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Abstract

GPR50 is an orphan G-protein coupled receptor most closely related to the melatonin receptors. The physiological function
of GPR50 remains unclear, although our previous studies implicate the receptor in energy homeostasis. Here, we reveal a
role for GPR50 as a signalling partner and modulator of the transcriptional co-activator TIP60. This interaction was identified
in a yeast-two-hybrid screen, and confirmed by co-immunoprecipitation and co-localisation of TIP60 and GPR50 in HEK293
cells. Co-expression with TIP60 increased perinuclear localisation of full length GPR50, and resulted in nuclear translocation
of the cytoplasmic tail of the receptor, suggesting a functional interaction of the two proteins. We further demonstrate that
GPR50 can enhance TIP60-coactiavtion of glucocorticoid receptor (GR) signalling. In line with in vitro results, repression of
pituitary Pomc expression, and induction of gluconeogenic genes in liver in response to the GR agonist, dexamethasone
was attenuated in Gpr502/2 mice. These results identify a novel role for GPR50 in glucocorticoid receptor signalling through
interaction with TIP60.
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Introduction

GPR50 (G protein coupled receptor 50) shares approximately

45% identity in amino acid sequence with the melatonin receptors

MT1 and MT2 [1], and has been identified as a mammalian

orthologue of the avian/amphibian Mel1c receptor [2]; yet it does

not bind melatonin [3] and remains an orphan receptor. Our

previous studies implicate GPR50 in hypothalamic control of

energy expenditure and feeding behaviour [4,5]. Specifically,

Gpr50 expression in the brain is highly responsive to energy status

being decreased by both fasting and high fat diet feeding [5], and

Gpr502/2 mice demonstrate elevated metabolic rate, reduced fat

accumulation, and partial resistance to diet-induced obesity. In

humans, polymorphisms in Gpr50 have been linked to elevated

circulating triglycerides and cholesterol levels [6], as well as

psychiatric affective disorders including bipolar disorder [7,8].

Little is known about the intracellular signalling pathways

downstream of GPR50. It has been suggested that GPR50 may

participate in G-protein independent signalling, possibly involving

cleavage of its intracellular carboxy-terminal domain [1,9]. The c-

terminal tail domain of GPR50 is one of the longest among

mammalian GPCRs, and contains at least one putative proteolytic

cleavage site [1]. GPR50 was recently shown to heterodimerise

with the MT1 receptor and block melatonin-dependent signalling

[9]. Interestingly, the intracellular tail of GPR50 is essential for this

inhibition.

In the present study, we employed a yeast two-hybrid system to

screen for potential binding partners of GPR50. Using the

intracellular c-terminal domain of GPR50 as bait, this screen

revealed an association of the receptor with the HIV-1 tat

interactive protein, TIP60 (gene name Kat5). TIP60 is a

transcriptional co-activator with histone acetyltransferase (HAT)

activity, which has been implicated in the regulation of

transcription, DNA repair and apoptosis [10,11]. Among other

interactions, TIP60 enhances the transcriptional activity of a range

of transcription factors including nuclear hormone receptors

(NHR)[12]. Here we confirm the association of GPR50 and

TIP60 using immunoprecipitation and co-localisation, and go on

to demonstrate a functional significance of this interaction in vitro

and in vivo.

Results

Identification of TIP60 as an interaction partner of GPR50
Cloning of full length Gpr50 from mouse hypothalamus and

pituitary by RT-PCR identified two transcripts in each tissue

(Figure 1A). DNA sequencing confirmed the larger transcript to be

full length Grp50, while the lower band consisted of a splice variant

of Gpr50, in which a fragment of exon 2 had been removed (139

base pair deletion between nucleotides 720–860). The altered

splicing introduces a premature stop-codon, which results in a

truncated form of GPR50 protein (herein referred to as tGPR50)

lacking the last two transmembrane regions and cytoplasmic

domain (Figure 1A–D). Western blot analysis of c-terminal myc-

tagged full-length GPR50 (Figure 1B) and tGPR50 (Figure 1C)

confirmed the expression of both forms (,69 kDa and ,29 kDa,

respectively). Interestingly, immunoblotting of full-length GPR50

also revealed a lower molecular weight band (,35 kDa; Figure 1B

open arrowhead), which likely reflects a proteolitic cleavage

product of the c-terminal domain.
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To identify novel binding partners for GPR50, we used a

yeast two-hybrid system to screen mouse testes cDNA library,

with the c-terminal domain of the receptor (cGPR50) as bait.

Eleven potential interaction partners of GPR50 were identified

(Table 1), and among these we focused on the transcriptional

co-activator, TIP60. The interaction of GPR50 occurred within

a region of TIP60 that included its zinc finger motif, HAT

region, and LXXLL motif (Figure 1E). By using sequential

transformation in yeast cells, we confirmed the interaction of

full length TIP60 with the cytoplasmic domain of GPR50,

while no interaction with the truncated form of GPR50 was

observed.

Figure 1. Association of GPR50 with TIP60. (A–D) Identification and cloning of full length and truncated GPR50. RT-PCR cloning of Gpr50 from
mouse hypothalamus (hyp) and pituitary (pit) produced two bands, reflecting full length Gpr50 (,1.8 kb) and a novel truncated transcript (,1.7 kb;
tGPR50; cDNA ladder shown in the first lane) (A). Western blotting of mycGPR50 (B) and myctGPR50 (C) in HEK293 cells using an anti-myc antibody
revealed proteins of the expected size (,69 kDa for full length, ,29 kDa for the truncated form). Filled and open arrowheads indicate the full-length
and putative cleavage fragment of GPR50, respectively (B). Schematic of Gpr50 gene (black arrows indicate splicing sites) and GPR50 protein (purple
indicates the portion of the protein lost in the truncated version of the receptor) (D). (E–G) Identification and verification of TIP60 as a binding
partner of GPR50. Schematic representation of the region of TIP60 encoded by the positive interacting clones identified in yeast two hybrid screen.
This region includes the zinc finger (ZF), histoneacetyltransferase (HAT) and nuclear hormone receptor (NHR) binding domains [32](E). HEK293 cells
were transfected with flagTip60, or mycGpr50, or both (as indicated), and total cell lysates (TCL) were subject to immunoprecipitation (IP) using anti-myc
antibody. Western blotting (WB) of immunoprecipitates using anti-Flag antibody, confirmed the specific association of flagTIP60 with mycGPR50 (F).
Full-length and the c-terminal cleavage fragment of GPR50 were detected in the immunoprecipitate (filled and open arrowheads, respectively). No
precipitation of TIP60 was observed when truncated GPR50 was used for IP (G).
doi:10.1371/journal.pone.0023725.g001
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Following the yeast two-hybrid screen, the association between

GPR50 and TIP60 was further confirmed in mammalian cells by

co-immunoprecipitation. Here, HEK293 cells were transfected

with full-length myc-tagged GPR50, full-length flag-tagged TIP60,

or both constructs. Immunoprecipitation with an anti-myc

antibody resulted in flagTIP60 precipitation in cells co-transfected

with mycGPR50 (Figure 1F), but not in cells expressing flagTIP60

alone or in combination with truncated GPR50 (Figure 1G),

indicating the specific association of these two proteins.

Association with TIP60 drives cytoplasmic and nuclear
localisation of GPR50

Using fluorescently-tagged proteins, we examined the subcellu-

lar localisation patterns of GPR50, tGPR50, and cGPR50 in the

presence or absence of TIP60 in HEK293 cells. When expressed

alone, full length GPR50 localised primarily to the cell membrane,

while the truncated form and c-terminal tail remained in the

cytoplasm (Figure 2, far left panels). As expected, TIP60 was

localised exclusively within the nucleus when expressed alone (not

shown) or when co-expressed with tGPR50 (Figure 2A). In

contrast, co-expression of TIP60 with full length GPR50 resulted

in a pronounced perinuclear localisation of both proteins,

although GPR50 localisation to the plasma membrane was still

observed (Figure 2B). Interestingly, when co-expressed with

TIP60, the c-terminal tail (cGPR50) was translocated to the

nuclear compartment where it co-localised with TIP60 (Figure 2C).

These findings demonstrate that the association of GPR50 and

TIP60 alters the cellular compartmentalisation of both proteins,

and likely represents a functional interaction.

GPR50 modulates TIP60-dependent GR signalling
A role for TIP60 in enhancing transcriptional activity of NHRs

is well-established [12]. We therefore examined the functional

impact of the GPR50 and TIP60 interaction on GR-mediated

gene expression, using a luciferase-based transcriptional reporter

assay for GR activity (TAT3::luc [13], and the endogenous

expression of the known GR-target gene, FK506-binding protein 5

(Fkbp5; [14]) (Figure 3). Dexamethasone (Dex, 100 nM) caused a

significant increase in TAT3::luc activity in HEK293 cells, which

was further enhanced by the expression of either GPR50 or TIP60

(Figure 3A). Importantly, co-expression of both GPR50 and

TIP60 resulted in a significant potentiation of Dex-induced

reporter activity when compared to either single expression,

suggesting a synergistic effect of the two proteins in modulating

GR signalling. The truncated form of GPR50 did not alter

luciferase activity when expressed alone or in combination with

TIP60 (Figure 3A). The ability of TIP60 and GPR50 to enhance

GR-mediated expression of an endogenous gene was confirmed by

QPCR analysis of Fkbp5 expression (Figure 3B). Over-expression

of TIP60 increased Fkbp5 transcription, with a further significant

potentiation observed upon co-expression of TIP60 with either

full-length GPR50 or the cytoplasmic tail of GPR50.

As GPR50 remains an orphan receptor, we cannot manipulate

its activity directly to assess the contribution of endogenously

expressed receptor on GR or TIP60 function. We have therefore

employed a genetic knockdown strategy in a pituitary cell line

(GH3). We first confirmed that both Gpr50 and Tip60 are

endogenously expressed in the GH3 cells (Figure 4A), and that

transfection with shGpr50 or siTip60 was effective in attenuating

the expression of their respective genes. Knockdown was shown to

decrease protein expression in cells over-expressing tagged GPR50

and TIP60 (Figure 4B), as well as attenuate endogenous mRNA

expression (Figure 4C). Importantly, knockdown of either

endogenous GPR50 or TIP60 attenuated Dex-induced TAT3::luc

luciferase activity in GH3 cells (Figure 4D). Combined knockdown

of GPR50 and TIP60 did not, however, decrease luciferase activity

below that achieved with siTip60 alone. Moreover, knockdown of

endogenous Tip60 expression abolished the ability of Gpr50 over-

expression to enhance Dex-induced luciferase activity in the GH3

cells (Figure 4D). Together these studies demonstrate that

endogenously expressed Gpr50 and Tip60 contribute to GR-

mediated signalling in pituitary cells, and that TIP60 is required

for GPR50 modulation of GR-signalling.

Altered GR responses in Gpr502/2 mice
Gpr50 and Tip60 exhibit widespread and overlapping expression

profiles in mouse tissues (Figure 5A), indicating the potential for

functional interaction of the proteins in vivo. We have previously

reported that mice lacking Gpr50 exhibit elevated circulating

corticosterone [5], which combined with our current in vitro

demonstration of GPR50 potentiation of GR signalling, suggests

Table 1. Results of Yeast Two-Hybrid Screen.

Gene name

Growth on selection
plate
(Trp-Leu-His-Ade-)

b-galactosidase
Activity

Number of
Positive clones

white blue

Tip60 + + 2

Cortexin 1 + + 1

Sorting nexin 5 + + 3

Sorting nexin 6 + + 1

Kinesin 9 + + 1

A kinase anchor protein 10 + + 1

Syndecan binding protein 8 + + 1

Gametogentin + + 5

Spermatogenesis + + 1

TBC1domain member 19 + + 1

Peroxin 2 + + 1

doi:10.1371/journal.pone.0023725.t001
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that glucocorticoid feedback may be diminished in these mice. We

therefore tested the effect of Dex administration on the expression

of gluconeogenic genes in the livers and proopiomelanocortin

(pomc; the source of ACTH) in the pituitaries of wild-type (WT)

and Gpr502/2 mice. Dex (0.1 mg/kg ip) significantly reduced

pituitary expression of pomc in WT, but not Gpr502/2 mice 5 hr

post-administration (Figure 5B). Despite this difference, circulating

corticosterone levels were reduced significantly by Dex in both

genotypes, demonstrating that pituitary pomc expression in the

pituitary is not the only level of negative glucocorticoid feedback

onto the hypothalamic-pituitary-adrenal (HPA) axis. Stimulation

of the gluconeogenic pathways by Dex was also blunted in

Gpr502/2 mice. Specifically, circulating blood glucose and the

expressions of phosphoenolpyruvate carboxykinase (Pepck) and

tyrosine aminotransferase (Tat) in the liver were elevated by dex-

administration in WT mice, whereas no significant increase was

observed for any of the three measures in Gpr502/2 mice

(Figure 5C–E). Taken together these results suggest that GR

signalling is diminished in mice lacking GPR50, and support in

vitro evidence that GPR50 can modulate GR function.

Discussion

GPR50 is a member of the rhodopsin-like subclass of GPCRs,

and is the mammalian orthologue of the avian/amphibian

melatonin receptor, Mel1c [2]. Yet during its evolution GPR50

lost the ability to bind melatonin, and to date no ligand has been

identified, and the G-proteins with which GPR50 couples have not

been defined. During its divergence from the melatonin receptors,

GPR50 acquired a long intracellular tail domain. It has been

proposed that this tail mediates GPR50 function; for example by

blocking the signalling of other GPCRs during receptor hetero-

dimerisation [9], or through proteolytic cleavage to produce

soluble signalling proteins [1,9]. For this reason, we sought to

define potential intracellular interaction partners of GPR50. As a

result, we have identified and confirmed a functional association

between GPR50 and the transcriptional co-activator, TIP60.

TIP60 has been shown to modulate the transcriptional activity

of a variety of transcription factors, including NHRs, and can act

as both transcriptional enhancer and repressor dependent on its

target transcription factor [15]. TIP60 facilitates the recruitment of

protein complexes to the transcriptional machinery, and possesses

intrinsic HAT activity, having been shown to acetylate both

histones (H2A, H3, H4)[11,16] and non-histone proteins such as

the androgen receptor (AR)[17]. TIP60 exhibits wide cellular and

tissue distribution, and has been implicated in a number of

physiological processes, including DNA repair, apoptosis, adipo-

genesis, as well as NF-kB and p53 signalling, likely due to the

diversity of transcription factors with which it associates [15,18].

Therefore, the ability of GPR50 to interact with TIP60 implicates

this receptor in numerous physiological processes.

The physical interaction of GPR50 with TIP60 may initially

seem counter-intuitive due to differences in the sub-cellular

compartmentalisation of the two proteins (i.e. membrane bound

versus nuclear). However, as we demonstrate with cellular

localisation studies, co-expression of GPR50 and TIP60 alters

Figure 2. Subcellular localization of GPR50 and TIP60 in mammalian cells. EGFPGPR50, EGFPtGPR50, and EGFPcGPR50 were expressed alone or
in combination with HcREDTIP60 in HEK293 cells. When expressed alone (far left panels), full length GPR50 localised predominantly to the cell
membrane (B), while tGP50 (A) and cGPR50 (C) remained cytoplasmic. HcREDTIP60 was confined to the nucleus when expressed with tGPR50 (A). In
contrast, co-expression of TIP60 with full length GPR50 resulted in a pronounced perinuclear localisation of both proteins (B, arrows), while co-
expression with cGPR50 led to nuclear compartmentalisation of the receptor tail (C). Blue = DAPI counterstaining; Magnification Bar = 20 mm.
doi:10.1371/journal.pone.0023725.g002
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the localisation of both proteins. Specifically, full-length receptor

associated with TIP60 within the perinuclear space, while the

cytoplasmic tail of GPR50 was translocated into the nucleus. This

type of interaction is not without precedent. Cytoplasmic and

perinuclear localisation of TIP60 has been reported previously

[19], and it has been shown to interact with other membrane

bound receptors [20,21]. For example, internalisation of the

endothelin receptor (also a G-protein coupled receptor) in

response to stimulation leads to an increase of TIP60 in the

perinuclear region and functional interaction of the two proteins

[20], similar to that observed here. Increased perinuclear TIP60

content may not require nuclear efflux, as TIP60 is a relatively

unstable protein with a short half-life (,30–190 min)[22]; it is

possible that newly synthesised protein could associate with the

receptors prior to nuclear translocation. As the ligand of GPR50

is unknown, we cannot assess the degree to which ligand binding

might impact on GPR50 internalisation or association with

TIP60. Importantly, our genetic knockdown studies demonstrate

that endogenous GPR50 and TIP60 interact to modulate GR-

signalling. One intriguing possibility is that the intracellular tail of

GPR50 is specifically cleaved in response to an extracellular

(or intracellular) signal, liberating it to associate with TIP60

and translocate to the nucleus. In support of this, Western

blot analysis of cells expressing full-length GPR50 containing a

c-terminal myc-tag, revealed a c-terminal cleavage product

(,35 kD).

As mentioned, a role for TIP60 in enhancing the transcriptional

activity of NHRs is well-established [12], and here we have

assessed the impact of GPR50 on GR signalling. Interestingly, the

influence of GPR50 on TIP60-mediated NHR transcriptional

activity may differ depending on the specific NHR target. Our

preliminary studies suggest that GPR50 attenuates TIP60-

mediated enhancement of PPARc signalling (Figure S1). Diver-

gent effects of GPR50 on TIP60/NHR interactions may be due to

the physical interaction of the three proteins. TIP60 typically

associates with the ligand-binding domain of NHRs through a

conserved NHR-binding motif (LXXLL) located in its c-terminal

domain. These residues are critical for the association of TIP60

with AR, estrogen receptor (ER) and GR, yet not for its binding of

PPARc [12,23,24]. Further, unlike GR, the association of TIP60

with PPARc can occur in the absence of ligand binding. Ligand-

independent signalling of PPARc involving TIP60 was also

observed in the current study (Figure S1). It is therefore possible

that binding of GPR50 masks the site at which TIP60 binds

PPARc, or blocks the binding of other associated proteins required

for TIP60/PPAR signalling.

Importantly, in support of the in vitro demonstration that GPR50

enhances GR signalling, we demonstrate that responses to Dex are

attenuated in vivo, in Gpr502/2 mice in terms of glucocorticoid

regulation of pomc expression in pituitary and gluconeogenic genes

in the liver. The HPA axis regulates corticosterone release from

the adrenal gland, and is subject to negative regulatory feedback at

multiple levels, such as repression of pituitary pomc expression by

corticosterone. This response was diminished in Gpr502/2 mice in

response to dex administration, which is in line with the prevalent

expression of both GPR50 and TIP60 in the pituitary. The

significant decrease in circulating corticosterone in the Gpr502/2

mice despite the attenuated pomc response likely reflects continued

negative feedback at another level of the HPA, such as at the

adrenal itself. mRNA expression profiling demonstrates that

Figure 3. Functional interaction of TIP60 and GPR50 on GR signalling. (A–B) The impact of GPR50 on TIP60-mediated GR signalling was
assayed in HEK293 cells using a luciferase-based transcriptional reporter for GR (TAT3::luc)(A) and quantitative RT-PCR of a GR-responsive target gene
(Fkbp5)(B). Full-length Gpr50, tGpr50, cGpr50 and/or Tip60 constructs were transfected alone or in combination as indicated.
doi:10.1371/journal.pone.0023725.g003
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TIP60 and GPR50 are both expressed in a wide array of tissues

suggesting that there is ample opportunity for the two proteins to

interact in vivo, although it will now be important to examine

cellular expression in detail to confirm co-expression within these

tissues.

We have previously reported that Gpr502/2 mice exhibit

reduced weight gain, elevated metabolic rate and partial resistance

to diet-induced obesity [5]. Further, Gpr50 expression in the brain

is highly responsive to energy status being decreased by both

fasting and high fat diet feeding [5]. This implies that the influence

of GPR50 on TIP60-mediated signalling may itself be responsive

to the energy status of the organism. TIP60 has been implicated in

glucose homeostasis [25] and adipogenesis [24]. Further, TIP60

can repress the activity of the transcription factor signal transducer

and activator of transcription 3 (STAT3) [26], a major down-

stream target of leptin signalling [27]. Alterations in leptin

response may be an important aspect to the altered metabolism

and feeding behaviour observed in the Gpr502/2 mice [5].

Figure 4. Endogenous TIP60 and GPR50 modulate GR signalling in GH3 cells. (A–D) Contribution of endogenous GPR50 and TIP60 to GR-
signalling in GH3 cells. Expression of both Gpr50 and Tip60 was confirmed in GH3 cells (A). shGpr50 or siTip60 were efficient at attenuating the
expression of their respective targets as demonstrated by reduced protein accumulation following transient transfection (B) and reduced levels of
endogenous mRNA transcript (C). Importantly, knockdown of either GPR50 or TIP60 in GH3 cells attenuated the induction of TAT3::luc activity in
response to Dex (100 nM), although no additive effect was observed with combined knockdown of both proteins (C). The potentiation of Dex-
induced TAT3::luc activity by Gpr50 over-expression was also blocked by knockdown of endogenous TIP60 using siTip60 (D). Differences in lettering
reflect statistically significant differences between treatment groups (two-way ANOVA, with Bonferroni’s post hoc test). Data are representative of 3
independent experiments, each performed in triplicate.
doi:10.1371/journal.pone.0023725.g004
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In summary, the current study reveals a novel role for GPR50 in

modulating TIP60 transcriptional activity, and as a result GR

signalling. The interaction of GPR50 with TIP60 was initially

identified using a yeast two hybrid screen, and subsequently

confirmed by immunoprecipitation and co-localisation within

mammalian cells. Importantly, the functional impact of GPR50 on

GR signalling is supported by genetic knockdown in pituitary cells

and in vivo studies using Gpr502/2 mice. The possibility that

proteolytic cleavage of the c-terminal tail of GPR50 produces

functional signalling proteins is intriguing and merits further

investigation.

Materials and Methods

Expression constructs
For the yeast two-hybrid screening and the following growth

assay, the coding sequences of the cytoplasmic domain of mouse

GPR50 (amino acids 304–592, cGPR50), truncated GPR50

(amino acids 1–264, tGPR50), and full-length GPR50 (amino

acids 1–592, GPR50) were amplified by RT-PCR from mouse

hypothalamus, and cloned in-frame into pGBKT7 vector

(Clontech, Saint-Germain-en-Laye, France), resulting in the

pGBKT7-cGPR50, pGBKT7-tGPR50, and pGBKT7-GPR50

constructs, respectively. For expression in mammalian cells and

immunoprecipitation assays, GPR50 were sub-cloned into

pcDNA3-MycHis vector, resulting in mycGPR50 and myctGPR50.
flagTIP60 construct was a kind gift from Professor John Lough

(Medical College of Wisconsin, Wisconsin, USA)[28]. For cellular

localisation studies, mouse TIP60 was sub-cloned downstream of

the N-terminal HcRed sequence of the pHcRed-C1 vector

(Clontech), and mouse GPR50 constructs cloned upstream of

the enhanced green fluorescent protein (EGFP) sequence using the

pEGFP-N1 vector (Clontech). The correct sequences and reading

frames of all constructs derived from PCR products were verified

by DNA sequencing. shRNA against Gpr50 was purchased from

Sigma (CCGGGCCAGCTCTAATCATCTTCATCTCGAGAT-

GAAGATGATTAGAGCTGGCTTTTT, TRCN0000025780).

Mission Nontarget shRNA Control Vector was used as control

(Sigma). Validated siRNA against Tip60 was purchased from

QIAGEN (SI02780897). Negative Control siRNA was used as

control (QIAGEN). Western blotting was performed to confirm

knockdown efficiency.

Yeast two-hybrid screening and growth assay
The yeast two-hybrid screening was conducted as previously

described [29]. Briefly, a yeast strain (AH109) based on the Gal4

system was used, and transformations carried out using a standard

lithium acetate method. For library screening, a sequential

Figure 5. Altered dexamethasone responses in Gpr502/2 mice. (A) RT-PCR profiling of Gpr50 and Tip60 mRNA expression in mouse tissues.
Hp, hypothalamus; Pt, pituitary; Ht, heart; Lg, lung; E, eye; Th, thyroid; A, adrenal; F, white fat; T, testes; I, intestine; Lv, liver; K, kidney; Sp, spleen; St,
stomach; Pa, pancreas. (B–E) The effects of dexamethasone (Dex, 0.1 mg/kg) were examined in WT and Gpr502/2 mice, in terms of glucocorticoid
feedback and glucose homeostasis. Pomc mRNA expression in the pituitary was reduced 5 hr after Dex treatment in WT, but not Gpr502/2 mice (B).
Circulating blood glucose was significantly increased in response to Dex only in WT mice (C). Similarly, Gpr502/2 mice exhibited an attenuated
induction of the liver gluconeogenic genes Pepck (D) and Tat (E) in response to Dex. Gene expression has been normalised to vehicle treated levels,
and blood glucose presented as change from time 0 to 5 h post-injection. * = P,0.05, ** = P,0.01 versus vehicle treatment within genotype, # =
P,0.05 versus WT Dex treatment, two-way ANOVA with Bonferroni’s post hoc test. Data representative of two independent experiments n = 5 mice/
group in each experiment for B–D.
doi:10.1371/journal.pone.0023725.g005
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transformation was performed with the bait plasmid (pGBKT7-

cGPR50) followed by 50 mg of mouse testis cDNA library (cloned

into the pACT2 vector). The co-transformants were streaked onto

appropriate selective media plates, as well as high stringency

synthetic medium lacking histidine and adenine and containing X-

gal. Interacting clones were selected by their abilities to grow or

turn blue on appropriate selective plates. Plasmid DNA from

positive yeast clones was rescued into bacterial strain KC8

(Clontech) and sequenced using a poly(T) sequencing primer.

The resultant sequences were checked for similarity to known

transcripts in the nucleotide sequence data bases using the BLAST

algorithm. Phenotypes of yeast co-transformants on selective

media were tested using standard yeast growth assay.

Cell culture
HEK293 [30] and GH3 [31] cells were maintained in

Dulbecco’s modified Eagle’s medium (DMEM, Sigma, Poole,

UK) supplemented with 10% Fetal bovine serum (Sigma),

penicillin/streptomycin (Gibco, Paisley, UK), and L-glutamine

(Gibco). Cells were cultured at 37uC in a humidified 5% CO2

environment. For immunofluorescence, HEK293 cells were

seeded on coverslips, followed by transfection, and fixation in

4% paraformaldehyde (24 h post-transfection).

Immunoprecipitation and Western Blotting
Transfected HEK293 cells were lysed at 4uC for 30 min. The

total cell lysates were pre-cleared with 20 ml of protein G-

Sepharose (Sigma) for 1 h before they were immunoprecipitated

overnight at 4uC with 50 ml of protein G-Sepharose and the anti-

myc polyclonal antibody (MBL). The immunoprecipitated sample

and 20 ml of each total cell lysate were separated on 12%

polyacrylamide gels and blotted onto nitrocellulose membranes

(Bio-Rad) for immunoblotting with anti-myc polyclonal antibody

(1:800; MBL, Woburn, USA) or anti-flag polyclonal antibody

(1:500; Sigma). Immunodetection were performed with the ECL

Western blotting detection kit (Amersham Biosciences, Buckin-

ghamshire, UK).

RT-PCR and Real-time quantitative PCR
Total RNA isolated from mouse tissues were reverse transcribed

and subjected to cDNA synthesis. Primer pairs were based on

mouse sequences (59 to 39): Gpr50, ATGGCCAGCAGGCCTC-

TGCC (F) and TCACTCGCAGTAGAGCCCGT (R); glyceral-

dehyde-3-phosphate dehydrogenase (Gapdh), TCAACGGATTT-

GGTCGTAT (F) and ATGAGTCCTTCCACGATAC (R). Q–

PCR was performed as described previously using the Platinum

SyBR Green kit (Invitrogen). Mouse housekeeping gene 18S rRNA

was used as an internal control. Primer pairs were Pomc, GTGC-

CAGGACCTCACCAC (F), CTTCCGGGGGTTTTCAGT (R);

Fkbp5, AGCCAAGGGTGACTTTGAGA (F), TCTGCAGTCT-

TGCAGCCTTA (R); Pepck, ACCTCCTGGAAGAACAAGGA

(F), CTCATGGCTGCTCCTACAAA (R); Tat, CATCTGGAG-

CCATGTACCTT (F), TCCAGCATCATCACCTCG (R). 18S

rRNA, TCCGACCATAAACGATGCCGACT (F), TCCTGGT-

GGTGCCCTTCCGTCAAT (R); The reactions were performed

in the ABI PRISM 7300 Sequence Detection System (Applied

Biosystems, Warrington, UK).

Luciferase reporter assay
The luciferase assay was performed as described previously

[29]. Briefly, HEK293 cells were transiently transfected with

500 ng TAT3::luc or Fabp4::luc reporter constructs, together

with flagTIP60 and/or mycGPR50 as indicated. TAT3::luc and

Fabp4::luc constructs were generously provided by Dr. Laura

Matthews (University of Manchester) and Dr. Susanne Mandrup

(University of Southern Denmark). The TAT3-Luc reporter

plasmid contain three copies of the tyrosine aminotransferase

(TAT) GREs upstream of a minimal Drosophila alcohol dehydro-

genase promoter (adh 233 to +53) and the luciferase gene [13].

50 ng cytomegalovirus-renilla luciferase was included in all

transfections to correct for transfection efficiency. 24 h after

transfection, cells were treated as specified for 16 h (dexametha-

sone 100 nM, rosiglitazone 1 mM; Sigma). Cells were then lysed

and assayed for luciferase activity using a dual-luciferase reporter

assay system (Promega, Chilworth, UK). Data has been normal-

ized to the bioluminescence recorded from mock transfected cells.

All experiments were performed in triplicate and repeated 3 times.

In vivo dexamethasone treatment and quantitative PCR
Congenic wild type (WT) and Gpr502/2 mice of C57B6

background were originally obtained from Organon Laboratories

Ltd (Cambridge, UK) and subsequently bred at the University of

Manchester. All research using animals was licensed under the

Animals Act of 1986 (Scientific Procedures; Licence 40/3267) and

received ethical approval from the University of Manchester animal

welfare committee. Adult female mice (8–10 weeks of age) were used

for all experiments, housed at an ambient temperature of 20–22uC,

and maintained in a 12:12-h light:dark lighting schedule. Leading

up to experiments, animals were housed singly, and acclimated to

handling and blood glucose measurement. Just prior to dex

(0.1 mg/kg, ip) administration blood glucose was measured by tail

prick using the MediSense optimum blood glucose sensor

(MediSense, Oxon, UK). Blood glucose was measured again 5 h

post-injection, following which trunk blood was collected for

corticosterone analysis, and pituitary and liver removed onto dry-

ice for subsequent Q-PCR analysis. Corticosterone was measured

using an EIA kit (Cambridge BioScience Ltd, Cambridge, UK)

according to manufacturer’s instruction. Data shown for in vivo

studies are representative of two independent cohorts of mice, with

each study using 5 mice per group.

Supporting Information

Figure S1 Functional interaction of TIP60 and GPR50 on
PPARc signalling. The impact of GPR50 on TIP60-mediated

nuclear hormone receptor signalling was assayed in HEK293 cells

using luciferase-based transcriptional reporters for PPARc (Fabp4::

luc). Co-transfection with PPARc, Gpr50, and Tip60 constructs were

performed as indicated. Histograms illustrate fold induction of

Fabp4::luc activity following rosiglitazone (Ros, 1mM) treatment.

Differences in lettering reflect statistically significant differences

between treatment groups (two-way ANOVA, with Bonferroni’s

post hoc test). Data are representative of 3 independent experi-

ments, each performed in triplicate.

(TIF)
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