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Abstract
An increasing body of evidence shows that structural modifications of chromatin, the DNA–
protein complex that packages genomic DNA, do not only participate in maintaining cellular
memory (e.g., cell fate), but they may also underlie the strengthening and maintenance of synaptic
connections required for long-term changes in behavior. Accordingly, epigenetics has become a
central topic in several neurobiology fields such as memory, drug addiction, and several
psychiatric and mental disorders. This interest is justified as dynamic chromatin modifications
may provide not only transient but also stable (or even potentially permanent) epigenetic marks to
facilitate, maintain, or block transcriptional processes, which in turn may participate in the
molecular neural adaptations underlying behavioral changes. Through epigenetic mechanisms the
genome may be indexed in response to environmental signals, resulting in specific neural
modifications that largely determine the future behavior of an organism. In this review we discuss
recent advances in our understanding of how epigenetic mechanisms contribute to the formation of
long-term memory and drug-seeking behavior and potentially how to apply that knowledge to the
extinction of memory and drug-seeking behavior.

An introduction to epigenetics and chromatin modification
Beginning approximately 6–7 years ago, there was a major movement in basic and clinical
research to understand the role of epigenetics in neurobiology, especially the neurobiology
of learning and memory, drug addiction, and cognitive disorders. That is not to say that
epigenetic mechanisms have not been on scientists’ minds for the better part of a half-
century. The term epigenetics was originally coined by Waddington in 1942 to describe the
examination of “causal mechanisms” whereby “the genes of the genotype bring about
phenotypic effects” (Haig 2004). The term has now taken several new definitions, especially
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in the neurosciences. In non-neuroscience fields, the term epigenetics refers to a stably
heritable phenotype resulting from changes in a chromosome without alterations in the
DNA sequence (Berger et al. 2009). In a recent book on epigenetics by Allis et al. (2007),
one can find two different definitions. In one section epigenetics is defined as “change in
phenotype that is heritable but does not involve DNA mutation.” It should be noted that in
most cases the term heritable is being applied to somatic cellular memory. In another section
epigenetics is defined as “changes in gene transcription through modulation of chromatin,
which is not brought about by changes in the DNA sequence.” Notably, the term heritable is
not part and parcel of the latter definition.

As neuroscientists are by definition interested in the function of neurons, which are
postmitotic differentiated cells, the definition of epigenetics normally used by
neuroscientists has also dropped the heritable component (Abel and Zukin 2008; Barrett and
Wood 2008; Graff and Mansuy 2008; Levenson and Sweatt 2005). As the number of
publications relating to epigenetics have gone from 50 in 1989 to nearly 6000 in 2008, it is
obvious that regardless of how researchers define epigenetics, it has taken a central position
in research. Realizing this emerging theme, the National Institutes of Health (NIH) held a
workshop in 2007 to examine the possibility of supporting research aimed at furthering our
understanding of epigenetics through the NIH Roadmap program. NIH describes epigenetics
as “refer[ing] to both heritable changes in gene activity and expression (in the progeny of
cells or of individuals) and also stable, long-term alterations in the transcriptional potential
of a cell that are not necessarily heritable”
(http://nihroadmap.nih.gov/epigenomics/index.asp).

The purpose of this review is to examine the contribution of current literature to our
understanding of the role of epigenetic mechanisms involved in learning and memory as
well as drug addiction processes as it relates to the development of therapeutic strategies.
Epigenetic mechanisms have been found to be central to the initial formation and
consolidation of memory (Barrett and Wood 2008) and central to the cellular and behavioral
responses to drugs of abuse, including the potential transition in response from acute
exposure (drug experimentation) to chronic exposure (compulsive drug use; Renthal and
Nestler 2008). The important hypothesis to emerge from examining addiction from a
learning and memory perspective is that addiction may be established by abnormal powerful
and persistent memory mechanisms leading to severe changes in behavior.

With regard to learning and memory, there is a process called experimental extinction in
which a conditioned response is weakened and thus the strength of the original memory is
greatly diminished. Recently, we and others have demonstrated that extinction of fear-
related memories can be facilitated by compounds called histone deacetylase (HDAC)
inhibitors (Bredy and Barad 2008; Bredy et al. 2007; Lattal et al. 2007). Even more recently
we have shown that HDAC inhibition can also facilitate the extinction of drug-seeking
behavior in a manner that significantly attenuates reinstatement (the reappearance of drug-
seeking behavior following exposure to drug-associated cues; Malvaez et al. 2009). Thus, it
may be possible to modulate memory processes such as extinction via epigenetic
mechanisms resulting in stable extinction of memories associated with fear/anxiety/phobias
as well as extinction of drug-seeking behavior. In this review we discuss recent advances in
our understanding of how epigenetic mechanisms contribute to the formation of long-term
memory and drug-seeking behavior and potentially how to apply that knowledge to the
extinction of memory and drug-seeking behavior.

The main epigenetic mechanism we discuss in this review is that of chromatin modification
because it is the best studied in learning and memory and thus the most relevant to a
discussion about the extinction of memory and drug-seeking behavior. Chromatin (the
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material of which chromosomes are made) is defined as the complex of genomic DNA,
histones, and nonhistone proteins found in the nucleus. The repeating subunit of chromatin
is called the nucleosome, which consists of 146 bp of DNA wrapped around a histone
octamer. This histone octamer consists of pairs of the core histone proteins H2A, H2B, H3,
and H4. The amino terminal tails of these core histone proteins are the sites of numerous
post-translational modifications (e.g., acetylation, methylation, phosphorylation) carried out
by an equally large number of histone-modifying enzymes (acetyltransferases, deacetylases,
methyltransferases, demethylases, kinases; see Kouzarides 2007 for review). The
manipulation of chromatin via the addition of functional groups to histone tails is referred to
as chromatin modification, which serves two main purposes: The first is to provide
recruitment signals for nonhistone proteins involved in transcriptional activation and
silencing (Kouzarides 2007; Taverna et al. 2007). The second is to relax chromatin by
disrupting contacts between nucleosomes and also interactions between histone tails and
genomic DNA (Kouzarides 2007). One main functional consequence of these modifications
is to modulate transcriptional regulation.

Of course, histone modification is only one of many mechanisms by which chromatin
structure can be regulated, with the ultimate aim of modulating transcription. Chromatin
structure can also be regulated via chromatin (or nucleosome) remodeling, which refers to
ATP-dependent enzymatic complexes (e.g., SWI/SNF, ISWI, INO80, NURD) that
restructure, mobilize, and remove nucleosomes to regulate access to genomic DNA for
transcriptional activation (Saha et al. 2006a, b). Chromatin structure may also be
manipulated and regulated via histone variant incorporation (e.g., H3.3, macroH2A, H2AZ,
H2AX) (Ausio 2006). Another level of regulation comes from the dynamic crosstalk
between histone modifications and DNA methylation (Vaissiere et al. 2008). In this review
we focus mainly on chromatin modification via histone acetylation because this area has
been examined more thoroughly with respect to learning and memory at this time.

Learning and memory as it relates to drug addiction
In this section we set the stage for why we believe that gaining an understanding of the role
of chromatin modification in learning and memory processes will not only elucidate
fundamental aspects of memory formation and storage, but also give tremendous insight into
facilitating extinction of memory and how it may relate to extinction of drug-seeking
behavior.

Drug addiction is defined as a behavioral syndrome characterized by compulsive drug
seeking and loss of control over drug intake regardless of medical illness, engaging in
criminal activity, and other adverse consequences (Hyman et al. 2006; Kalivas et al. 2005;
McLellan et al. 2000). Despite attempts to control drug intake and periods of prolonged
abstinence, addicted individuals remain at a high risk of relapse to drug use (Hyman et al.
2006; Kalivas et al. 2005; McLellan et al. 2000; Robinson and Berridge 2003). These long-
lasting effects may be accounted for by stable changes in cellular function leading to stable
changes in neuronal plasticity. Understanding the molecular and neural mechanisms
underlying the consolidation, persistence, and re-emergence of drug-seeking behavior is
crucial for the improvement of treatments for drug addiction (Hyman 2005; Jones and Bonci
2005; Robinson and Berridge 2003).

Previous research has identified the initial pharmacological actions of addictive drugs and
the homeostatic cellular adaptations triggered by drug exposure that lead to tolerance,
dependence, and withdrawal (Anagnostaras and Robinson 1996; Kalivas and Duffy 1993;
Nestler and Aghajanian 1997). Although the avoidance of withdrawal may perpetuate drug
use, it does not explain compulsive drug use. Relapse episodes occur after extended periods
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of abstinence, long after withdrawal symptoms have abated (Berke and Hyman 2000;
McLellan et al. 2000; Robinson and Berridge 2000).

Relapse to compulsive drug use is more readily triggered by exposure to cues such as
paraphernalia, places, or people previously associated with drug use (O’Brien et al. 1998).
Imaging studies have found that drug-associated cues elicit drug cravings that correlate with
activation of brain regions implicated in stimulus-reward associations (Childress et al. 1999;
Ehrman et al. 1992; Kilts et al. 2001). Animal models of drug-seeking behavior have shown
that drugs of abuse have the ability to strengthen the association between drug cues and
drug-related responses (Everitt and Robbins 2005; Hyman et al. 2006), providing insight on
how drugs of abuse are able to sustain drug-seeking behavior. In the addicted state, the acute
psychoactive effects alone do not maintain drug-related behavior; rather, drug-related
stimuli trigger drug-seeking behavior through associative learning. From these observations,
the dominant hypothesis is that the underlying molecular mechanisms of compulsive drug
use are similar to those that underlie long-term associative memory (Everitt et al. 2008;
Hyman 2005; Hyman et al. 2006; Robbins et al. 2008).

In the next sections of this review we examine the literature describing a role for chromatin
modification in learning and memory as well as drug addiction. These two topics have been
reviewed by Barrett and Wood (2008) with regard to learning and memory and by Renthal
and Nestler (2008) with regard to drug addiction. Thus, we highlight recent advances and
what we perceive to be the most important key questions at this time with regard to how
epigenetic mechanisms contribute to the formation of long-term memory and drug-seeking
behavior and potentially how to apply that knowledge to the extinction of memory and drug-
seeking behavior.

Role of chromatin modification in learning and memory
One of the main reasons the regulation of histone modifications came to the forefront in
examining the molecular mechanisms underlying learning and memory is that the regulation
of histone modification is strongly correlated with transcriptional regulation. Why is
transcriptional regulation so important to learning and memory? It is generally accepted that
long-term forms of synaptic plasticity, the strengthening in communication between
neurons, and long-term memory processes are dependent on transcription (reviewed in
Alberini 2009). Although transcription factors such as cAMP response element binding
protein (CREB) have been studied for quite a long time in the field of learning and memory,
the coactivators such as CREB-binding protein (CBP) were only recently examined
(reviewed in Barrett and Wood 2008). CBP is a potent histone acetyltransferase (HAT)
shown to be necessary for long-lasting forms of transcription-dependent synaptic plasticity
and long-term memory (Alarcon et al. 2004; Bourtchouladze et al. 2003; Guan et al. 2002;
Korzus et al. 2004; Oike et al. 1999; Oliveira et al. 2007; Stefanko et al. 2009; Vecsey et al.
2007; Wood et al. 2005, 2006). At the same time that CBP and histone acetylation were
identified as critical to the molecular mechanism involved in memory processes, histone
deacetylases (HDACs) were also proving to be critical for synaptic plasticity and memory
(Guan et al. 2002; Levenson et al. 2004; Yeh et al. 2004). In general, impairments in HAT
function and decreases in histone acetylation result in impaired synaptic plasticity and long-
term memory, whereas increasing histone acetylation (via HDAC inhibition) results in
enhanced synaptic plasticity and long-term memory. These initial studies demonstrated that
histone-modifying enzymes and histone modifications are pivotal to the molecular
mechanisms underlying long-term memory processes. We have reviewed this literature in
Barrett and Wood (2008), thus we continue here with the most recent advances.

Malvaez et al. Page 4

Mamm Genome. Author manuscript; available in PMC 2011 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although the best studied epigenetic mechanism involved in memory formation may be
histone acetylation, recent advances in understanding DNA methylation and how it controls
transcription required for memory formation have radically challenged previously held
notions. One of the most controversial issues is whether DNA methylation is reversible
(Szyf 2009). One of the first studies to address this issue with regard to synaptic plasticity
demonstrated that DNA within promoter regions of reelin and Bdnf (genes involved in
mechanisms of hippocampal synaptic plasticity) exhibited rapid and reversible changes in
methylation upon inhibition of DNA (cytosine-5) methyltransferase (DNMT) (Levenson et
al. 2006). In the same study the authors show that blocking DNMT inhibits hippocampal
long-term potentiation, a form of synaptic plasticity (Levenson et al. 2006). In a different
study, contextual fear conditioning was shown to increase expression of DNMT in the
hippocampus and infusion of a DNMT inhibitor into the hippocampus-blocked long-term
memory for contextual fear (Miller and Sweatt 2007). Miller and Sweatt (2007) also
demonstrated that fear conditioning is associated with rapid changes in methylation of DNA
in the promoter regions of PP1 (which is associated with preventing memory formation) and
reelin (which as mentioned above is associated with mechanisms of promoting synaptic
plasticity). Similar rapid changes in methylation have been demonstrated in regulating
exonspecific Bdnf transcripts during contextual fear learning (Lubin et al. 2008). In
summary, these landmark studies demonstrate that DNA methylation is dynamically
regulated and that these rapid changes in methylation are crucial for engaging long-term
synaptic plasticity and long-term memory formation.

One exciting possibility that interests many researchers is the potential for chromatin
modifications and DNA methylation being involved in establishing more stable transcription
profiles leading to stable changes in cellular function and ultimately persistent changes in
behavior. One approach used to demonstrate this idea as feasible is represented by work
done on the effects of maternal behavior on the adult behavior of offspring (Weaver et al.
2004). This research, performed in the labs of Michael Meaney and Moshe Szyf, essentially
demonstrates that maternal behavior causes changes in the DNA methylation patterns of the
exon 17 glucocorticoid receptor promoter of offspring and that this correlates with long-term
behavioral changes in those offspring (Meaney and Szyf 2005). This remarkable finding
suggests that epigenetic modifications can be stable and result in persistent changes in
behavior.

Currently, we have little understanding of the molecular mechanisms underlying long-term
memory lasting beyond 24 h. Considering the role of chromatin modification and DNA
methylation in cell-fate decisions and other stable epigenetic phenomena, it seems
reasonable that perhaps these mechanisms are also involved in establishing and maintaining
specific neuronal functions serving persistent memory storage. This possibility is only
beginning to be explored and presents seriously difficult problems in correlating epigenetic
modifications at single genes with their changed expression and ultimately changes in
behavior of the organism (as demonstrated with regard to the effects of maternal behavior
discussed above). However, there are some more simple approaches we can take in the
meantime.

For example, we recently took advantage of a behavioral task called novel object
recognition (NOR) to demonstrate that histone acetylation is involved in mechanisms that
can transform a learning event that does not normally result in long-term memory into an
event that is now remembered long-term (Stefanko et al. 2009). In the same study we also
show that histone acetylation is involved in generating a form of long-term memory that
persists beyond the point at which normal memory for NOR fails. This behavioral task is
well suited to address the role of histone acetylation in modulating long-term memory
formation because it is so easily manipulated in mice. In this task, a mouse is exposed to two
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of the same objects during training. Either 90 min (short-term memory) or 24 h (long-term
memory) later the mouse is given a retention test in the same context using one familiar
object and one novel object. The innate behavior of the mouse is to explore the novel object,
but that depends on the mouse having a memory for the familiar object. A short training
period results in no short- or long-term memory. However, mice treated with an HDAC
inhibitor following training still exhibit no short-term memory, but they do exhibit excellent
long-term memory (Stefanko et al. 2009). Thus, a learning event that does not normally
result in long-term memory is transformed into one that does. In a different experiment, a
longer training period was used that results in both short-term and 24-h long-term memory.
However, memory for the familiar object fails by 7 days post-training. Treating a mouse
with an HDAC inhibitor following this longer training period does not affect performance in
the 24-h retention test (most likely because animals have hit a ceiling), but animals
examined at 7 days continue to have excellent memory for the familiar object (Stefanko et
al. 2009). These data indicate that although the effects of HDAC inhibitors are transient (as
far as anyone can observe using the antibodies commercially available), the effects on long-
term memory and changes in behavior are much more persistent. One reason we examined
how HDAC inhibition modulates long-term memory for NOR is because every single
genetically modified Cbp mutant mouse studied to date exhibits significant long-term
memory impairments for NOR (but exhibit normal short-term memory; discussed in Barrett
and Wood 2008). This suggested that CBP and histone acetylation are pivotal for this type
of memory (see also Fontan-Lozano et al. 2008). The other main reason is that one can study
a time point at which normal memory fails for NOR allowing the persistence of memory to
be examined.

In the next section we explore how we and others have applied the ideas of modulating
memory formation and the persistence of memory to the extinction of memory. Extinction is
an experience-dependent change in behavior in which an animal learns that the relationship
between previously associated stimuli is severed. As we discuss below, chromatin
modification has been shown to be pivotal to extinction learning and the persistence of
extinction. With regard to learning and memory, we and others have shown that extinction
of fear memories can be facilitated by HDAC inhibition. With regard to drug-seeking
behavior, we have shown that extinction of cocaine-context-associated memories can be
facilitated by HDAC inhibition in a persistent manner that prevents reinstatement of the
drug-seeking behavior. These new findings provide novel insight into how HDAC inhibition
(and numerous FDA-approved HDAC inhibitors) may be used in combination with
behavioral extinction therapy to overcome fear and anxiety disorders as well as drug-seeking
behavior.

Chromatin modification and the extinction of fear-related memories
Anxiety disorders have been suggested to be the manifestation of maladaptive fear learning
in which a stimulus becomes a cue for fear and anxiety (Garakani et al. 2006). It has been
suggested that the inability to inhibit or extinguish these memories contributes to the
persistence of anxiety disorders. Much progress has been made in understanding the neural
basis of fear learning by studying the classical animal model of fear conditioning (Garakani
et al. 2006; Maren and Quirk 2004) in which fear memories are formed by pairing an
initially neutral stimulus to an unconditioned stimulus (e.g., a shock). Although significant
advances have been made, a major challenge in treating anxiety disorders is understanding
how to permanently suppress these associative emotional memories.

Currently, the most effective treatment for anxiety disorders is exposure therapy, which is a
form of extinction in which fear-evoking stimuli are presented in the absence of aversive
consequences (Norberg et al. 2008a; Rothbaum and Davis 2003; Shearer 2007). Extinction,
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first described by Pavlov (1927) nearly 100 years ago, is an experience-dependent process
by which the magnitude of a previously learned behavioral response is reduced. The
molecular mechanisms of extinction have been the focus of much investigation. Studies
have suggested that many of the molecular mechanisms involved in extinction are similar to
those in initial associative learning (Mueller et al. 2008). It is generally thought that
extinction involves new learning, which interferes with retrieval of the original memory but
does not erase that original memory. This idea is supported by “uncovering phenomena”
such as spontaneous recovery, renewal, and reinstatement that are able to reveal that the
original memory is intact (Bouton 1993; Pearce 1987). However, defining extinction by the
basis of whether the original memory can be retrieved is a specious argument because
persistent extinction would result in the original memory remaining intractable. This issue is
well described in reviews by Lattal et al. (2006) and Lattal and Stafford (2008).

Transcription, a process critical for long-term memory (Alberini 2009), has recently been
implicated in extinction. Several studies have used transcription inhibitors during extinction
training and observed completely blocked or partially impaired extinction (Mueller et al.
2008; Vianna et al. 2003; Yang and Lu 2005). These experiments support a role for
transcription in extinction, but as these drugs may have other effects, such as apoptosis
(Fraschini et al. 2005; Shim et al. 2004), they are not sufficient evidence to prove a role for
gene expression in extinction processes. Other studies have examined the mRNA levels of
specific genes following extinction. They have found that a number of genes are upregulated
during this period in brain regions that are implicated in extinction (Chhatwal et al. 2005,
2006; Heldt and Ressler 2007; Herry and Mons 2004; Mickley et al. 2007). Furthermore, the
promoter region of one of these genes, BDNF, has altered histone acetylation, a modification
that regulates transcription, following extinction (Bredy et al. 2007). These results together
suggest that gene expression plays a role in extinction learning, but more precise
experimental approaches are necessary to establish this link and understand how gene
expression is regulated.

The major goal of current studies is to enhance extinction of maladaptive fear memories. In
the basic research setting, a number of drugs have been used to enhance extinction training
(Ledgerwood et al. 2005; Walker et al. 2002; Woods and Bouton 2006). Based on the
similarity of exposure therapy to extinction, this has also been tested in the clinical setting,
although to a more limited degree. D-cycloserine (DCS), a partial NMDA agonist, has been
administered in combination with exposure therapy (Ressler and Mayberg 2007). These
studies have generally observed enhanced efficacy (Kushner et al. 2007; Ressler et al. 2004),
although some have not (Guastella et al. 2007; Storch et al. 2007). A meta-analysis of
studies of DCS treatment in combination with exposure therapy found that DCS is useful for
augmenting exposure-based therapy (Norberg et al. 2008b). Although exposure-based
therapies can reduce the expression of fear, extinguished fear often reappears. Thus,
approaches to enhancing extinction need to focus on methods that not only enhance the rate
of extinction but also generate a more persistent form of extinction.

One potential mechanism that may produce long-lasting behavioral effects is stable changes
in cellular function leading to stable changes in neuronal plasticity. Extinction is a form of
learning, and, as mentioned previously, learning involves modulation of gene expression by
histone modification, which can be altered by drugs such as HDAC inhibitors. Several
studies have examined the ability of HDAC inhibitors to enhance extinction. Lattal et al.
(2007) found that intrahippocampal or systemic administration of an HDAC inhibitor
enhanced extinction of contextual fear conditioning. Bredy et al. (2007; Bredy and Barad
2008) showed that administration of a variety of HDAC inhibitors enhanced extinction of
cued fear and that histone acetylation at promoters of specific genes is altered during
extinction. Due to the ability of HDAC inhibitors to enhance extinction, decreasing
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behavioral responses, and their ability to increase the persistence of memory (suggesting that
they may prolong the effectiveness of extinction), HDAC inhibitors provide an excellent
candidate as companions to extinction therapy in humans. The ability of HDAC inhibitors to
not only enhance memory but also to create a more persistent form of memory may allow
HDAC inhibitor-enhanced extinction to be resistant to the return of fear in the form of
spontaneous recovery, reinstatement, or renewal. Although further studies are needed to
show that this is the case for fear learning or anxiety, we have recently demonstrated this
phenomenon in the context of drug-seeking behavior (Malvaez et al. 2009). We now turn to
the role of chromatin modification in drug addiction.

Role of chromatin modification in drug addiction
Addictive drugs cause persistent changes in the structure and function of the brain’s
circuitry, leading to long-lasting changes in behavior. Understanding the mechanisms
responsible for the persistence of drug-associated behaviors is a major focus of addiction
research. As implicated in long-lasting forms of learning and memory, altered gene
expression is thought to also contribute to the development and persistence of drug addiction
(Hyman et al. 2006; McClung and Nestler 2008). Fast growing evidence supports the notion
that drugs of abuse may trigger chromatin modifications that modulate transcription profiles
involved in drug-induced neural and behavioral changes (McClung and Nestler 2008). These
studies have focused mainly on histone acetylation and/or phosphorylation. In this section
we focus on acetylation, as the effects of drugs of abuse on histone phosphorylation have
been recently reviewed (Brami-Cherrier et al. 2009).

Studies assessing the ability of addictive drugs to promote increases of global histone
acetylation in the central nervous system have provided conflicting results (Brami-Cherrier
et al. 2005; Cassel et al. 2006; Kim and Shukla 2006; Pandey et al. 2008; Shen et al. 2008).
This disparity might be due, at least in part, to the diversity in the treatment conditions, brain
regions analyzed, or even the subjects’ developmental stage. As illustrated by a recent study
(Pascual et al. 2009), the same drug treatment can produce a different result depending on
the subjects’ age (e.g., young, but not old, rats exhibit histone acetylation changes).
Furthermore, opposite changes are observed in adjacent brain areas within the same subject
(e.g., increased acetylation in the nucleus accumbens but decreased in striatum; Pascual et
al. 2009). How to interpret the meaning of changes in global histone acetylation is another
major problem, as these global changes may not have physiological relevance.

Technical limitations in measuring global histone acetylation may also contribute to the
conflicting results that have been observed. The complex and narrow pattern of histone
modifications triggered by drugs of abuse might not be captured if analyzing global changes.
Indeed, if histone acetylation changes regulate gene expression, it is conceivable that these
changes do not occur for the whole genome of heterogeneous neuronal populations of large
anatomical brain structures (i.e., striatum) but rather at the promoters of a restricted group of
genes of particular neuronal ensembles (Sanchis-Segura et al. 2009). A study by Kumar et
al. (2005) showed that acute administration of cocaine transiently increases acetylation of
histone H4 at the c-fos and fosB gene promoters but not at the promoters of other genes (i.e.,
β-tubulin, core histone H4 genes) whose expression is not altered by cocaine. These results
support the notion that changes in histone modification in response to drug exposure are not
global but are limited to specific genes.

Another perplexing issue is whether the most commonly used HDAC inhibitors (TSA,
SAHA, NaBut, VPA), which have nonspecific activity with respect to blocking HDACs,
may ultimately generate effects on behavior via specific molecular pathways. Although this
idea is counterintuitive, recent findings suggest that indeed nonspecific HDAC inhibitors

Malvaez et al. Page 8

Mamm Genome. Author manuscript; available in PMC 2011 August 18.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



may affect behavior via defined pathways. For example, Vecsey et al. (2007) demonstrated
that the nonspecific HDAC inhibitor TSA enhances long-term potentiation via a
CREB:CBP-dependent mechanism. Similarly, Guan et al. (2009) recently demonstrated that
the nonspecific HDAC inhibitor SAHA enhances memory via an HDAC2-dependent
mechanism. Together, these two studies suggest that nonspecific inhibitors may ultimately
cause cellular and behavioral changes via specific mechanisms. This idea is further
supported by gene expression data in Vecsey et al. (2007) in which the authors examined a
defined pool of 12 genes involved in learning and memory and showed that TSA affects
only the expression of Nr4a1 and Nr4a2 (these are immediate early genes and transcription
factors) in the hippocampus after fear conditioning. Thus, although nonspecific HDAC
inhibitors may have general effects on histone acetylation, the molecular mechanisms
involved in memory formation (such as CBP activity) become pivotal to the ability of
HDAC inhibitors to modulate memory via specific mechanisms.

Although still specific, chronic drug exposure has been shown to result in a different pattern
of histone modifications from that of acute drug exposure. In response to chronic cocaine
exposure, there is no change in histone H4 acetylation at the c-fos promoter, which
correlates with a return to basal levels of c-fos expression following chronic drug exposure
(Kumar et al. 2005). Furthermore, while acute drug exposure does not change histone H3
acetylation at the fosB promoter, chronic exposure does increase histone H3 acetylation at
this locus (Kumar et al. 2005). Interestingly, in response to the same chronic drug exposure,
the core histone proteins can be differentially modified at different loci of genes. For
example, histone H3 acetylation, but not histone H4 acetylation, increases at the promoters
of genes (i.e., cdk5, bdnf, npy) whose expression is induced by chronic cocaine exposure
(Freeman et al. 2008; Kumar et al. 2005). Histone H3 acetylation at the promoter of egr-1
has been shown to decrease with cocaine abstinence, which correlates with decreased egr-1
expression (Freeman et al. 2008). Taken together, these results highlight the complexity and
specificity of histone modifications triggered by drugs of abuse. Figure 1 illustrates the
different residues on the core histone proteins H3 and H4 that have been implicated in
regulating gene expression during learning and memory processes as well as following drug
exposure.

Studying specific changes in histone modifications has been useful in understanding how
drugs of abuse can trigger changes in transcription profiles. However, this kind of
correlational evidence might be insufficient when trying to assess the biological and
behavioral significance of histone modifications (Kouzarides 2007). A more causal
relationship between the ability of drugs to trigger changes in histone acetylation and the
functional consequences of these changes may be discerned by focusing on the enzymes
mediating those post-translational modifications (i.e., HATs and HDACs).

Recent studies have shown that CBP plays an important role in drug-related behaviors. A
study by Levine et al. (2005) showed that in response to cocaine CBP is recruited to the
promoter of FosB, a gene implicated in the persistence of drug-related behaviors, and
positively correlates with histone H4 acetylation and FosB expression. Similarly, it has been
reported that acute ethanol increases CBP immunoreactivity at the central and medial (but
not basolateral) amygdala where it promotes acetylation of histones H3 and H4 and
increases npy expression (Pandey et al. 2008). Furthermore, cbp mutant mice show
decreased sensitivity to chronic cocaine, which correlates with decreased CBP occupancy at
the FosB promoter and decreased histone H4 acetylation (Levine et al. 2005). Although the
role of CBP has been extensively studied with regard to synaptic plasticity and memory, few
studies have addressed its role in the mechanisms driving gene expression via histone
acetylation required for neuronal and behavioral changes associated with drugs of abuse.
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As described above, drugs of abuse can modulate histone acetylation at specific loci. One
mechanism by which acetylation can be modulated is by repressing HDAC activity. In
support of this view are studies that have shown decreased HDAC activity in response to
drug exposure (Pandey et al. 2008; Romieu et al. 2008). Through an enzymatic cascade that
involves different Ca2+/calmodulin-dependent kinases, repeated administration of cocaine is
associated with increased HDAC5 phosphorylation in the nucleus accumbens (Chawla et al.
2003; Mattson et al. 2005), facilitating its nuclear export and blocking its inhibition of gene
expression (Renthal et al. 2007). Conversely, addictive drugs can also recruit HDACs to
specific loci and suppress expression of particular genes. HDAC1 seems to be recruited by
DeltaFosB (which accumulates with repeated drug exposure) to promote the return of c-fos
expression to a basal level, as observed in response to chronic drug treatment (Renthal et al.
2008). Together, these studies provide substantial evidence indicating that drugs of abuse
affect the ability of HDACs to modulate gene transcription and, consequently, drug-induced
neuroplasticity.

Pharmacological manipulations of HDAC activity have also provided insight on the role of
histone acetylation in the development of addictive behavior. Studies using HDAC
inhibitors, which produce a hyperacetylated state, have shown that several behavioral effects
induced by drugs of abuse are enhanced. It has been demonstrated that administration of an
HDAC inhibitor increases cocaine self-administration (Sun et al. 2008) and also enhances
the ability of cocaine to produce conditioned place preference (CPP; Kumar et al. 2005;
Renthal et al. 2007; Schroeder et al. 2008). These results suggest that similar to observations
showing that HDAC inhibition enhances the acquisition of context-shock-associated
memories (Vecsey et al. 2007), HDAC inhibition may facilitate acquisition of context-drug
memories.

This conclusion has been further supported by elegant experiments involving genetic
manipulation of specific HDACs. Overexpression of HDAC4 or HDAC5 (but not HDAC9)
in the nucleus accumbens results in a dramatic reduction of cocaine-induced CPP (Renthal et
al. 2007). This finding, coupled with the observation that chronic cocaine exposure induces
HDAC5 phosphorylation and its nuclear export, provides a potential mechanism by which
the expression of HDAC5 target genes are disinhibited (Renthal et al. 2007). Experimental
evidence consistent with this potential mechanism has been provided from HDAC5
knockout mice, which show enhanced responses to chronic, but not acute, cocaine
administration (Renthal et al. 2007). Similarly, a recent study showed that selective deletion
of CaMKIV in the striatum resulted in increased HDAC4 phosphorylation in the striatum as
well as enhanced CPP after cocaine administration (Bilbao et al. 2008). Although the exact
underlying effect of CaMKIV deletion may be difficult to interpret, phosphorylation of
HDAC4 may drive enhanced nuclear export of HDAC4, increasing gene expression
contributing to enhanced CPP. Taken together, these results suggest that histone
deacetylases modulate the formation and/or consolidation of drug-associated memories.

Interestingly, both genetic and pharmacological manipulations of HATs and HDACs have
also revealed a role for histone acetylation in the development of drug-induced behavioral
(e.g., locomotor) sensitization. Several HDAC inhibitors have been shown to increase drug-
induced sensitization (Kalda et al. 2007; Sanchis-Segura et al. 2009; Shen et al. 2008; but
see also Romieu et al. 2008), an enhancement that was also observed in CaMKIV-deficient
mice exhibiting increased HDAC4 phosphorylation (Bilbao et al. 2008). These findings are
consistent with the observation that the development of cocaine-induced locomotor
sensitization is blunted in mice lacking one allele of the CBP gene (Levine et al. 2005). The
involvement of HATs and HDACs on behavioral sensitization strengthens the notion that
histone acetylation plays a modulatory role in drug-induced changes underlying the
development and maintenance of addictive behavior.
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In summary, growing evidence shows that drugs of abuse modify HAT and HDAC activity,
leading to changes in histone acetylation that modulates expression of genes implicated in
addictive behavior. Studies have demonstrated that chromatin modification triggered by
drugs of abuse modulate the formation and/or consolidation of drugassociated memories and
potentially contribute to the formation and persistence of drug-seeking behaviors. These
studies parallel findings in the field of learning and memory in which chromatin
modification via histone acetylation is pivotal for long-lasting forms of synaptic plasticity
and long-term memory formation. As discussed above for learning and memory, similar
mechanisms are involved in the acquisition and extinction of memory. These studies have
shown that HDAC inhibitors can facilitate the consolidation of both the initial memory and
extinction of the memory. In the next section we examine very recent findings that HDAC
inhibitors can facilitate extinction of drug-seeking behavior and significantly attenuate
reinstatement of drug-seeking behavior.

Chromatin modification and the extinction of drug-associated memories
As introduced in previous sections of this review, drugs of abuse modify brain motivation
and reward pathways as well as learning and memory processes (Everitt and Robbins 2005;
Hyman et al. 2006; Kalivas and O’Brien 2008). As drug exposure becomes chronic, more
persistent changes in behavior develop. The molecular mechanisms sustaining these
maladaptive memories are very persistent and cannot be readily reversed, influencing the
individual’s behavior and maintaining a high risk of relapse even after protracted drug
abstinence.

As with treatments for anxiety disorders, one approach to treating substance abuse is to use
extinction techniques in which the patient learns that the environmental cues or behavioral
responses no long produce the substance of abuse (Heather and Bradley 1990; O’Brien et al.
1990; Raw and Russell 1980). Although extinction therapy can reduce conditioned
responses elicited by drug-associated cues, these behavioral changes are readily reversed
(Conklin and Tiffany 2002). Therefore, it is important to focus on methods that enhance
extinction and also prevent the reinstatement of drug-seeking behaviors.

Recent studies have demonstrated that extinction of drug-related behaviors can be enhanced
pharmacologically (Taylor et al. 2009). Most of the research has been focused at the
synaptic level, more specifically on the role of different glutamatergic receptors in extinction
of drug-seeking behavior. The most studied pharmacological treatment has been the partial
N-methyl-D-aspartate (NMDA) glutamate receptor agonist D-4-animo-3-isoxazolalidone
(D-cycloserine, DCS). DCS facilitates extinction of cocaine- and alcohol-seeking behavior
(cocaine: Botreau et al. 2006; Paolone et al. 2009; alcohol: Vengeliene et al. 2008).
However, the ability of DCS to prevent the reversal of extinguished drug-seeking behavior
is inconsistent (Groblewski et al. 2009; Kelley et al. 2007; Paolone et al. 2009; Thanos et al.
2009; Vengeliene et al. 2008). Although problems exist with using DCS, this line of
research has demonstrated the enormous potential of using pharmacological agents to
modify extinction learning, which can then be used in conjunction with behavioral therapy.
In this regard, a recent study from our lab investigated the role of HDAC inhibitors in
facilitating extinction of drug-induced behaviors.

In this review we have summarized the available information suggesting that chromatin
modification is involved in different kinds of long-term memory, including drug-related
memories. We have recently started to investigate the role of chromatin-modifying enzymes
in the extinction of drug-seeking behavior. In a very recent study, we show for the first time
that extinction of cocaine-seeking behavior (as measured in the CPP paradigm) was
significantly facilitated in mice treated with the HDAC inhibitor sodium butyrate (Malvaez
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et al. 2009). We found that post-training HDAC inhibition administration resulted in a faster
and greater loss of preference for the cocaine-paired context. Moreover, HDAC inhibition
modulated extinction in such a way that priming-induced reinstatement of drug seeking was
also significantly attenuated. These results demonstrate that both the rate of extinction and
its persistence were enhanced by HDAC inhibition. Moreover, these results are consistent
with the observation that HDAC inhibition facilitates the consolidation of extinction of fear
memories.

The mechanisms underlying the ability of HDAC inhibition to enhance extinction are
currently unknown. Extinction is thought to involve new learning while preserving the
original memory intact (Bouton 2004; Bouton and Moody 2004). As described above,
several studies have suggested that HDAC inhibitors facilitate transcriptional activation
during memory consolidation. Therefore, one possibility is that facilitation of extinction via
HDAC inhibition promotes the consolidation of new associations formed during extinction.
Indeed, increased histone acetylation facilitates long-term memory formation of latent
inhibition (Levenson et al. 2004), a phenomenon theoretically linked to extinction (Bouton
2004). In any case, our findings on the ability of HDAC inhibition to facilitate extinction of
contextual fear (Bredy et al. 2007; Lattal et al. 2007) and facilitate extinction of drug-
seeking behavior (Malvaez et al. 2009) add to a growing body of evidence that indicates that
the fundamental mechanisms of gene expression regulation via chromatin modification are
involved in long-term synaptic plasticity and long-term memory processes as well as
persistent behavioral responses.

Considering the complexity of chromatin modifications, relating a specific chromatin
modification to long-lasting changes in behavior is a daunting task. Here we have reviewed
evidence indicating that epigenetic regulation is involved in long-term forms of memory
processes as well as persistent drug-induced behavioral responses. Chromatin-modifying
enzymes such as HATs and HDACs are clearly modulating both initial memory
consolidation and memory extinction processes. We believe that these enzymes can serve as
potential therapeutic targets for both anxiety and drug abuse disorders.
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Fig. 1.
This schematic illustrates the amino terminal tails of two of the core histone proteins,
histones H3 and H4, which are the sites of numerous post-translational modifications. Sites
marked with a modification (Me methylation, P phosphorylation, Ac acetylation) are those
that have been examined with regard to learning and memory processes and drug addiction,
respectively
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