can also ex-
press HO-1. Because adult human astrocytes cannot be
obtained in purity, we prepared mixed adult CNS cell
cultures according to the established protocol®2 and then
examined the percentage of GFAP-positive cells that ex-
press HO-1 by double-label immunofluorescence mi-
croscopy. As shown in Figure 6, a high percentage of
adult human astrocytes became HO-1 positive after
3-HAA treatment, whereas in control or cytokine (IL-1/
IFN-vy) treated cultures, HO-1-positive astrocytes were
rare. These results demonstrate that the ability of astro-
cytes to respond to 3-HAA to express HO-1 is common in
both mature and immature human astrocytes. Adult hu-
man microglia had low basal levels of HO-1 expression
with significant induction in response to hemin but not
3-HAA treatment (data not shown).
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Figure 5. Quantitative PCR analysis of HO-1 mRNA expression. Cultures of
mixed neurons and glia (A) or microglia (B) were treated with cytokines or
TLR ligands with or without 3-HAA, as described in the Figure 4 legend, then
HO-1 mRNA expression was determined by quantitative PCR using PBDA as
control. Values are mean = SD from triplicates. The expression of HO-1
mRNA follows closely that of HO-1 protein shown in Figure 4. Data are
representative of two independent experiments with similar results.
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Figure 6. HO-1 expression in adult human astrocytes. Adult human glial cell
cultures were prepared from surgical specimens as described in Materials
and Methods following standard protocols. After 1 week in culture, individ-
ual microwell cultures were either left untreated (A, left) or treated with
3-HAA (A, right) or IL-1/IFN-y and immunostained for GFAP and HO-1
expression, as described in Materials and Methods. Nuclei were stained with
Hoechst (blue). The photographs depict HO-1-positive astrocytes (GFAP+)
in adult glial cultures treated with 3-HAA. Scale bar = 10 umol/L. B: Per-
centage of HO-1-positive astrocytes were quantified by counting double
positive (HO-1+ and GFAP+) or single positive (GFAP+ alone) cells in
culture, and this showed that 3-HAA treatment induced HO-1 in most astro-
cytes, whereas IL-1/IFN-vy had little effect (***P < 0.001). Results are repre-
sentative of two independent experiments using different donor cells.

Role of HO-1 in Protection of Neurons from
Cytokine-Induced Death

To determine whether HO-1 has a role in neuroprotection
in our cytokine-treated mixed neuronal glial cultures, we
next used siRNA-mediated knockdown of HO-1. Mixed
cultures were treated with HO-1 specific siRNA or control
SiRNA, as described in Materials and Methods, and then
stimulated with cytokines (IL-1/IFN-v) in the presence or
absence of 3-HAA. As shown in Figure 7A, the results of
these experiments revealed that the neuroprotective ac-
tivity of 3-HAA was reversed in the presence of HO-1
siRNA. HO-1 immunocytochemistry demonstrated many
HO-1-positive astrocytes in cultures stimulated with I1L-1/
IFN-y plus 3-HAA, but HO-1-positive cells were virtually
absent in HO-1 siRNA-treated cultures (Figure 7B). In
parallel experiments, we also examined the effect of a
well-known HO-1 inducer, CoPP. CoPP (1 to 10 umol/L)
was a potent inducer of HO-1 in astrocytes (not shown)
and when added to cytokine-treated cultures was
strongly neuroprotective (Figure 7C). These results to-
gether demonstrate a direct role for (astrocyte) HO-1 in
protecting neurons from cytokine-induced death.

3-HAA Induction of HO-1 in Vivo

To determine whether 3-HAA can induce HO-1 in vivo, we
injected 3-HAA (or vehicle alone) into the forebrains of
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approximately 8-week-old C57BL6 mice and then ana-
lyzed the brain tissue for HO-1 mRNA and protein ex-
pression. As shown in Figure 8A, HO-1 mRNA was in-
duced in the brains of 3-HAA-injected mice relative to
vehicle-injected mice. By IHC (Figure 8B), HO-1 expres-
sion was noted in both activated microglia and astro-
cytes, as determined by their characteristic cell shape
and their expression of microglial (Iba-1) and astrocyte
(GFAP) markers (not shown). There was no gross tissue
toxicity in the brains of 3-HAA or vehicle-injected mice as
determined by examination of serial interval sections with
H&E stain (see Supplemental Figure S1 at http./ajp.
amijpathol.org). Rare apoptotic cells, inflammatory cells, and
red neurons were detected in both conditions. TUNEL stain
was performed to determine the number of apoptotic cells.
The results showed that TUNEL-positive cells were in-
deed rare and the numbers were lower in 3-HAA-injected
brains compared with controls (Figure 8C).
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Figure 7. Neuroprotective effects of HO-1. A: HO-1 siRNA was used to
knockdown HO-1 expression in mixed neuron and glial cultures. Control
siRNA was used to control for nonspecific effects. Briefly, cultures were
incubated with siRNA for 2 to 5 days before treatment with a cytokine
mixture for an additional 3 days, as described in Materials and Methods. Vital
dye exclusion test was used to determine the number of dead neurons as
described in the Figure 3 legend. The results show that the neuroprotective
effect of 3-HAA is diminished in the presence of HO-1 siRNA. **P < 0.01.
NS = nonsignificant. Results are representative of three experiments using
different donor cells. B: The effect of HO-1 siRNA on HO-1 protein expres-
sion was determined by HO-1 immunocytochemistry. In control siRNA-
treated cultures (upper panel), many astrocytes show strong HO-1 immuno-
reactivity. In HO-1 siRNA-treated cultures, HO-1 immunoreactive cells
virtually disappear (lower panel. C: The effect of CoPP, an inducer of HO-1,
was examined in the neurotoxicity assay, and the results show that CoPP
(1 pmol/L) protected neurons from cytokine-induced death. ***P < 0.001.
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Figure 8. 3-HAA induces HO-1 in vivo. Mice were injected intracerebrally with 3-HAA or vehicle only as described in Materials and Methods. A: Quantitative
PCR analysis shows that HO-1 mRNA is increased in 3-HAA—injected mouse brains compared with control. Data are expressed as fold change in HO-1 mRNA over
control (vehicle injection = 1), using B-actin as the endogenous control gene. ***P < 0.001 ttest. Data are representative of two independent experiments with
similar results. B: THC analyses show that HO-1 was induced in both activated microglia and astrocytes (arrows) in the brains injected with 3-HAA. Scale bar =
40 pm. C: TUNEL stain was performed to detect cells undergoing apoptosis. TUNEL-positive cells were very rare but were noted around the injection sites.
TUNEL-positive cell counts were significantly lower in 3-HAA-injected than in vehicle-injected brains. Mean * SD, *P < 0.05 t-test.

Microglial Expression of KP Enzymes Are
Differentially Regulated by LPS and IFN-vy

Most KP enzymes are known to be expressed in micro-
glia, but other than IDO, the regulation of the KP enzymes
in microglia or macrophages is not well understood. We
examined the KP enzyme expression in human microglia
activated by the TLR ligand (LPS) or IFN-vy by quantitative
PCR (Figure 9). These data show that KP enzymes are
differentially regulated by cell activation. Specifically, the
enzymes upstream of 3-HAA production [IDO, trypto-
phan dioxygenase (TDO), KMO, and kynureninase
(KYNase)] (Figure 1) were up-regulated, whereas KAT-II,
3-hydroxyanthranilic acid dioxygenase (HAAO), and
quinolinic acid phosphoribosy!l transferase (QPRTase)
were down-regulated by LPS. The same results were
obtained by microarray analyses of PIC- or LPS-stimu-
lated microglia (6 and 16 hours) (see supplemental data
of Ref. 39). The effect of IFN-y was different from that of
LPS, up-regulating IDO and TDO, down-regulating KAT-II
and QPRTase, but having no effect on KMO, KYNase,
and HAAO. These results suggest that inflammatory activa-

tion of microglia could lead to increased production of KP
metabolites but that TLR3/4 activation could preferentially
promote production of 3-HAA.

Summary of the Findings

The results of our study and our hypotheses are summa-
rized in Figure 10. We have shown, in primary human
brain cell cultures and in the intact mouse brain in vivo, a
unique role of 3-HAA in the induction of the cytoprotective
enzyme HO-1 in astrocytes and microglia. 3-HAA can be
synthesized in microglia or macrophages downstream of
L-kynurenine (Figure 1). L-kynurenine can be generated
from L-tryptophan by IDO (or the constitutive enzyme
TDO) or can be taken up from the systemic circulation
across the intact blood-brain barrier.*” 3-HAA uniquely
up-regulates human astrocyte expression of HO-1, which
is further enhanced in the presence of inflammatory cy-
tokines that are found in many CNS conditions as part of
innate and adaptive immune responses. Microglial HO-1
expression appears to be under different regulatory
mechanisms because its response to 3-HAA is meager
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Figure 10. Summary and hypothesis. On the basis of the findings in this
study, we hypothesize that KP metabolites such as 3-HAA may have thera-
peutic value for human CNS diseases through antioxidant, anti-inflammatory,
and neuroprotective effects. See text for details.

and proinflammatory stimuli down-regulate microglial
HO-1 expression. 3-HAA administered to cultures sup-
presses cytokine production (TNF-a and IP-10, for exam-
ple) and, furthermore, protects neurons from cytokine-
induced death in mixed cultures. The latter appears to be
in part mediated by HO-1, as shown by HO siRNA knock-
down experiments. Because HO-1 in our cultures is pri-
marily expressed by astrocytes (not neurons), the neuro-
protective activity of 3-HAA/HO-1 is most probably
mediated by soluble factors downstream of HO-1, such
as CO.

Discussion

In the current study, we report novel anti-inflammatory,
antioxidant, and neuroprotective activities of the trypto-
phan metabolite 3-HAA. Specifically, in both microglial
and astrocyte cultures, 3-HAA inhibited the expression of
TNF-a (a proinflammatory cytokine) and IP-10 (a T,1
a-chemokine) induced by various immune stimuli. The
lack of effect on IL-8 production in the same culture
demonstrated that 3-HAA was not simply inducing cell
toxicity and apoptosis, as some studies have sug-
gested.”® The two a-chemokines (IP-10 and IL-8) are
often differentially regulated, for example, by extracellular
ATP or PISK/AKT inhibitor,“®° in addition to 3-HAA as
shown in this study. At present, the basis for the differ-
ential regulation is not clear. Regardless, suppression by
3-HAA of proinflammatory molecules induced by diverse
immunologic stimuli suggests that 3-HAA endogenously
produced or administered therapeutically can change
the CNS innate immune environment to favor down-mod-
ulation of inflammation (Figure 10). Because neuroinflam-
mation is thought to contribute to neurodegeneration in
several different types of human CNS diseases, our re-
sults have implications for the therapeutic use of 3-HAA
or related compounds. Conversely, they also suggest
that therapies aimed at blockade of microglial kynurenine
production” could have unintended consequences on
inflammation and neuronal survival.
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Perhaps the most surprising aspect of our study was
that 3-HAA and 3-HK were found to be neuroprotective
under the conditions of cytokine-mediated (also glia-me-
diated) death. In the current study, we show that 3-HAA
or 3-HK alleviates neuronal death induced by cytokines in
mixed human fetal CNS cultures. Our results contrast with
those previously reported in rodent neuronal cultures,
many of which reported 3-HK and 3-HAA to be neurotox-
ins.51756 However, none of the previous studies examined
the effect of these kynurenines in the context of cytokine-
induced neurotoxicity. We suspect that several factors,
such as species (rodent versus human) and the type of
culture (pure versus mixed neuronal glial), in addition to
the presence of cytokines, account for these disparate
results. For example, in our study, 3-HAA induced the
cytoprotectant HO-1 in astrocytes, and cytokines (IL-1/
IFN-y) had a synergistic effect with 3-HAA in inducing
HO-1 especially in mixed cultures (Figures 4 and 5).
Furthermore, astrocyte HO-1 appears to the readily in-
ducible in human CNS cultures of both fetal and adult
origin (Figure 6). In contrast, in murine cultures, microglia
rather than astrocytes appear to be the main expressor of
HO-1 (see, for example, Ref. 57). These results together
suggest that the role of 3-HAA in neurotoxicity is highly
context dependent.

It is also interesting to note that recent clinical studies
of two unrelated diseases (stroke and osteoporosis) re-
ported that the plasma levels of 3-HAA positively corre-
lated (and those of anthranilic acid negatively correlated)
with beneficial clinical outcomes (ie, smaller lesion sizes
and positive treatment responses).5®°° These results
might be pointing to a possible beneficial role of 3-HAA in
humans and the presence of a clinically important alter-
native KP pathway for 3-HAA generation (Figure 1). The
notion that 3-HAA per se is not necessarily toxic is sup-
ported by our mouse injection studies, which showed no
evidence of cell death beyond what was evident in vehi-
cle-injected brains (Figure 8C; see also Supplemental
Figure S1 at http://ajp.amjpathol.org).

Our data show that 3-HAA was a unique inducer of
HO-1 because other stimuli (TLR ligands, proinflamma-
tory and anti-inflammatory cytokines) had little or no ef-
fect without 3-HAA in inducing astrocyte HO-1. Indeed,
the ability of 3-HAA to induce HO-1 has been previously
shown in mouse macrophage cell lines.®® In our study,
microglia showed significant differences from astrocytes
in the expression of HO-1 because microglial HO-1 was
suppressed by TLR ligands but enhanced by the anti-
inflammatory cytokine IL-10. The findings in microglia are
similar to those reported in macrophages**~“° and sup-
port the notion that HO-1 may be a marker of “alterna-
tively activated” (M2) macrophage phenotype.®’

HO-1 is an inducible enzyme with proven anti-inflam-
matory and cytoprotective activities.®30:2-64 HO-1 cata-
lyzes degradation of heme to three main products, CO,
biliverdin, and iron, and most studies have found CO to
mediate the beneficial biological effects of HO-1.5%¢ |t is
probable that neuroprotection conferred by 3-HAA in our
culture is mediated by astrocyte HO-1 through a diffus-
ible metabolite such as CO (Figure 10) because we see
HO-1 expression in astrocytes and not in neurons. Most
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likely HO-1 does not account for all of the anti-inflamma-
tory and neuroprotective activity in our culture because
there are a number of additional candidate molecules
generated by 3-HAA, each of them deserving further
investigation. For example, the immunoregulatory cyto-
kine transforming growth factor-B has been shown to
down-modulate inflammatory responses in many sys-
tems, and IL-11 has been shown to be a neurotrophic
cytokine.*?%” The mechanisms by which 3-HAA inhibited
cytokine production are also likely multifactorial because
our microglial culture expressed relatively little HO-1 in
response to 3-HAA in comparison to astrocytes, yet
3-HAA inhibited TNF-a and IP-10 production more con-
sistently in microglia than in astrocyte cultures. We spec-
ulate that 3-HAA is taken up by microglia and degraded
further by downstream KP enzymes to quinolinic acid,
picolinic acid, and nicotinamide (Figure 1), all of which
have proven immunomodulatory activities,'©:68:69

Transcription of the HO-7 gene is under the control of
antioxidant response element, which is activated by the
transcription factor, nuclear factor erythroid-2-related
factor 2 (Nrf2). Activation of Nrf2 is typically induced by
oxidative stress’®”" and nitrosative stress (nitric oxide).”?
In this regard, the low expression of HO-1 in human
microglia may in part be due to their inability to express
iINOS.2® On the other hand, the unique ability of 3-HAA to
induce HO-1 is most certainly related to its free radical-
generating ability because free radicals (reactive oxygen
species) provide necessary signals for Nrf2 activa-
tion.”>7* These results then reveal the two-faced nature
of 3-HAA in redox regulation. Indeed, Christen et al”®
have previously shown potent antioxidant activities of
3-HAA and 3-HK that were more effective than either
ascorbate or vitamin E. They further suggested that the
induction of IDO may represent a local antioxidant de-
fense mechanism. It is curious then that the pattern of
microglial KP enzyme regulation by LPS (Figure 9) is also
suggestive of such a role for IDO/KP metabolites and
suggests that enhanced production of 3-HAA might rep-
resent an innate immune response to restore the normal
homeostatic environment.

Our study was designed to address the role of the KP
metabolite 3-HAA in human brain cells under inflamma-
tory conditions. We believe that these findings may be
relevant to human neuroinflammatory and neurodegen-
erative conditions, in which microglial expression of pro-
inflammatory cytokines is associated with pathology.”®””
We envision that endogenous 3-HAA generated by mac-
rophages and microglia (in concert with proinflasmmatory
cytokines) could induce HO-1 and other cytoprotective
molecules in nearby glia. Our animal injection experi-
ments further demonstrated that microglia and astrocytes
are capable of expressing HO-1 in vivo in response to
3-HAA. One of the important implications of our study is
that macrophage kynurenines do not have uniformly toxic
effects and that blockade of upstream enzymes, such as
KMO (as is being explored for Huntington's disease),
might have unintended deleterious consequences under
certain circumstances. Alternatively, our observation that
3-HAA has antioxidant and neuroprotective activity can

be exploited therapeutically for relevant human neuroin-
flammatory and neurodegenerative conditions.
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