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Abstract
Background—eQTL analyses are important to improve the understanding of genetic association
results. Here, we performed a genome-wide association and global gene expression study to
identify functionally relevant variants affecting the risk of coronary artery disease (CAD).

Methods and Results—In a genome-wide association analysis of 2,078 CAD cases and 2,953
controls, we identified 950 single nucleotide polymorphisms (SNPs) that were associated with
CAD at P<10-3. Subsequent in silico and wet-lab replication stages and a final meta-analysis of
21,428 CAD cases and 38,361 controls revealed a novel association signal at chromosome
10q23.31 within the LIPA (Lysosomal Acid Lipase A) gene (P=3.7×10-8; OR 1.1; 95% CI:
1.07-1.14). The association of this locus with global gene expression was assessed by genome-
wide expression analyses in the monocyte transcriptome of 1,494 individuals. The results showed
a strong association of this locus with expression of the LIPA transcript (P=1.3×10-96). An
assessment of LIPA SNPs and transcript with cardiovascular phenotypes revealed an association
of LIPA transcript levels with impaired endothelial function (P=4.4×10-3).

Conclusions—The use of data on genetic variants and the addition of data on global monocytic
gene expression led to the identification of the novel functional CAD susceptibility locus LIPA,
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located on chromosome 10q23.31. The respective eSNPs associated with CAD strongly affect
LIPA gene expression level, which itself was related to endothelial dysfunction, a precursor of
CAD.

Keywords
coronary artery disease; genome-wide association studies; gene expression; genetic variation;
genomics; eQTL; eSNP; LIPA

Introduction
Coronary artery disease (CAD) remains one of the major causes of death. Recent data
indicate that classical risk factors and novel risk markers account for a large proportion of
disease risk.1,2 Despite these considerable advances, it remains apparent that the underlying
causes of CAD are multifactorial and involve a complex interplay between acquired and
inherited risk factors. The advent of genome-wide association (GWA) studies led to the
identification of several genetic loci that associate with the risk of CAD.3-7 The majority of
these associations are located in genomic regions for which functional understanding is
lacking.8 Consequently, there exists a substantial gap in our understanding about how these
single nucleotide polymorphisms (SNPs) affect the pathophysiological mechanisms through
which the loci contribute to disease. Variation in gene expression appears to be an important
intermediate step underlying susceptibility of complex diseases.9-15 The abundance of a
gene transcript can be directly modified by polymorphisms; thus, transcript abundance
mediated by genetic variation either alone or in combination with environmental factors
might be considered as a quantitative trait that can be mapped.15 When combined with
GWA data, the analysis of the transcriptome can help to clarify and categorize effects of
CAD-associated SNPs on gene expression (eSNPs).

In the present study, a genome-wide association case-control study in 5,031 individuals
followed by two stages of replication and a final meta-analysis of 59,789 cases and controls
was performed. This approach led to the identification of a novel CAD susceptibility locus
on chromosome 10q23.31, LIPA. Additionally, eQTL analysis using a dataset of global
monocytic gene expression revealed a strong effect of LIPA eSNPs on LIPA transcript levels
and LIPA transcript levels in turn showed association to prevalent cardiovascular risk factors
and phenotypes of subclinical disease.

Methods
Study design

A GWA study using the Genome-Wide Human SNP 6.0 Array (Affymetrix, Santa Clara,
USA) was conducted to discover SNPs associated with CAD in the CADomics study
(Coronary Artery Disease and Genomics), a case-control study of CAD (2,078 CAD cases
and 2,953 controls). Replication of SNPs was performed in two steps. SNPs associated with
CAD in the discovery stage at a threshold P-value of <10-3, entered the first replication stage
(in silico replication in 9,487 cases and 30,171 controls of the following studies with
European ancestry: CHARGE, GerMIFS I, GerMIFS II, MIGen, WTCCC-CAD,
PennCATH, MedStar). Based on a threshold P-value of <10-4 in the pooled analysis of the
discovery and the first replication stage, SNPs were selected for the second replication stage
(wet lab replication in 9,863 cases and 5,237 controls of the following studies with European
ancestry: ECTIM, AngioLueb, GoKard, LURIC, popgen, MORGAM). A final meta-analysis
was performed in 21,428 cases and 38,361 controls. SNPs passing a conservative threshold
of statistical significance at P<5×10-8 in the final meta-analysis were further evaluated for
their association to global gene expression in 1,494 apparently-healthy, population-based
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samples from the Gutenberg Heart Express (GHSExpress) study for identifying SNPs
(eSNPs) that affect gene expression (eQTL transcripts). Finally, we explored eSNPs and
respective eQTL transcripts for their association to cardiovascular risk factors and
phenotypes of subclinical disease. The study design is depicted in Figure 1.

Description of study samples
CADomics is a case-control study including the hospital-based catheter-lab AtheroGene
Registry16 and the population-based Gutenberg-Heart Study (GHS). For the present
analysis, individuals with angiographically proven CAD (stenosis >50% in one major
coronary artery), nearly 60% presenting with acute myocardial infarction, were included as
cases, and individuals without a history of myocardial infarction and/or history of CAD
were taken from the population-based cohort as controls. The GHSExpress study is a
subsample of GHS participants – who served as controls in the CADomics study – from
which RNA was directly extracted from monocytes isolated from fresh blood samples.
Characteristics of the CADomics and the GHSExpress study samples are provided in Table
1 and Supplementary Table 1. Further detailed description of the studies is provided in the
Supplemental Material. Descriptions of the studies used for replication stages are provided
in the Supplemental Material and Supplementary Table 2.

Genotyping
For CADomics, genomic DNA was isolated from buffy-coats of EDTA plasma samples as
described elsewhere.17 Genotyping was conducted on the Affymetrix Genome-Wide Human
SNP 6.0 Array; quality control on sample and SNP level was performed according to
standardized criteria.18 Genotyping was performed in individuals of European descent only.
A detailed description of genotyping methods and quality control is provided in the
Supplemental Material. In total, 5,031 samples and 608,247 SNPs were included in the
analyses. Supplementary Table 3 provides information on genotyping platforms and
methods used for all replication studies.

Global Gene Expression
Isolation of total RNA and analysis of gene expression were performed as recently
described.15 In brief, total RNA was isolated from monocytes of 1,606 participants of the
GHSExpress Study and hybridized to Illumina HT-12 v3 BeadChips (Illumina Inc., San
Diago, USA). Arrays were quantile-normalized and transformed using the arcsinh function.
After quality control, 14,027 expressed RefSeq transcripts in 1,494 samples were used for
eQTL analyses. Detailed description of the methods is given in the Supplemental Material.

Cardiovascular risk factors and phenotypes of subclinical disease
eQTL transcripts and eSNPs were investigated for associations with prevalent
cardiovascular risk factors (LDL- and HDL-cholesterol, triglycerides, diabetes mellitus,
HbA1c, systolic and diastolic blood pressure) and phenotypes of subclinical disease (flow-
mediated vasodilation and carotid macroangiopathy). Methods of risk factor measurements
and descriptions of phenotype assessment are described in the Supplemental Material.

Statistical Methods
In the discovery GWA analysis, association of CAD with SNPs was tested using an additive
genetic model in a logistic regression. In both replication steps (in silico and wet lab
replication), fixed-effects meta-analysis using inverse-variance weighting was performed
with the R package MetABEL.19
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Associations between SNPs and transcripts were investigated using the median test20 with a
significance level of P-value <10-8, corresponding to a P-value of <10-12 in an analysis of
variance (ANOVA)20 for the samples that passed quality control for both genotype and
expression data. SNPs located within 500 kb of either the 5′ or 3′ end of the associated gene
were considered as cis acting SNPs; otherwise they were called to act in trans. Only
associations of transcripts without SNPs in probe sequences are reported.21 Associations of
eSNPs and eQTL transcripts with cardiovascular risk factors were analysed using logistic
and linear regression for qualitative and quantitative traits, respectively. Triglycerides and
HbA1c were log-transformed prior to analysis.

P-values were corrected for multiple testing using false discovery rate (FDR) 22 and a
significance level of 0.05

All analyses were performed using R, version 2.10.1 (http://www.r-project.org).

Results
Discovery Genome Wide Association Study, Replication and final Meta-Analysis

The discovery GWAS revealed 950 SNPs that were associated with CAD at a level of
P<10-3 in the 2,078 CAD cases and 2,953 population-based controls of the CADomics
study. The strongest association was observed for the previously described region at 9p21.3
(lead SNP rs1333049: P=4.28×10-7, OR 1.22; 95% CI: 1.12-1.32). Detailed results of all
associated SNPs are provided in Supplementary Table 4.

All 950 SNPs were selected for in silico replication in 7 independent case-control studies
(9,487 cases and 30,171 controls). Only SNPs with P<10-4 in the pooled analysis of
CADomics and the in silico replication studies were selected for wet lab replication
(Supplementary Table 4). For loci with several CAD-associated SNPs, tagSNPs were
selected for replication. A total of 20 SNPs was genotyped in 6 additional replication studies
including 9,863 cases and 5,237 controls. Results of the discovery GWA study, both
replication stages and the subsequent meta-analysis finally including 21,428 cases and
38,361 controls are presented in Table 2.

As expected, the chromosome 9p21.3 locus revealed the strongest association with CAD in
the meta-analysis of all 14 studies included (lead SNP rs1333049: P=7.12×10-58, OR 1.27,
95% CI: 1.23-1.31, Supplementary Figure 1). A locus on chromosome 10q23.31, so far not
known to be associated with CAD, also reached genome-wide significance in the meta-
analysis (Figure 2A; rs1412444: P=3.71×10-8; OR 1.1; 95% CI: 1.07-1.14; rs2246833:
P=4.35×10-8; OR 1.1; 95% CI: 1.06-1.14).

Identification of eSNPs and eQTL transcripts
All SNPs that reached genome-wide significance (Table 2) were further tested for
association to monocytic transcripts in cis (SNPs located within 500 kb of either the 5′ or 3′
end of the associated gene) and trans. SNPs rs1412444 and rs2246833, located on
chromosome 10q23.31 in intronic regions of the LIPA (Lysosomal Acid Lipase A) gene,
showed a strong association with expression of the LIPA transcript itself (P=1.3×10-96 and
P=4.0×10-96, respectively; Figure 2B and Table 3). Both LIPA SNPs were in strong
linkage disequilibrium (r2=0.985) and for both SNPs the CAD risk allele (T) was associated
with higher LIPA expression. Figure 2C displays regional plots for the association of LIPA
eSNPs and eQTL transcripts in relation to CAD. A “platform validation” was conducted in
119 monocytic samples using qRT-PCR analyses and the association of LIPA SNPs with
LIPA transcripts was successfully replicated (rs1412444: P=3.87×10-8, rs2246833:
P=1.52×10-8; see also Supplementary Figure 2).
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The CAD-associated SNPs in the 9p21.3 region, rs1333049, rs7865618 and rs7044859,
showed no association to global monocytic gene expression.

Association of LIPA eSNPs and eQTL transcripts with cardiovascular risk factors and
phenotypes of subclinical atherosclerosis

To explore potential mechanisms mediating the genetic risk, the relationship of LIPA mRNA
transcript and the respective LIPA eSNPs rs1412444 and rs2246833 to cardiovascular risk
factors (LDL- and HDL-cholesterol, triglycerides, diabetes mellitus, HbA1c, systolic and
diastolic blood pressure) and subclinical atherosclerotic disease (endothelial function
measured and carotid macroangiopathy) was investigated. Detailed results are provided in
Table 4 (A: eQTL transcript, B: eSNPs). Elevated LIPA expression was significantly
associated with lower HDL-cholesterol levels (P=2.5×10-3) and impaired endothelial
function measured by flow-mediated vasodilation (P=4.04×10-3), whereas associations with
higher levels of LDL-cholesterol and triglycerides did not reach statistical significance. In
contrast, no significant association between LIPA eSNPs and any cardiovascular risk factor
was observed.

eSNPs located in known CAD loci
In addition to SNPs identified in our analysis we performed an eQTL analysis for SNPs
previously reported to be associated with CAD and/or myocardial infarction3-5,7,23, but not
found in our analysis. Of 26 SNPs investigated (Supplementary Table 5), only 3 SNPs in
two loci were associated with eQTL transcripts (Table 3). In our data, the locus on
chromosome 1p13 (represented by SNPs rs599839 and rs629301) revealed a strong
association with PSRC1 transcripts with the risk allele for both SNPs associated with
decreased transcript levels of PSRC1. For the second locus, the risk allele of SNP
rs6725887, located within the WDR12 gene on chromosome 2q33, was associated with
decreased FAM117B transcript levels (located close to WDR12).

The association of these eSNPs and eQTL transcripts with cardiovascular risk factors and
phenotypes of subclinical disease was further analysed (Table 4, A: eQTL transcript, B:
eSNPs). Significant associations between increased PSRC1 transcript levels and lower LDL
cholesterol levels (P=8.2×10-3), higher HDL cholesterol levels (P=3.0×10-3), lower systolic
and diastolic blood pressure (P=9.9×10-5 and P=3.5×10-4, respectively) and an improved
endothelial function (P=2.2×10-4) were observed. As previously reported3,4,24 the risk
alleles of eSNPs rs599839 and rs629301 were robustly associated with increasing LDL
cholesterol levels (P=3.96×10-4 and P=3.93×10-4). In addition, the risk alleles were
associated with the extent of atherosclerotic plaques (P=1.44×10-3 and P=1.23×10-3). No
significant association was found for FAM117B transcript levels and respective eSNPs with
cardiovascular risk factors and phenotypes of subclinical disease.

Discussion
A genome-wide association study for coronary artery disease was performed and identified
loci were further evaluated to explore their potential functional relevance by (1) testing
functionality of genetic variants in relation to gene expression, and (2) correlating
expression levels with CAD risk factors and disease precursors like endothelial function and
carotid atherosclerosis.

In addition to the previously known locus on chromosome 9p21, our study identified the
LIPA gene on chromosome 10q23 as a novel CAD susceptibility locus (P=3.71×10-8 and
P=4.35×10-8 for SNPs rs1412444 and rs2246833). In the subsequent eQTL analysis, LIPA
genotypes displayed a strong association with LIPA transcripts (P=1.31×10-96 and
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P=3.97×10-96, respectively), with the CAD risk allele being associated with higher LIPA
expression. Further, elevated LIPA expression itself was related to lower HDL cholesterol
levels and impaired endothelial function, a precursor of CAD.

In humans, the LIPA gene encodes lysosomal acid lipase (LAL).25,26 LAL hydrolyzes
cholesteryl esters and triglycerides delivered to the lysosome. If LAL is missing and/or not
active, trigylcerides and cholesteryl esters accumulate in the cell, resulting in foam cell
formation and as a consequence in atherosclerotic plaque.27 Mutations in the LIPA gene are
the cause of the cholesteryl ester storage disease (CESD) and the Wolman's disease.28,29

Patients suffering from these diseases also suffer from premature cardiovascular disease.29

Residual LAL-activity determines the severity of clinical symptoms, with Wolman's patients
having the lowest residual activity.30

Our data demonstrate that the LIPA CAD risk allele is associated with increased LIPA
expression. Increased intrinsic LIPA expression might enhance intracellular release of fatty
acids and cholesterol via the lysosomal route27 possibly explaining the association of the
risk allele with impaired endothelial function, a precursor of atherosclerosis31. Furthermore,
increased LIPA expression is expected to be associated with increased LAL-activity.
Unesterified cholesterol is a hallmark of atherosclerotic lesions.32 In fact, cholesteryl ester
hydrolysis has been shown to be a critical step in the enzymatic modification of LDL
particles in the intima conferring the ability to activate complement to LDL and rendering
them proatherogenic.33,34 Thus, the risk allele could increase the generation of
enzymatically modified LDL and free cholesterol in the arterial intima, thereby promoting
foam cell formation, complement activation, and an inflammatory process.

The significant association of the LIPA eSNPs rs1412444 and rs2246833 with CAD, their
strong association with expression and the relation between transcript levels and subclinical
disease in apparently healthy individuals strongly supports a causal role for the LIPA gene in
atherosclerosis.

We also studied the relationship of previously published loci to gene expression,
cardiovascular risk factors and phenotypes. The association of the risk alleles on the 1p13
locus with decreased PSRC1 transcript and increased LDL cholesterol levels had been
reported previously.24 Further, our data showed significant association for 1p13 eSNPs and
PSCR1 transcript levels with blood pressure and endothelial function, indicating that this
genetic risk locus might act through these CAD risk factors. In human liver, the 1p13 locus
affects transcript levels of CELSR2, PSRC1 and SORT1 with the strongest regulatory effect
for SORT1.3,24 Further, in a recent study by Musunuru et al.35, liver-specific transcriptional
regulation of the SORT1 gene by C/EBP transcription factors was shown and SORT1 has
been nominated as the causal gene at the 1p13 locus for LDL cholesterol and MI. However,
as previously reported by our group15, SORT1 was not cis-regulated in our dataset of global
monocytic gene expression, suggesting a different mechanism of transcript regulation of the
1p13 locus in monocytes and does not exclude PSRC1 as an important contributor to lipid
levels and coronary artery disease.

Some limitations merit consideration. Cases comprise individuals with severe coronary
atherosclerosis documented by angiography and myocardial infarction. Gene expression
studies were performed in monocytes. Hence, other cell types might yield different results.
Finally, we did not test expression profiles in cases. However, as patients are on CAD
treatment, medication would most likely severely modify expression patterns.

Overall, the use of genome-wide SNP data and the monocyte transcriptome (GHSExpress,
http://genecanvas.ecgene.net/uploads/ForReview/15) led to the identification of a novel locus
potentially relevant for the development of CAD. The respective eSNPs strongly affected
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LIPA gene expression, and the LIPA expression level itself was related to subclinical disease
as assessed by vascular endothelial function. The consistency of our results between genetic
variants, LIPA expression level and disease precursor identifies LIPA as an attractive
research candidate for follow-up functional studies, also emphasized by the association
between LAL deficiency and the rare CESD and Wolman's diseases.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Study Design of the CADomics Study. The study consisted of a discovery GWA stage,
followed by two stages of replication (in silico and wet lab) in independent study samples
and a final meta-analysis. SNPs with genome-wide significance (P<5×10-8) were further
explored for their association with global gene expression (eSNPs, eQTLs) in monocytes
and cardiovascular risk factors. Statistical evidence for association was combined across
several stages using a final meta-analysis.
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Figure 2.
Identification of the CAD-related locus LIPA on chromosome 10q23.31. A. Forest Plots for
rs2246833 and rs1412444. Meta-analysis of the association of rs2246833 and rs1412444
with coronary artery disease was performed in a case-control design including 14
independent cohorts of European ancestry with n=59,789. Individual studies are plotted
against the individual odds ratios (OR). Horizontal lines are the confidence intervals
corresponding to the P-value threshold of 5×10–8. The vertical line indicates the value is
consistent with no association. If a single-nucleotide polymorphism was not available in a
study, there is no data point for that study. The diamond represents the meta-analytic effect
size. For reasons of quality control after imputation no data are available for GerMIFS I. B.
Association of the eSNPs rs2246833 and rs1412444 with LIPA gene expression. Boxplots
are shown for the fold change of LIPA expression in relation to the genotype. Fold change of
LIPA expression was calculated relative to median expression of the non-risk allele
genotype (C). C. Locus-specific regional association plots for discovery GWA and eQTL
analysis results on chromosome 10q23.31 (LIPA). The figure shows from top to bottom: i -
log10(P) of the association between SNPs and case and control status (primary GWA), ii -
log10(P) of the association between SNPs and LIPA expression (eQTL transcript), and iii
recombination fraction based on HapMap and positions of genes. SNP rs2246833, with the
smallest eQTL P is represented by a blue diamond. Other SNPs are color coded according to
pairwise LD (r2) with this SNP. (see legend in figure). Note that SNP rs1412444 is colored
in red (r2 =0.985).
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Table 1

Characteristics of the CADomics study. Data presented are the absolute and relative frequency of patients for
categorical and mean ± standard deviation for continuous traits.

CADomics

Cases Controls

No. of subjects 2,078 2,953

Study design

Study basis – Ascertainment scheme Hospital-based Population-based

Ethnicity Caucasian Caucasian

Country of origin Germany Germany

Age range, y 26 - 84 35 - 74

Age, y 60.8 ± 10.1 55.3 ± 10.8

Female Gender, n (%) 456 (21.9) 1491 (50.5)

Myocardial infarction n (%) 1212 (58.3) 0

Cardiovascular risk factors

Diabetes mellitus, n (%) 436 (21.0) 180 (6.1)

Dyslipidemia, n (%) 1353 (65.1) 792 (26.8)

Family history of MI, n (%) 773 (37.2) 513 (17.4)

Hypertension, n (%) 1491 (71.8) 1506 (51.0)

Obesity, n (%) 528 (25.4) 661 (22.4)

Smoking

    Never, n (%) 752 (36.2) 1392 (47.2)

    Ex- smoker, n (%) 722 (34.8) 1008 (34.2)

    Smoker, n (%) 603 (29.0) 550 (18.6)

Body Mass Index, kg/m2 27.8 ± 4.0 27.0 ± 4.7

Total Cholesterol, mg/dl 209 ± 47 226 ± 41

LDL-Cholesterol, mg/dl 133 ± 41 144 ± 35

HDL-Cholesterol, mg/dl 48 ± 14 58 ± 16

Triglycerides, mg/dl 161 ± 100 123 ± 71

RR systolic, mmHg 132 ± 24 134 ± 18

RR diastolic, mmHg 73 ± 13 84 ± 10
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