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Microarray analysis of cell-free RNA in amniotic fluid
(AF) supernatant has revealed differential fetal gene ex-
pression as a function of gestational age and karyotype.
Once informative genes are identified, research moves
to a more focused platform such as quantitative reverse
transcriptase-PCR. Standardized NanoArray PCR (SNAP)
is a recently developed gene profiling technology that
enables the measurement of transcripts from samples
containing reduced quantities or degraded nucleic ac-
ids. We used a previously developed SNAP gene panel as
proof of concept to determine whether fetal functional
gene expression could be ascertained from AF superna-
tant. RNA was extracted and converted to cDNA from 19
AF supernatant samples of euploid fetuses between 15
to 20 weeks of gestation, and transcript abundance of 21
genes was measured. Statistically significant differences
in expression, as a function of advancing gestational
age, were observed for 5 of 21 genes. ANXA5, GUSB, and
PPIA showed decreasing gene expression over time,
whereas CASC3 and ZNF264 showed increasing gene
expression over time. Statistically significantly in-
creased expression of MTOR and STAT2 was seen in
female compared with male fetuses. This study demon-
strates the feasibility of focused fetal gene expression
analysis using SNAP technology. In the future, this tech-
nique could be optimized to examine specific genes
instrumental in fetal organ system function, which
could be a useful addition to prenatal care. (J Mol Diagn

2011, 13:565–570; DOI: 10.1016/j.jmoldx.2011.05.008)

Cell-free nucleic acids in second-trimester amniotic fluid
(AF) supernatant derive almost exclusively from the fe-

tus.1 Transcriptomic analyses of cell-free RNA from nor-
mal second-trimester AF supernatant reveals that the
RNA represents a diverse assortment of fetal organ sys-
tems, with contributions from fetal skin, liver, lung, pan-
creas, and the central nervous system.2 In addition, dif-
ferences in gene expression from AF supernatants are
found in numerous functional pathways when compar-
ing gestational ages3 and karyotypes.4 These studies
suggest that analysis of gene expression from AF su-
pernatant may be useful in assessing fetal organ sys-
tem function.

The goal of a fetal gene expression panel would be to
simultaneously assess tens to hundreds of gene tran-
scripts to evaluate organ system function. Currently, the
most common methods of RNA analysis are global gene-
expression profiling (ie, micro-arrays) and the use of
quantitative reverse transcriptase-PCR (qRT-PCR) ampli-
fication to measure a small number of genes. Although
micro-array analysis allows for the simultaneous assess-
ment of thousands of genes, this technology is costly,
and the statistical and data mining aspects of global
gene expression profiling are labor intensive. Alterna-
tively, whereas qRT-PCR can measure the level of indi-
vidual gene expression, multiple assays would need to
be used for the assessment of a panel of genes to pro-
vide information about multiple organ systems or multiple
genes within a specific organ system.

Standardized NanoArray PCR (SNAP) is a new tech-
nology that may provide the necessary attributes for the
assessment of fetal organ system function. SNAP uses
internal standard (IS) sequences to reproducibly mea-
sure the abundance of gene transcript. This technology
uses a unique assay design for the simultaneous analysis
of up to 3072 genes (or 384 samples at eight genes per
sample). SNAP utilizes the sensitivity and specificity of
qRT-PCR and the design of array technology for the
assessment of a sufficient number of genes to evaluate
fetal organ system function.5,6
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The SNAP approach has several technical advan-
tages. First, the IS sequences provide a control for ana-
lytical false-negative results, and the melting curve pro-
vides an additional source of specificity to reduce
analytical false-positive results. Second, IS sequences
are supplied by a single manufacturer, ensuring a high
degree of interlaboratory concordance. Third, IS se-
quences control for PCR inhibitors that are common in
clinical samples. Fourth, SNAP requires very little sample
volume but is capable of delivering tens to hundreds of
transcript measurements. The SNAP approach has been
previously validated by comparison with standard qRT-
PCR techniques.6 These qualities are highly desirable
and necessary when developing and implementing mo-
lecular diagnostics.

We applied a previously developed gene panel with
five additional genes (CASC3, GUSB, PPIA, TBP, and
UBE2D2) to the SNAP array to examine the effectiveness
of this technology in the prenatal setting (Table 1). The
previously developed panel correlates with survival
among patients with non-small-cell lung cancer.7 Genes
associated with carcinogenesis also are associated with
fetal development.4,8 Following the measurement of
RNA isolated from amniocytes to assess the perfor-
mance (eg, dynamic range and accuracy) of SNAP
technology, the objective of the current study was to
use this lung gene panel with SNAP as proof of con-
cept to evaluate the effectiveness of this technique with
cell-free AF supernatant.

Materials and Methods

Subjects

The Institutional Review Boards at Tufts Medical Center
and Women and Infants Hospital approved the study.

Table 1. List of Genes Studied

Gene
symbol RefSeq UniGene

ANXA5 NM_001154 Hs.480653
CASC3 NM_007359 Hs.725173
CPEB4 NM_030627 Hs.127126
DLG2 NM_001142699 Hs.367656
DUSP6 NM_001946 Hs.298654
ERBB3 NM_001982 Hs.118681
GUSB NM_000181 Hs.255230
HGF NM_000601 Hs.396530
HMMR NM_001142556 Hs.72550
IRF4 NM_002460 Hs.401013
LCK NM_001042771 Hs.470627
MMD NM_012329 Hs.463483
MTOR NM_004958 Hs.338207
NF1 NM_001042492 Hs.113577
PPIA NM_021130 Hs.356331
RNF4 NM_002938 Hs.724369
STAT1 NM_007315 Hs.642990
STAT2 NM_005419 Hs.530595
TBP NM_003194 Hs.590872
UBE2D2 NM_003339.2 Hs.108332
ZNF264 NM_003417 Hs.515634
Amniocytes and residual AF supernatant obtained from
euploid second-trimester pregnancies were collected
anonymously; only the karyotype and gestational age of
the samples were known. Amniocytes were cultured in
Amniomax basal media (Gibco, Carlsbad, CA) with Am-
niomax supplement (Gibco) and penicillin-streptomycin
at 37°C in 5% CO2. One flask of amniocytes was used for
the initial dilution series to determine the SNAP dynamic
range. Nineteen AF supernatant samples between 15 to
20 weeks of gestation were obtained. The karyotypes
were 46,XX (n � 11) and 46,XY (n � 8).

Sample Preparation

RNA isolation of amniocytes after monolayer cell culture
was done with TRIzol reagent using the “Isolation of RNA
Using TRIzol Reagent Protocol” (Invitrogen, Carlsbad,
CA) with the following changes: cells were lysed in 1
mL/cm2 TRIzol; the lysate was centrifuged at 12,000 � g
for 15 minutes at 4°C; RNA was washed with 75% ethanol
and centrifuged at 12,000 � g for 5 minutes at 4°C; and
RNA was resuspended in ribonuclease-free water and
incubated at 55°C for 5 minutes. Samples were stored at
�80°C until further analysis.

RNA was extracted from 5 mL AF supernatant with use
of the QIAamp Circulating Nucleic Acid Kit (Qiagen, Va-
lencia, CA) according to the manufacturer’s protocol un-
der the section “Purification of circulating RNA from 5 mL
serum or plasma.”

RNA was converted to cDNA using primer-specific
reverse transcription. Reverse transcription reaction
components included the extracted RNA (400 ng am-
niocyte RNA or 10 �L AF supernatant RNA), 1� Omnis-
cript RT buffer (Qiagen), 0.5 �mol/L deoxyribonucleoside
triphosphate, random hexamer oligonucleotides (125 ng
for amniocytes and 11 ng for AF supernatant) (Integrated
DNA Technologies, Coralville, IA), and 100 nmol/L of

Entrez gene name

Annexin A5
Cancer susceptibility candidate 3
Cytoplasmic polyadenylation element binding protein 4
Discs, large homolog 2
Dual specificity phosphatase 6
V-erb-b2 erythroblastic leukemia viral oncogene homolog 3
Glucuronidase, beta
Hepatocyte growth factor
Hyaluronan-mediated motility receptor
Interferon regulatory factor 4
Lymphocyte-specific protein tyrosine kinase
Monocyte to macrophage differentiation-associated
Mechanistic target of rapamycin
Neurofibromin 1
Peptidylprolyl isomerase A
Ring finger protein 4
Signal transducer and activator of transcription 1
Signal transducer and activator of transcription 2
TATA box binding protein
Ubiquitin-conjugating enzyme E2D 2
Zinc finger protein 264
each forward primer (Integrated DNA Technologies) (se-
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quences in Table 2) in a 20-�L reaction volume. Samples
were incubated at 80°C for 5 minutes and then were kept
at room temperature for 5 minutes. One microliter Omnis-
cript reverse transcription enzyme was then added to the
reaction mixture and incubated at 37°C for 1 hour. Fol-
lowing cDNA synthesis, samples were stored at �20°C
until further processing.

Standardized Mixtures of Internal Standards (SMIS)
were prepared by GeneExpress (Wilmington, NC) using
IS sequences (Integrated DNA Technologies) for each of
the 21 genes (Table 2). The gene symbols, names, and
RefSeq and UniGene identifications for all genes in the
panel are provided in Table 1. The IS sequences differed
from each amplicon by alterations of one or two bases at
the Pleiades binding sites (Table 2). The Pleiades probe
is a fluorogenic, minor-groove binder probe with a con-
tact-mediated quenching effect of the nonhybridized
probe due to the interaction of the minor-groove binder
and the quencher.9

The SMIS arrived from GeneExpress as restriction en-
zyme linearized plasmid pools consisting of 100 to 107

copies of each IS sequence per �L. SMIS strip-tube stocks
were prepared with 20 to 2 � 106 copies of each IS se-
quence/sample, 70 nmol/L of each of the 21 forward/re-
verse primer sets (Sigma-Aldrich, St. Louis, MO) (Table 2),
and 10 pg/�L yeast transfer RNA (Sigma-Aldrich) in 10
mmol/L Tris pH 8 and 100 �mol/L EDTA in a total volume of
5 �L. SMIS strip-tubes stocks were flash frozen in liquid
nitrogen and stored at �20°C until further processing.

Seven serial dilutions of amniocyte cDNA and the en-
tire sample of AF supernatant cDNA were pre-amplified
by mixing 70 �L Fast SYBR Green PCR Master Mix (Ap-
plied Biosystems, Carlsbad, CA) with 35 �L cDNA. Fif-
teen microliters of this mixture was distributed to the 5 �L
SMIS strip-tube stock aliquots, and samples were pre-

Table 2. Oligonucleotide Sequences Used for Amplicons, Prime

Gene

ANXA5 5=-CGAGACTTCTGGCAATTTAGAGCAACTACTCCTTGC
CASC3 5=-TCCTGCAACCACGGGAACTTCGAGGTATGCCCAACC
CPEB4 5=-ACAGCCACTTGACCCACGAAAAACTATATTTGTTGG
DUSP6 5=-GCTGCTGCTGATGGACTGCCGGCCGC(G)AGGAG(C
ERBB3 5=-TGCTCACGGGACACAATGCCGACCTCTCCTTCCTGC
HMMR 5=-TAAGGCGCCCTTGAAACGATTCAATGACCCTTCTGG
IRF4 5=-CAGGACTACAACCGCGAGGAGGACGCCGCGCTCTTC
MMD 5=-ATGGCCGCTACAAGCCAACTTGCTATGAACATGCTG
NF1 5=-GGCCAATGTGGTTCCTTGTTCTCAGTGGGATGAACT
PPIA 5=-TCCATGGCAAATGCTGGACCCAACACAAATGGTTCC
STAT2 5=-TCATACTAGGGACGGGAAGTCGCGACCAGAGCCATT
TBP 5=-GCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCT
UBE2D2 5=-TGCCTGAGATTGCTCGGATCTACAAAACAGATAGAG
ZNF264 5=-TGTGGGCTCCTGGTGTCTCTGGGGTGTCCTGTTCCC
-----------------------------------------------------------------------------------
DLG2 5=-CGCAACTCGTCAGCCTTCAA(T)TGA(T)CTCTCCA
GUSB 5=-CTCATTTGGAATTTTGCCGATTTCA(T)TGA(T)CT
HGF 5=-AAGTCTGTGACATTCCTCAGTGTTCAGAAGTTGA(G
LCK 5=-GAGCCCATCTACATCATCACTGAATACA(T)TGGA(
MTOR 5=-AACAAGCGATCCCGAACGAGGA(T)CGGA(T)TTCC
RNF4 5=-GCCTGTGGTGGTTGATCTGACTCAC(T)AATGA(G)
STAT1 5=-GGGAAGGGGCCATCACATTCACATG(C)GGTGGA(T

Single underline, forward primers; double underline, reverse primers; b
Above dashed line: forward primer correlates to limited primer; below
amplified at 50°C for 2 minutes and 95°C for 10 minutes,
followed by 34 cycles of 92°C for 15 seconds and 60°C
for 60 seconds.

SNAP Transcript Abundance Measurements

Each OpenArray through-hole contained the reagents
needed to amplify 1 of the 21 genes in the panel. PCR
amplification for the Pleiades detection probes requires
an asymmetric primer ratio for detection. Each through-
hole was preloaded with 250 nmol/L limited primer (Sig-
ma-Aldrich), 1000 nmol/L excess primer (Sigma-Aldrich),
and 250 nmol/L Pleiades probe (Epoch Biosciences,
Bothell, WA) (Table 2). The pre-amplified sample and
fresh master mix were distributed in an array-in-array
384-well plate and transferred into the OpenArray plate,
and samples were amplified using the NT cycler at 92°C
for 10 minutes, followed by 34 cycles of 55°C for 60
seconds and 92°C for 15 seconds according to the man-
ufacturer’s protocol (LifeTechnologies, Carlsbad, CA).

Statistical Analyses

All gene expression values were converted to log2 scale.
Normalized gene expression values were corrected by
subtracting the log2 mean of all 21 gene expression val-
ues for each sample from each individual gene’s log2

gene expression value (similar to the �CT correction of
qPCR).

A quantitative comparison of gene expression be-
tween sexes using Spearman correlation analysis corre-
lations was performed. The association of the expression
level of each gene and gestational age was determined
by linear regression analysis. Statistical significance was
assigned at P � 0.05. All statistical analyses were per-
formed using SAS/STAT software (SAS Institute, Inc.,

des Probes, and IS

con sequence

GAAATCTATT(A)CGAAGT(A)ATACCTGCCTACCTTGCAGAGACC-3=
ACAT(A)GGGAGCA(T)GGACCTCCACCTCAGTTTAACCGG-3=
TCCTCGACCAT(A)TAC(G)GAGCTGTGGAGCTTGCGATGATAATGG-3=
CGAGTCGTCGCACATCGAGTCGGCCATCAACGTGG-3=
GGATTCG(A)AGAAGTGACAGGCTATGTCCTCGTG-3=
TG(C)CACCATCTCCAGGTGCTTATGATGT-3=
TGGGCACTGTTTAAAGGA(T)AAGTTCCGAGAAGGCATCGACA-3=
GTTACACACACG(A)CAT(C)TCCTCATTGTTCCGGCCAT-3=
AGTTCT(A)GGTT(A)ACTCTGTTTGATTCTCGGCATTTACTC-3=
TTCATCT(A)GCACTGCC(G)AAGACTGAGTGGTTGGATGGCAAGC-3=
CGCGGGGACTGCAACCCT(A)AAT(A)CAGCAGAGCCCAAATGGCGCAG-3=
ATCAT(A)GAGGAT(A)AAGAGAGCCACGAACCACGGCACTGATT-3=
ACAACAGAAT(A)AGCT(A)CGGGAATGGACTCAGAAGTATGCGA-3=
GAGCTGA(T)TCTGC(G)CACCTAGAGCATGGGCAGGA-3=
---------------------------------------------------------------------------------
CGTCTCCCTGGAAGGAGAGCCTCGCAAGGTAGTCCTGCACAAAGGC-3=
TCACCGACGAGAGTGCTGGGGAATAAAAAGGGGATCTTCACTCGG-3=
GCATGACCTGCAATGGGGAGAGTTATCGAGGTCTCATGGA-3=
GGGAGTCTAGTGGATTTTCTCAAGACCCCTTCAGGCA-3=
GCTGGCCAGTCAGTCGAAATTTTGGACGGTGTGGAACTTGG-3=
TGTGATTGTTGACGAAAGAAGAAGACCAAGGAGGAATGCTAGGAGGCTG-3=
CCCAGAACGGAGGCGAACCTGACTTCCATGCGGTTG-3=

iades probes; parentheses, nucleotide change in IS sequence to the left.
d line: reverse primer correlates to limited primer.
rs, Pleia

Ampli

TGTTGT
ATATAC
TGGTGT
)CTATA
AGT(C)
TT(A)G
AAGGCT
CTAACT
AGCTCG
CAGTTT
GGAGGG
GCGGTA
AAAAGT
AAAGCT
---------
ACGGGC
GAACAG
)A(G)T
T)GAAT
TACTCT
CTCTGT
)GCGGT
Cary, NC).
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Results

Dynamic range analysis of cultured cell cDNA showed
that the majority of gene targets had sufficient starting
copies to be measured in all dilutions. Evaluation of melt-
ing curves indicated that no native template was de-
tected in the “no template” control samples. The back-
ground level of transcript detection was estimated to be
�10 copies, defined as �10% of the lowest IS se-
quence quantity of 100 copies. To further minimize the
potential for false-positive signal detection, any mea-
surements �30 copies were considered undetectable.
The analytic response to cDNA dilution was very linear,
with a median r2 � 0.879. The dynamic range spanned
more than five orders of magnitude (30 to 5 � 106

copies) (see Supplemental Figure S1 at http://jmd.
amjpathol.org).

Gene expression analysis of AF supernatant was per-
formed with normalized mean transcript abundances for
each sample (see Supplemental Table S1 at http://jmd.am-
jpathol.org). No hepatocyte growth factor (HGF) transcript
was detected in any of the AF supernatant samples; it is not
known if this outcome was due to the absence of gene
expression or a technical artifact. All other transcripts were
present in all samples. All genes that were statistically sig-

Table 3. Description of Statistically Significant Expression of Gen

Gene symbol RefSeq description*

ANXA5 The protein encoded by this gene has been
membrane-related events along exocytotic
endocytotic pathways; Annexin 5 is a pho
A2 and protein kinase C inhibitory protein
channel activity and a potential role in cel
transduction, inflammation, growth and dif
Annexin 5 also has been described as a p
anticoagulant protein

CASC3 The product of this gene is a core compone
and functions in NMD; the encoded protei
and interacts with two other EJC core com

GUSB This gene encodes a hydrolase that degrad
glycosaminoglycans, including heparan su
dermatan sulfate, and chondroitin-4,6-sulfa
in this gene result in mucopolysaccharido

MTOR The protein encoded by this gene belongs t
phosphatidylinositol kinase-related kinases
kinases mediate cellular responses to stre
DNA damage and nutrient deprivation

PPIA This gene encodes an enzyme that catalyze
trans isomerization of proline imidic peptid
oligopeptides and accelerates the folding
the encoded protein is a cyclosporin bind
and may play a role in cyclosporin A–med
immunosuppression

STAT2 The protein encoded by this gene is a mem
STAT protein family; in response to cytokin
growth factors, STAT family members are
phosphorylated by the receptor associate
and act as transcription activators; it is tho
involved in the process of blocking IFN-alp
by adenovirus

ZNF264 This gene encodes a zinc finger protein and
the Kruppel C2H2-type zinc-finger protein
thought to regulate transcription
Approximate level of gene expression based on expressed sequence tag (E
EJC, exon junction complex; IFN, interferon; NMD, nonsense-mediated mRN
nificantly differentially expressed are shown in Table 3, in-
cluding functional descriptions and gene expression levels
in the fetus from the UniGene database.

Correlation analysis showed that two genes, mecha-
nistic target of rapamycin (MTOR) and signal transducer
and activator of transcription 2 (STAT2), had expression
levels that were statistically significantly different be-
tween male and female fetuses. Both genes had an 11%
higher level of expression in females (P � 0.03 and 0.049,
respectively) (Figure 1).

Linear regression analysis showed that five genes had
statistically significant different levels of expression as a
function of increasing gestational age (Figure 2). Three
genes showed decreasing gene expression: annexin A5
(ANXA5) (r � 0.40; P � 0.005), glucuronidase � (GUSB)
(r � 0.23; P � 0.03), and peptidylprolyl isomerase A
(PPIA) (r � 0.31; P � 0.018). This finding corresponds to
percent decreases per week of gestation of 6% (ANXA5),
8% (GUSB), and 4% (PPIA). The other two genes showed
increasing expression were cancer susceptibility candi-
date 3 (CASC3) (r � 0.65; P � 0.0001) and zinc finger
protein 264 (ZNF264) (r � 0.39; P � 0.005). This finding
corresponds to percent increases per week of gestation
of 8% (CASC3) and 0.5% (ZNF264).
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Discussion

In this feasibility study, we first demonstrated the dy-
namic range and accuracy of a novel SNAP technology
on high-quality RNA extracted from amniocytes. The an-
alytic performance and detection of all gene transcripts in
the amniocyte cellular RNA led to the subsequent study
of fetal gene expression in AF supernatant samples. The
SNAP technology allows for the simultaneous quantitative
assessment of tens to hundreds of transcripts from re-
duced and degraded nucleic acid samples. Gene ex-
pression that varies by up to five orders of magnitude can
be quantified using a single assay. This technology may
be an advance over existing approaches, including
global gene expression profiling using micro-arrays. Not
only are micro-arrays expensive, but they typically have a
more restricted dynamic range, which prevents simul-
taneous detection of very high and low abundance

Figure 1. Box plots showing the genes among the panel with significant
expression differences by sex. STAT2 is shown in A (P � 0.049), and MTOR
(the gene encoding the mechanistic target of rapamycin) is shown in B (P �
0.030). The line within the box is the median; the box represents the 25th and
75th percentiles; and the whiskers represent the 10th and 90th percentiles.

Figure 2. Regression curves showing the genes among the panel with sign

(P � 0.0001). C: GUSB (P � 0.03). D: ZNF264 (P � 0.005). E: PPIA (P � 0.018). ANX
age, and CASC3 and ZNF264 show increasing gene expression with increasing gest
molecules.10 One drawback of SNAP technology is the
initial assay development cost due to the use of IS and
Pleiades probes in the technology. However, after the
assay is fully developed, the cost per sample becomes
minimal. In addition, the benefits of SNAP include in-
trinsic quality assurance, quality control, and unbiased
PCR, making SNAP an ideal platform for interlaboratory
assessment with reduced and degraded nucleic acid
samples.

The results of the AF supernatant analysis showed that
SNAP technology is an effective method of gene expres-
sion measurement and that 7 of 21 genes in the panel
were statistically significantly differentially expressed as
a function of either fetal sex or gestational age. This
finding suggests that the evaluation of fetal organs sys-
tems is not only possible but that some of the informative
genes in the current panel may be useful to include in
a modified fetal gene panel that incorporates additional
genes. Nevertheless, of the seven differentially expressed
genes, four genes (STAT2, MTOR, ANXA5, and PPIA) are
associated with immunological function, including inter-
feron signaling, T-cell differentiation, viral functioning,
and cyclosporins.11–17 Interestingly, increased expres-
sion of at least two genes in the panel (GUSB and
CASC3) are associated with rheumatoid or osteoarthritis,
which also can be related to immune or autoimmune
functions.18,19 Further investigation using this gene panel
approach could contribute to the understanding of the
complex immune pathways involved in the maternal-fetal
relationship. Additionally, four of the seven statistically
significant genes in the panel (STAT2, MTOR, PPIA, and
CASC3) previously have been linked to different adult
cancers.20–25 Because genes linked to carcinogenesis
are present in studies of euploid fetal gene expression,8

xpression differences by gestational age. A: ANXA5 (P � 0.005). B: CASC3
ificant e

A5, GUSB, and PPIA show decreasing expression with increasing gestational
ational age.
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these genes are most likely related to normal develop-
ment of the fetus.

RNA in amniotic fluid supernatant is derived from multiple
fetal organs; therefore, in the future, fetal gene expression
panels could prove useful in prenatal care to evaluate func-
tion in cases of at-risk pregnancies and fetal pathologies.
For example, fetal sonographic studies can detect a con-
dition known as echogenic bowel.26 The differential di-
agnosis for echogenic bowel includes chromosomal
anomalies, cystic fibrosis, infections, fetal growth restric-
tion, and intra-amniotic bleeding. A platform based on
fetal gene expression could include a panel of gastroin-
testinal genes and inflammatory genes, for example.
These expression data could lead to a more rapid, de-
tailed, and accurate diagnosis of the underlying etiology
of the echogenic bowel.

In conclusion, these results demonstrate that SNAP
technology successfully detected differentially regulated
genes in second-trimester AF supernatant. SNAP stan-
dardization of qPCR measurements from reduced and
degraded nucleic acid samples enables development of
gene expression profiling platforms for the evaluation of
fetal organ system function. Some genes in the current
panel may prove to be useful components of a fetal gene
expression panel. Future studies are warranted to identify
additional genes to be incorporated, including inflamma-
tory, developmental, and gastrointestinal genes.
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