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Susceptibility to infection with Cryptococcus neofor-
mans is tightly determined by production of IL-4. In this
study, we investigated the time course of IL-4 produc-
tion and its innate cellular source in mice infected in-
tranasally with C. neoformans. We show that pulmo-
nary IL-4 production starts surprisingly late after 6
weeks of infection. Interestingly, in the lungs of infected
mice, pulmonary T helper (Th) cells and eosinophils
produce significant amounts of IL-4. In eosinophil-defi-
cient �dblGATA mice, IL-33 receptor–expressing Th2s
are significantly reduced, albeit not absent, whereas
protective Th1 and Th17 responses are enhanced. In
addition, recruitment of pulmonary inflammatory cells
during infection with C. neoformans is reduced in the
absence of eosinophils. These data expand previous
findings emphasizing an exclusively destructive effec-
tor function by eosinophilic granulocytes. Moreover, in
�dblGATA mice, fungal control is slightly enhanced in
the lung; however, dissemination of Cryptococcus is
not prevented. Therefore, eosinophils play an immuno-
regulatory role that contributes to Th2-dependent sus-
ceptibility in allergic inflammation during bronchopul-
monary mycosis. (Am J Pathol 2011, 179:733–744; DOI:

10.1016/j.ajpath.2011.04.025)

Cryptococcus neoformans is a facultative intracellular
pathogen that is acquired by inhalation of spores and/or
desiccated yeasts and leads to latent pulmonary infec-

tion in immunocompetent humans.1 The development of
cryptococcal meningitis occurs mainly in immunocom-
promised HIV-1–infected patients, most likely by reacti-
vation of latent pulmonary C. neoformans infection.2 It is
estimated that 504,000 HIV-1–infected patients die every
year from cryptococcal meningitis in sub-Saharan Af-
rica,3 which surprisingly exceeds the annual death rate of
tuberculosis-associated HIV cases. Resistance against
C. neoformans primarily involves monocytic effector
mechanisms.4–6 In this context, T helper (Th) cells are
central regulatory players with profound effects. Whereas
IL-12–dependent Th1 responses are protective, with an
additional contribution by IL-23–dependent Th17 re-
sponses,7–9 Th2 cells producing IL-4, IL-13, and IL-5 are
detrimental.10,11 Studies12–14 that used i.v. inoculation
examined the traversal of the blood-brain barrier by C.
neoformans and led to the conclusion that transmigration
can occur with intracellular and extracellular fungi. In
case of bronchopulmonary infection, dissemination
seems to rely more on Th2 cytokines. This allergic Th2-
driven inflammation represents the immunopathological
pathway promoting disease by allowing cryptococci to
grow inside the lung and finally enabling dissemination to
the brain, ultimately causing fatal meningoencephalitis.15

This sequela is accompanied by development of IL-4/IL-
13–dependent alternatively activated macrophages,
suggesting that those cells may be involved in dissemi-
nation. Alternatively activated macrophages are found
only in susceptible mice15 and show significantly reduced
control of intracellular growth.5 In addition, IL-13–depen-
dent mucus production by goblet cells, IL-4–dependent
IgE production, IL-5–dependent eosinophilia, and func-
tional pulmonary impairment can be found; these features
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are also typically described in asthma.16–18 Studies10,11,19

of pulmonary and cerebral cryptococcosis in IL-4–, IL-13–,
IL-4 receptor �–, and IL-4/IL-13–deficient mice or mice
treated with anti-IL-5 convincingly provide a basis for future
immunotherapies by targeting one or several of these Th2-
associated molecules. However, it is unclear when IL-4
production starts after pulmonary infection. In addition, po-
tential innate immune cell(s) producing IL-4 and thereby
promoting Th2 initiation and/or Th2 maintenance remain to
be identified. Therefore, in this study, we aimed to de-
fine the following: i) the onset and time course of IL-4
production, ii) the IL-4–producing innate cell type(s) sup-
porting Th2 development, and iii) the immunological and
phenotypic consequences of innate IL-4 production in pul-
monary cryptococcosis. Our results indicate that eosino-
philic granulocytes are a significant source of IL-4, with
distinct regulatory consequences in murine cryptococcosis.

Materials and Methods

Mice

Female wild-type (WT) mice (Janvier, Le Genest Saint
Isle, France), 4get mice20 (provided by André Gess-
ner, Clinical Microbiology and Immunology, Erlangen,
Germany), and �dblGATA mice21 (provided by Achim
Hoerauf, Institute of Medical Microbiology, Immunol-
ogy und Parasitology, Bonn, Germany), aged 6 to 10
weeks, on a BALB/c background were maintained in an
individually ventilated caging system under specific
pathogen-free conditions and in accordance with the
guidelines approved by the Animal Care and Usage
Committee of the Landesdirektion Leipzig. Sterile food
and water were given ad libitum. The mice were tested
periodically for pathogens, in accordance with the rec-
ommendations for health monitoring of mice provided
by the Federation of European Laboratory Animal Sci-
ence Associations accreditation board. All mice had
negative test results for pinworms and other endopara-
sites and ectoparasites.

C. neoformans and Infection

Encapsulated C. neoformans, strain 1841, serotype D,
was kept as a frozen stock in skim milk and was grown in
Sabouraud dextrose medium (2% glucose and 1% pep-
tone; Sigma, Deisenhofen, Germany) overnight on a
shaker at 30°C. Cells were washed twice in sterile PBS,
resuspended in PBS, and counted in a hematocytometer.
Inocula were diluted in PBS to a concentration of 2.5 �
104/mL for intranasal (i.n.) infection. Mice were infected
by i.n. application of 20-�L volumes containing 500 col-
ony-forming units (CFUs). Before infection, mice were
anesthetized i.p. with a 1:1 mixture of 10% ketamine (100
mg/mL; Ceva Tiergesundheit, Düsseldorf, Germany) and

2% xylazine (20 mg/mL; Ceva Tiergesundheit).
Leukocyte Preparation for Flow Cytometry and
CFU Enumeration

Infected mice were monitored daily for survival and mor-
bidity. After sterile removal of the brain from sacrificed
mice, half was processed for histological examination
and the remaining half was processed for determination
of organ burden (CFU). After homogenization in 1-mL
PBS with an Ultra-Turrax (T8; IKA-Werke, Staufen, Ger-
many), serial dilutions of the homogenates were plated
on Sabouraud dextrose agar plates and colonies were
counted after an incubation period of 48 hours at 30°C.
After sterile removal, lungs from sacrificed mice were
minced and digested for 30 minutes at 37°C in RPMI 1640
medium supplemented with collagenase (Roche Diagnos-
tics Deutschland GmbH, Mannheim, Germany), 100
�mol/L sodium pyruvate, and DNase IV (Sigma-Aldrich,
Steinheim, Germany). After passage through a 100-�m
nylon mesh (BD Biosciences, Heidelberg, Germany), fil-
trate was resuspended in 1-mL RPMI 1640 medium (PAA
Laboratories, Pasching, Austria); and 50 �L was taken for
CFU enumeration. Serial dilutions were plated on Sab-
ouraud dextrose agar plates, and colonies were counted
after an incubation period of 48 hours at 30°C. Remaining
filtrate was resuspended in 70% Percoll (GH Healthcare
Biosciences AB, Uppsala, Sweden) and layered under 26%
Percoll. Leukocytes were recovered from interphase,
washed with Iscove’s modified Dulbecco’s medium (PAA
Laboratories), and counted in trypan blue (Fluka Chemie
AG, Buchs, Switzerland). For surface staining, 1 � 105 to
2 � 105 cells were used; and for intracellular cytokine stain-
ing, 1 � 106 cells were acquired.

Flow Cytometry

Purified cells were adjusted to 5 � 106/mL in Iscove’s
modified Dulbecco’s medium and stimulated either 6
hours with ionomycin (1 �g/mL; Sigma-Aldrich) and phor-
bol 12-myristate 13-acetate (PMA) (40 ng/mL; Alexis Cor-
poration, Lausen, Switzerland) or 22 hours with specific
antigen. For the accumulation of cytokines, brefeldin A (5
�g/mL; Sigma-Aldrich), was added for the last 4 hours. The
acapsular C. neoformans serotype D strain CAP67 (pro-
vided by Dr. Bettina Fries, Albert Einstein College of Medi-
cine, Bronx, NY) was used as a specific stimulus (1 � 107

cryptococci/mL, termed C.n. antigen) for restimulation of
pulmonary leukocytes from C. neoformans–infected mice.
The CAP67 strain has better restimulatory capacities than
the highly virulent strain 1841. It was cultured and main-
tained in the same manner as strain 1841; before use, it was
heat inactivated at 60°C for 1 hour.22

First, Near-IR Dead Cell Stain (Invitrogen, Darmstadt,
Germany) was used to ensure discrimination and exclu-
sion of dead cells during analysis. Second, cells were
fixed with 2% paraformaldehyde (Serva, Heidelberg,
Germany) for 20 minutes on ice. When intracellular stain-
ing was performed, permeabilization was included by
using fluorescence-activated cell sorting buffer (ie, PBS
containing 3% heat-inactivated fetal calf serum and 0.1%

sodium azide) containing 0.5% saponin (w/v; Serva).
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Cells were incubated for 15 minutes on ice with FcR block
(2 � 106 �g cells/L; purified from 2.4G2 hybridoma su-
pernatant) and rat serum (Sigma-Aldrich) to avoid unspe-
cific staining. Antibodies (Abs) and FcR block for intra-
cellular staining were diluted in fluorescence-activated
cell sorting buffer containing 0.5% saponin (w/v;
Serva). For specific stainings, the following Abs were
used: anti-CD4-PerCP-Cy5.5 (RM4-5; eBioscience,
Frankfurt, Germany); anti-interferon (IFN)-�–fluorescein
isothiocyanate (XMG1.2; eBioscience); anti-IL-4–allophy-
cocyanine (APC) (11B11; Biolegend, Fell, Germany);
anti-IL-17-PE-Cy7 (eBio17B7; eBioscience); anti-Siglec-F
(E50-2440; BD Biosciences) biotinylated, following stan-
dard procedures; anti-Siglec-F-PE (E50-2440; BD Biosci-
ences); anti-F4/80-PE-Cy7 (BM8; eBioscience); anti-
CD11c–APC (N418; eBioscience); anti-CD154-PE (MR1;
Miltenyi Biotec, Bergisch Gladbach, Germany); and anti-
T1/ST2–fluorescein isothiocyanate (MD Biosciences,
Zürich, Switzerland). Appropriate isotype Abs were all
from eBioscience, except for anti-IL-4 from Biolegend.
Cells labeled with biotinylated Abs were further stained
with streptavidin-PerCp (eBioscience). Cells were ac-
quired on a BD FACS Calibur using CellQuest software
version 3.0.1 and BD FACS CANTO II using DIVA version
6.1.1 and FlowJo version 7.6.1 (Treestar Inc., Ashland,
OR) software for analysis.

IL-4 Secretion Assay

An IL-4 secretion assay (Miltenyi Biotec) was per-
formed according to manufacturer’s instructions. Per-
coll (GH Healthcare) purified pulmonary leukocytes
were stained with anti-CD4 –fluorescein isothiocyanate
(RM4-5; eBioscience) and, afterward, with anti-fluores-
cein isothiocyanate MicroBeads (Miltenyi Biotec). Cells
were then applied to an MS column (Miltenyi Biotec) to
separate CD4� and CD4� cells. Both fractions were stim-
ulated for 2 hours with ionomycin (1 �g/mL; Sigma-Al-
drich) and PMA (40 ng/mL; Alexis Corporation). After
stimulation, cells were applied to an IL-4 secretion assay
(Miltenyi Biotec) and were additionally stained with anti-
CD11c–APC (N418; eBioscience), anti-CD3-biotin (145-
2C11; eBioscience), and biotinylated anti-Siglec-F (E50-
2440; BD Biosciences). Cells labeled with biotinylated
Abs were further stained with streptavidin-PerCp (eBio-
science).

Cytokine ELISA

Cytokine concentrations were determined by sandwich
enzyme-linked immunosorbent assay (ELISA) systems
with unlabeled capture Abs and labeled detection Abs.
To determine the concentration of IL-4, monoclonal Ab
(mAb) 11B11 was used as the capture Ab and biotin-
labeled BVD6-24G2 (BD Biosciences) was used as the
detection Ab, followed by incubation with peroxidase-
labeled streptavidin (Southern Biotechnology Associates,
Birmingham, AL). IFN-� was captured by mAb AN-18 and
detected by peroxidase-labeled mAb XMG1.2. The con-
centration of IL-17 was detected with the R&D Systems

Duoset kit (R&D Systems GmbH, Wiesbaden, Germany).
Histopathological Analysis

Lung samples were processed for histological analysis,
as previously described.11

IHC

Lung samples were processed for histological analysis,
as previously described.15 In brief, the accessory lobe of
the lung was sterilely removed, mounted on thick filter
paper with Tissue Tek optimal cutting temperature com-
pound (Miles Scientific, Naperville, IL), snap frozen in
isopentane (Fluka, Neu-Ulm, Germany) precooled on dry
ice, and stored at -80°C. For immunohistochemistry
(IHC), 10-�m frozen sections were prepared in a serial
fashion (30 transversal sections on six consecutive levels
per lung). Glucuronoxylomannan immunostaining was
performed using mAb 18B7 (provided by Dr. Arturo
Casadevall, Albert Einstein College of Medicine, New
York, NY). The mAb 18B7 was biotinylated (Sigma-Al-
drich) before use, and lung slides were incubated in a
secondary step with ExtrAvidin peroxidase (Sigma-Al-
drich). The peroxidase reaction product was visualized
using 3,3=-diaminobenzidine (Sigma-Aldrich) as the chro-
mogene and H2O2 as the cosubstrate.

Serum Immunoglobin Measurement

Total serum IgG1, IgG2a, and IgE levels were analyzed,
as described earlier.11 For determination of C. neofor-
mans–specific serum IgE, the following capture ELISA
was developed. ELISA plates (Nunc GmbH & Co KG,
Langenselbold, Germany) were coated with 5 �g/mL rat–
anti-mouse IgE mAb (R35-72; BD Biosciences) in car-
bonate buffer (pH 9.5) overnight at 4°C. To prevent un-
specific binding, plates were washed and blocked with
5% (w/v) skim milk (Sigma-Aldrich) in PBS for 3 hours at
room temperature. After washing, serum samples were
diluted 1:10 in blocking buffer containing 0.1% (v/v)
Tween 20 (Karl Roth AG, Karlsruhe, Germany) and
added in duplicate for 2 hours at room temperature.
Plates were washed again and biotinylated (Sigma-Al-
drich). C. neoformans 1841D homogenate (5 �g/mL) was
incubated for 2 hours at room temperature. This step was
followed by incubation with peroxidase-labeled strepta-
vidin (Southern Biotechnology Associates), diluted
1:4000 in Tween 20 containing blocking buffer, for 45
minutes at room temperature for detection. Plates were
washed, and the TMB Microwell peroxidase system (KPL,
Gaithersburg, MD) was used as a substrate for the final
colorimetric reaction. The reaction was discontinued after
2 hours by adding 1 mol/L H3PO4, and ODs were read
using a Spectra-max 340 ELISA reader (Molecular De-
vices GmbH, Ismaning, Germany) at 450 nm, with back-
ground subtraction at 630 nm. Wells incubated without se-
rum samples but with all other reagents were used as plate
blank. To control the specificity of this ELISA, we added a
monoclonal IgE isotype control (C38-2; BD Biosciences)
specific for the hapten trinitrophenyl that we also used as a
standard for the total IgE quantification after coating with

IgE mAb (R35-72; BD Biosciences) and blocking. After an-



736 Piehler et al
AJP August 2011, Vol. 179, No. 2
other incubation with blocking buffer, plates were either
incubated with anti-mouse IgE–horseradish peroxidase
(23G3; Southern Biotechnology Associates) or biotinyl-
ated C. neoformans homogenate. Plates incubated with
biotinylated homogenate were additionally incubated
with peroxidase-labeled streptavidin (Southern Biotech-
nology Associates). Development was performed with
the TMB Microwell peroxidase system (KPL). This con-
firmed that even high concentrations of anti-trinitrophenyl
IgE (eg, 20 �g/mL) do not bind to biotinylated C. neofor-
mans homogenate nonspecifically. Specificity was further
confirmed by using serum samples from naïve BALB/c
WT instead of anti-trinitrophenyl IgE. The median OD450

was 0.015.

Statistical Analysis

The one-tailed Mann-Whitney U-test was performed to
determine the significance of differences in kinetic anal-
yses of 4get mice and between WT and �dblGATA mice.
Data are presented as the mean � SEM. The level of
confidence for significance was P � 0.05.

Results

Pulmonary Th2 Development Occurs after
6 Weeks of Infection and Coincides with
IL-4–Producing Eosinophils

Susceptibility in cryptococcosis is tightly linked with IL-4
production.7,11 BALB/c WT mice infected i.n. with only
500 CFUs of C. neoformans strain 1841 show dissemina-
tion from lung to brain beginning at approximately 6
weeks after infection (data not shown), leading to death
10 weeks after infection.7,11 This pulmonary cryptococ-
cosis model is a long-term model compared with other
published murine models.8,23–27
To monitor IL-4 production over time in this long-term
model, IL-4 reporter mice, termed 4get mice, were in-
fected, and enhanced green fluorescent protein (eGFP)
expression, which is known to correlate with IL-4 tran-
scription, was assessed.20 There were constitutively
eGFP� pulmonary leukocytes in naïve mice (Figures 1A
and 2, A and B), as published by others.28,29 On infection
of 4get mice, the frequency of eGFP� leukocytes in-
creased almost 10-fold, at 42 days postinfection (dpi),
and stayed on this elevated level up to 70 dpi (Figure 1A).
Because eGFP expression may indicate only IL-4 tran-
scription,20 we wanted to assess IL-4 protein production.
Indeed, we found that IL-4 production in response to
antigen-specific stimulation of pulmonary leukocytes with
cryptococcal antigen starts to become detectable at a
similarly late time point as found for eGFP expression.
IL-4 was not detectable at 35 dpi (data not shown) or
earlier; instead, it started to become detectable 6 weeks
after infection and increased up to 70 dpi (Figure 1B).
Late IL-4 expression, monitored by eGFP expression or
restimulation of pulmonary leukocytes, was further con-
firmed by intracellular staining of IL-4 in Th cells and
revealed similar results (data not shown). Consistent with
the time course of IL-4 production, total and specific IgE
started to increase after 42 days of infection (Figure 1, C
and D). Although the sandwich ELISA for total IgE de-
tected a median concentration of approximately 13.65
�g/mL, starting after 42 days of infection, the ELISA for
specific IgE resulted in minor signals of only up to 0.099
OD450, with a substrate development time of 2 hours.
Thus, similar to parasite models,30 only a minor portion of
the total IgE appears to be specific for cryptococcal
antigens (Figure 1D).

CD4� Th cells, and innate immune cells, have been
described as cellular sources of IL-4.29 To define the cell
types producing IL-4 in pulmonary cryptococcosis, we
characterized eGFP� cells in the lungs of infected 4get
mice. At 70 dpi, we found elevated numbers of eGFP�

Figure 1. Coincidental accumulation of pulmo-
nary leukocytes competent for IL-4 expression
(indicated by eGFP), onset of IL-4 secretion, and
increase of total and specific IgE. 4get mice were
infected i.n. with C. neoformans 1841D. A: On
the indicated dpi, leukocytes were isolated from
lungs (n � 3 to 5 per time point), counted, and
analyzed for eGFP-expression by flow cytom-
etry. B: Pulmonary leukocytes were restimulated
for 22 hours with C.n. antigen. IL-4 was mea-
sured by ELISA in culture supernatant. C and D:
Serum samples from the same mice were exam-
ined for total IgE and Cryptococcus-specific IgE
according to the Materials and Methods section.
Data from two independent experiments were
pooled and are expressed as the mean � SEM.
Statistical analysis was performed using the
Mann-Whitney U-test. *P � 0.05 and **P � 0.01
comparison with naive 4get mice.
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pulmonary leukocytes in both CD4� and CD4� populations
(Figure 2, A and B). Interestingly, the CD4�eGFP� popula-
tion was identified to be Siglec-F�, pointing to eosinophils
(Figure 2A).31 This prompted us to characterize the time
course of recruitment of Th cells and eosinophilic granulo-
cytes. The data shown in Figure 2, C and D, demonstrate
that there is a similarly late time course of recruitment to the
lung for both Th cells and eosinophils.

To directly define the cellular source(s) of pulmonary
IL-4 production in cryptococcosis, we applied IL-4 secre-
tion assays on magnetic cell sorting (MACS)-separated
(Miltenyi) lung CD4� and CD4� cells to avoid cross feed-
ing between different cells (Figure 3). Th2s represent a
cell type already known to be responsible for efficient IL-4
production in cryptococcosis.7,11 In addition to the Th
cells as IL-4 sources (Figure 3C), we show that eosino-
philic granulocytes (Figure 3A; further gated on Siglec-
F�/CD11cdim) produce significant amounts of IL-4 on
Cryptococcus infection (Figure 3B). Interestingly, a major
portion of these eosinophils (ie, 17.49%) produced IL-4
constitutively after pulmonary infection with C. neoformans
(Figure 3B, top; mean fluorescence intensity of isotype con-
trol (not shown) versus medium, 133.59 versus 330.43).
This could be further enhanced (41.63% of all eosinophils)
by ex vivo stimulation with a combination of PMA and iono-
mycin (mean fluorescence intensity, 784.66; Figure 3B, bot-
tom). Together, these data demonstrate that, during pulmo-
nary cryptococcosis, Th2 cells and eosinophils contribute to
late IL-4 production at a point when IgE production is sig-
nificantly increased and C. neoformans disseminates from
the lung to the brain.

In the Absence of Eosinophils, Th2 Responses
Are Reduced and Th1/Th17 Responses Are
Enhanced

IL-4 is not essential for Th2 differentiation but plays a
nonredundant role in the maintenance of Th2 re-
sponses.32 We were interested in whether eosinophils

Figure 2. Th cells and eosinophils exclusively
constitute eGFP� cells during pulmonary crypto-
coccosis. Flow cytometry was performed on pul-
monary leukocytes from i.n. infected 4get mice on
the indicated dpi (n � 3 to 5 per time point). A:
CD4�eGFP� cells identified by Siglec-F expres-
sion as eosinophils in representative 4get mice are
shown. B: eGFP expression in Th cells in the
same 4get mice shown in A. C: Kinetic analysis
of enumerated eosinophils. D: Th cells at the
indicated dpi are shown. Kinetic data were
pooled from two independent experiments. The
mean � SEM is shown for kinetic analyses. Sta-
tistics were performed with the Mann-Whitney
U-test. *P � 0.05, **P � 0.01, and ***P � 0.001
compared with naive 4get mice.

Figure 3. Both Th cells and eosinophils are
the main producers of IL-4 in the lungs of
infected mice. Isolated pulmonary leukocytes
from i.n. infected BALB/c WT mice were pos-
itively enriched for CD4� Th cells by MACS. A:
The remaining CD4� cells include eosinophils
[gated on a side scatter (SSC)high/forward scat-
ter (FSC)low plot]. Both CD4� cells (B) and
CD4� Th cells (C) were either stimulated with
ionomycin and PMA (bottom) or left un-
treated (top) before performing an IL-4 secre-
tion assay. One of two independent experi-
ments is shown.
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can contribute to Th2 responses in cryptococcosis. Thus,
we infected WT and eosinophil-deficient �dblGATA
mice21 i.n. with C. neoformans. The i.n. infection of WT
mice led to accumulation of Siglec-F�/CD11cdim eosino-
phils in the lung, which was not the case for �dblGATA
mice, as expected (Figure 4A). We then assessed the
frequency of pulmonary Th2 cells in infected WT versus
�dblGATA mice. In the absence of eosinophils, pulmonary
Th2 cells, characterized by the expression of IL-33 receptor
(IL-33R), are greatly reduced, but not completely lacking, in
�dblGATA mice (Figure 4B). Earlier data demonstrated that
the IL-33R, also termed T1/ST2, is specifically expressed on
differentiated but not on naïve Th cells.33

Th cells are central regulators of anticryptococcal
immune responses.25,34,35 Although Th2 responses are
detrimental,11,15 Th1 and Th17 responses are protec-
tive.7,9,25,35,36 To gain a deeper insight into the Th cyto-
kine profile in the absence of eosinophils, we analyzed
IL-4, IFN-�, and IL-17A production by pulmonary Th cells
on infection of WT and eosinophil-deficient �dblGATA mice.
Analysis of IL-4, IFN-�, and IL-17A in the supernatants of
pulmonary leukocytes stimulated with cryptococcal antigen
revealed reduced IL-4 and enhanced IFN-� and IL-17
production by restimulated pulmonary leukocytes of
�dblGATA versus WT mice (Figure 5, A–C). IL-4 production

Figure 4. Mice devoid of eosinophils harbor fewer Th cells, indicated by
IL-33R expression. Flow cytometry was performed on pulmonary leukocytes
from i.n. infected BALB/c WT and �dblGATA mice at 60 dpi. A: The absence
of eosinophils is confirmed by plots because no CD11cdim/Siglec-Fhigh can be
detected in the �dblGATA mice (right). A representative WT mouse is
shown (left). B: Enumeration of total IL-33R� CD4� Th cells is shown,
together with eosinophils. One of three independent experiments is shown
(n � 6 to 7 per genotype). Values are given as the mean � SEM. Statistical
analysis was performed by using the Mann-Whitney U-test. ***P � 0.001.
is substantially reduced, but not completely lacking, in pul-
monary CD4� T cells from �dblGATA mice. This indicates a
shift from Th2 to Th1/Th17 responses in the absence of
eosinophils.

By direct intracellular staining of IL-4 in CD4� T cells
(Figure 6), we corroborate the data shown in Figure 5,
A–C, clearly demonstrating a pronounced Th2 response
in Cryptococcus-infected WT mice. We were also able to
demonstrate that only CD154� Th cells (ie, antigen-spe-
cific Th cells37,38) from infected mice responded with IL-4
production on stimulation with cryptococcal antigen (data
not shown). Pulmonary Th cells from �dblGATA mice
have similar proportions of Th1 cells, while they generate
higher proportions of Th17 cells (Figure 6, antigen panel).
A similar relative frequency of IFN-�� Th1 cells (Figure 6)
but elevated IFN-� levels in supernatants of antigen spe-
cifically restimulated pulmonary leukocytes (Figure 5C),
suggests higher IFN-� production on a per-cell basis in
Th1 cells from �dblGATA mice (Figure 6, C.n. antigen;
IFN-� mean fluorescence intensity, 529.30 for WT and
713.26 for �dblGATA). The hypothesis of a greater IFN-�
potency of �dblGATA Th cells on a single-cell basis is
further supported by the results shown in Figure 5D
(CD4� ionomycin/PMA; mean concentration of WT ver-
sus �dblGATA, 0.078 versus 0.835 pg/mL) because pu-
rified pulmonary Th cells were restimulated at an equal
cell concentration when using this approach. Analysis of
IL-4 from the same Th cells revealed comparable po-
tency in IL-4 secretion (Figure 5E; CD4� ionomycin/
PMA). Therefore, the reduced amounts of IL-4 shown in
Figure 5A may result from fewer Th cells in the lungs of
eosinophil-deficient mice (Figure 7B). More important, we
detected a substantial amount of IL-4 in the Th-depleted
fraction after ionomycin/PMA stimulation (Figure 5E; CD4�

ionomycin/PMA; mean concentration of WT versus
�dblGATA, 294 versus 0.056 pg/mL). Because �dblGATA
mice are devoid of eosinophils (Figure 4A) and no other
potential source(s) of IL-4 could be identified in this infection
model, the detected IL-4 appears to depend on eosinophils
in WT mice and reaches approximately one third of the
Th-derived IL-4 (Figure 5E; CD4� ionomycin/PMA; mean
concentration of WT versus �dblGATA, 890 versus 832
pg/mL). Consistent with lower IL-4 production in �dblGATA
mice (Figure 5A), we observed substantially reduced IgE
and elevated IgG2a (a marker for a Th1 response) serum
levels in the absence of eosinophils (data not shown).
Therefore, the presence of eosinophils contributes to en-
hanced fatal Th2 and reduced protective Th1 and Th17
responses.

Elevated Recruitment of Leukocytes in the
Presence of Eosinophils

To study the pulmonary inflammatory response in the
presence and absence of eosinophils, infected WT ver-
sus �dblGATA mice were analyzed at 60 dpi when sig-
nificant eosinophils were present in the lungs of C. neo-
formans–infected 4get mice (Figure 2C). The pulmonary
inflammatory response of infected 4get mice closely re-
sembles WT mice (data not shown). Interestingly, more

lung leukocytes were found in WT compared with
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�dblGATA mice (Figure 7A). An elevated frequency of
total leukocytes in the presence of eosinophils corre-
sponded with elevated numbers of Th cells in the lung
(Figure 7B). We wanted to characterize the composition
of other pulmonary leukocytes important in cryptococco-
sis. Macrophages are central effector cells that are able
to direct the outcome of C. neoformans infection.4,5,39,40

Alveolar and interstitial macrophages, and pulmonary
dendritic cells were reduced in the absence of eosino-
phils (Figure 7, C–E). In summary, the data demonstrate
a significant role of eosinophils in the recruitment of

Figure 5. The absence of eosinophils promotes pronounced secretion o
leukocytes were isolated from i.n. infected BALB/c WT and �dblGATA mice
A through C: IL-4, IL-17, and IFN-� were measured by ELISA in culture supe
independent experiments is shown (n � 6 to 7 per genotype). In addition, I
cells and remaining cells either stimulated with ionomycin/PMA or left untr
were pooled from two independent experiments (n � 3 pooled mice per g
inflammatory cells on pulmonary infection with C. neo-
formans.

In the Absence of Eosinophils, Fungal
Replication Is Reduced, but This Does Not
Prevent Dissemination of C. neoformans
to the Brain

Histopathological analysis of lungs from infected WT and
�dblGATA mice revealed fewer and smaller foci of cryp-

nd Th17-associated cytokines and reduces the Th2 response. Pulmonary
i. Cells were pooled per group and stimulated with C.n. antigen for 22 hours.
according to the Materials and Methods section. One representative of three
) and IL-4 (E) in the supernatant from MACS-enriched pulmonary CD4� Th
r 2 hours from BALB/c WT and �dblGATA mice at 60 dpi are shown. Data
and experiment).

Figure 6. The Th cytokine profile is dependent
on eosinophils on infection. Pulmonary leuko-
cytes were isolated from i.n. infected BALB/c
WT (A) and �dblGATA (B) mice at 60 dpi. Cells
were pooled per group and allowed to rest for
22 hours as the negative control (top), stimu-
lated with C.n. antigen for 22 hours (middle), or
stimulated with ionomycin/PMA for 6 hours
(bottom). Intracellular cytokine staining was
performed according to the Materials and Meth-
ods section, and plots are gated on living CD4�

Th cells. Appropriate isotype controls for stain-
ing Abs were used (data not shown), confirming
the specific staining. One representative of three
independent experiments is shown (n � 6 to 7
per genotype).
f Th1- a
at 60 dp
rnatant,
FN-� (D
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tococci in the absence of eosinophils (Figure 8, A and B).
Infected WT mice developed large aggregates of fungi in
their lungs (Figure 8, C–F), which was also corroborated
by detection of the cryptococcal capsular component
glucuronoxylomannan (Figure 8, G and H). When we
analyzed the total number of viable cryptococci con-
tained in the lung, we observed substantially fewer (ap-
proximately 84-fold reduction of median fungal load) in
�dblGATA mice compared with WT mice; however, this
difference did not reach statistical significance (Figure
9A, P � 0.0734). In line with this finding, dissemination of
Cryptococcus to the brain was not prevented in
�dblGATA mice (Figure 9B, P � 0.1375). This indicates
that the absence of eosinophils has a limited impact on
protective pulmonary immunity against C. neoformans
and does not suffice to prevent fungal dissemination.

Discussion

In this study, we report a regulatory role of eosinophilic
granulocytes in cryptococcosis. Eosinophils have been
mentioned before in murine models of cryptococco-
sis,10,23,41–43 observed in human cryptococcosis,44–46

and described with an emphasis on tissue damage.41

Although in vitro eosinophils have phagocytosed C. neo-
formans23 and presented cryptococcal antigens,47 in
vivo, no evidence for uptake of C. neoformans by eosin-
ophils has been found by others4 and in this study (data
not shown). Herein, we highlight an immunoregulatory
role of eosinophils that contribute to IL-4–dependent im-
munopathological features during murine pulmonary C.
neoformans infection. We provide evidence for previously

Figure 7. Recruitment of leukocytes to lung parenchyma after cryptococca
isolated from i.n. infected BALB/c WT and �dblGATA mice at 60 dpi. The num
macrophages (D), and dendritic cells (E) are shown. One representative of th
Statistical analysis was performed by using the Mann-Whitney U-test. *P � 0
unrecognized features of eosinophils during bronchopul-
monary infection. The protective immune response
against C. neoformans relies on Th1-biased cellular im-
munity.7,48 However, even in the presence of IFN-�, IL-4
production has been detrimental in pulmonary crypto-
coccosis.11 An exquisite role of IL-4 signaling strength
has been demonstrated in our pulmonary cryptococcosis
model, with a gene dosage effect of the IL-4 receptor �
alleles.18 Thus, in this report, we focus on nonprotective
IL-4 production by Th cells and innate immune cells. In
brief, the IL-4 competence of Th cells and eosinophils
was determined by eGFP expression during 10 weeks of
infection. Both cell populations show a concomitant late
increase in lung parenchyma. The quantitative data ob-
tained for IL-4 derived from Th cells and eosinophils
indicate that Th2 cells are a major cellular source, fol-
lowed by eosinophils as an innate cellular source of IL-4
(Figure 5E). Moreover, in cryptococcosis, eosinophils
promote Th2 responses but are not essential for Th2
differentiation because we found a considerable residual
frequency of IL-33R� Th2 cells in eosinophil-deficient
mice (Figure 4B). Although the absence of eosinophils
favors the development of a more Th1/Th17 pronounced
response by modulating the Th cell cytokine secretory
capacity (Figures 5, D and E, and 6), this cannot prevent
dissemination of fungi, as shown by the brain cryptococ-
cal burden (Figure 9B). Dissemination of cryptococci to
the brain is only abrogated when IL-4, IL-13, or IL-4/IL-13
signaling is completely abolished.15

The Th2 promoting property of eosinophils has also
been shown recently in a murine asthma model induced
by an Aspergillus fumigatus extract.49 Similar to pulmonary
cryptococcosis, eosinophil-deficient �dblGATA mice

n in the absence and presence of eosinophils. Pulmonary leukocytes were
total leukocytes (A), CD4� Th cells (B), alveolar macrophages (C), interstitial
pendent experiments is shown as the mean � SEM (n � 6 to 7 per genotype).
� 0.01, and ***P � 0.001 compared with BALB/c WT and �dblGATA mice.
l infectio
bers of
showed reduced levels of pulmonary Th2-related cyto-
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kines and mononuclear cell recruitment.49 The contribu-
tion of other innate immune cells (eg, basophils) poten-
tially involved in fatal Th2 initiation in cryptococcosis
remains to be tested, because basophils have been
shown recently in models of parasitic disease and a
protease allergen model to play an essential role in Th2
differentiation.50–52

WT ΔdblGATA

P
A
S

H
E

G
X
M

BA

DC

E F

HG

Figure 8. Lung sections from infected WT and �dblGATA mice indicate
better fungal control in the absence of eosinophils at 60 dpi. A through D:
PAS staining. Scale bars: 200 �m (A and B); 100 �m (C and D). E and F: H&E
staining. Scale bar � 100 �m. G and H: IHC was performed on sections from
the same mice, and glucuronoxylomannan (GXM)–containing foci are
brown. Scale bar � 100 �m. �dblGATA mice show reduced numbers of
cryptococci in the lungs (A–F) and formation of smaller foci of accumulating
cryptococci and GXM compared with WT mice (G and H). There was
pronounced influx of inflammatory cells in WT compared with �dblGATA
mice.
In addition to well-described developmental require-
ments for Th1 and Th17 responses,53,54 mechanisms of
Th2 initiation are less unraveled and controversy on Th2-
inducing molecules and cells continues.32,33,54–58 Since
the introduction of the Th1/Th2 paradigm, IL-4 has been
tightly associated with Th2 responses59–61; there is clear
evidence that IL-4 is indispensable for Th2 mainte-
nance.62 For Th2 initiation, current studies point to non-
hematopoietic cells that appear to be able to support
innate immune cells by secretion of chemokines63 and
novel cytokines, such as IL-33,33 IL-25,32,58 and thymic
stromal lymphopoietin (TSLP).64 In pulmonary cryptococ-
cosis, airway epithelial cells and eosinophils would be
candidates for cross talk between resident tissue cells
and leukocytes.65 Interestingly, we found expression of
IL-33R on eosinophils in this study of pulmonary crypto-
coccosis (data not shown). Thus, eosinophils could be
cellular targets of IL-33 produced by epithelial cells66

and, thereby, could contribute to Th2 initiation. The de-
finitive roles of IL-33, its cellular sources, and targets in
anticryptococcal immunity remain to be defined.

Eosinophils were recognized for a long time as effector
cells acting by degranulation in helminth/parasitic infec-
tions with Trichinella spiralis67,68 or Schistosoma man-
soni.69 Eosinophils demonstrate protective mechanisms
that rely on degranulation in bacterial infections70 and
release mitochondrial DNA in a unique way that clumps
bacteria together.71 In addition, antiviral effects have
been reported.72 Investigations of the role of eosinophils
in fungal infection with Candida albicans,73–75 Alternaria
alternata,76 or C. neoformans10,23,41,42 were made, with a
focus on their effector function. Similarly, a study10 using
anti-IL-5 treatment showed an association of eosinophil
frequency with susceptibility during cryptococcosis. Dur-
ing the past decade, several reports77,78 extended the
function of eosinophils beyond the sole defense against
nonphagotizable pathogens. Eosinophils produced vari-
ous chemokines and cytokines modulating immune re-
sponses in different models.29,49,79,80 Lee and col-
leagues81 recently introduced the term LIAR (regulators
of local immunity and/or remodeling/repair) for eosino-
phils; this term summarizes more recently discovered
regulatory properties of eosinophilic granulocytes. Our
data from a chronic fungal infection support the regula-
tors of local immunity and/or remodeling/repair concept
of eosinophil function. Other eosinophil-dependent fac-
tors, in addition to IL-4, that are involved in regulation of

Figure 9. Organ burden in the presence and
absence of eosinophils. Lung (A) and brain (B)
fungal burden of WT and �dblGATA mice at 60
dpi was evaluated according to the Materials
and Methods section. One representative of
three independent experiments is shown as the
median (n � 6 to 7 per genotype). Statistical
analysis was performed by using the Mann-Whit-
ney U-test, indicating P � 0.0734 for lung burden
and P � 0.1375 for brain burden.
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the Th cytokine profile and leukocyte recruitment require
further investigation to enlighten the pathophysiological
role that eosinophils play in cryptococcosis.

In conclusion, IL-4 production by both eosinophils and
antigen-specific Th2 cells is a relatively late event in
pulmonary cryptococcosis. A late and as of yet uniden-
tified process appears to promote the onset of IL-4 pro-
duction that dominates the production of otherwise pro-
tective cytokines IL-17 and IFN-�. This suggests a
cytokine hierarchy, with IL-4 on top of IFN-�/IL-17 under-
lining the exquisite role of IL-4 in cryptococcosis. There-
fore, it is intriguing to develop therapies antagonizing IL-4
or its receptor. Certainly, the late onset of IL-4 production
by Th cells and eosinophils (shown herein) and functional
studies in IL-4– or IL-4 receptor �–deficient mice, re-
ported earlier by us,18 make IL-4 or its receptor attractive
drug targets in allergic bronchopulmonary mycosis and
possibly in asthma.
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