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ABSTRACT

Direct binding by a transcription factor (TF) to the proximal promoter
of a gene is a strong evidence that the TF regulates the gene.
Assaying the genome-wide binding of every TF in every cell type
and condition is currently impractical. Histone modifications correlate
with tissue/cell/condition-specific (‘tissue specific’) TF binding, so
histone ChIP-seq data can be combined with traditional position
weight matrix (PWM) methods to make tissue-specific predictions
of TF–promoter interactions.
Results: We use supervised learning to train a naïve Bayes predictor
of TF–promoter binding. The predictor’s features are the histone
modification levels and a PWM-based score for the promoter.
Training and testing uses sets of promoters labeled using TF ChIP-
seq data, and we use cross-validation on 23 such datasets to
measure the accuracy. A PWM+histone naïve Bayes predictor using a
single histone modification (H3K4me3) is substantially more accurate
than a PWM score or a conservation-based score (phylogenetic motif
model). The naïve Bayes predictor is more accurate (on average)
at all sensitivity levels, and makes only half as many false positive
predictions at sensitivity levels from 10% to 80%. On average, it
correctly predicts 80% of bound promoters at a false positive rate
of 20%. Accuracy does not diminish when we test the predictor
in a different cell type (and species) from training. Accuracy is
barely diminished even when we train the predictor without using
TF ChIP-seq data.
Availability: Our tissue-specific predictor of promoters bound by
a TF is called Dr Gene and is available at http://bioinformatics.org
.au/drgene.
Contact: t.bailey@imb.uq.edu.au
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Chromatin immunoprecipitation combined with deep sequencing
(ChIP-seq) has been applied to the prediction of transcription factor
binding sites (TFBSs), allowing the creation of genome-wide maps
of in vivo binding sites. These maps, however, are both tissue-
and condition specific, requiring ChIP-seq to be performed in each
different tissue and condition of interest. The large number of tissues
and conditions and the associated cost suggest that there is a strong
continued role for in silico TFBS scanning. Fortunately, with the
advent of ChIP-seq and other technologies such as protein-binding
microarray (PBM), there has been a rapid expansion in the number
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of high-quality transcription factor (TF) binding site motifs available
as position weight matrices (PWMs), widening the applicability of
motif-based in silico prediction methods.

Most in silico methods that aim to predict TF binding (and hence
gene regulation), however, are not tissue- or condition specific
(which we will abbreviate as ‘tissue specific’). They base their TFBS
predictions solely on the genomic DNA of the organism, in some
cases also considering conservation in the DNA of related species.
This approach fails to account for tissue-specific epigenetic changes
to genomic DNA, which contribute to the well-known tendency of
these methods to overpredict binding sites. More to the point, TFBS
predictions that do not take dynamic epigenetic changes into account
cannot be tissue specific.

A major type of tissue-specific epigenetic change affecting TF
binding involves proteins (called histones) around which genomic
DNA is wrapped to form chromatin in the eukaryotic nucleus.
Approximately, one-third of histone protein sequence comprises a
‘tail’ that is subject to many different covalent post-translational
modifications. Approximately, 40 different histone modifications
have been mapped genome wide, allowing the link between
the different histone modifications and gene transcription to be
extensively studied. Generally, acetylation and phosphorylation are
indicative of active transcription; sumoylation is usually found in
transcriptionally silent regions; and methylation and ubiquitination
are implicated in both activation and repression of transcription
(Kouzarides, 2007). Together, a combination of only three of these
modifications was found to be highly predictive of gene expression
(Karlić et al., 2010).

Our goal is to predict the gene promoters bound by a given
TF in a given tissue. Several studies have shown that the use of
tissue-specific histone modification data can improve the prediction
of TFBSs. These studies, however, have either used a relatively
crude threshold filtering-based approach (Whitington et al., 2009),
or have made genome-wide, low-resolution predictions of binding
in 2–4000 bp regions (Won et al., 2010). Here, we expand on
previous research by developing a chromatin modification-based
tissue-specific predictor of TF binding in promoter regions. We
restrict our attention to binding in the region −300 bp to +100 bp
around the transcriptional start site (TSS). This allows us to more
confidently associate predicted TF binding events to a particular
TSS, and increases our confidence that the TF regulates a particular
gene. Focusing separately on TF binding in promoters (rather than
genome-wide) also eliminates the effects of differences in chromatin
modifications between active promoters and enhancers.

2 METHODS
Our novel method uses a naïve Bayes score that integrates PWM scores
and histone modification data to predict tissue-specific TF binding. We train
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and test our predictor using ChIP-seq data on histone modifications and
TF binding. We test versions of our predictor that utilize a range of histone
modifications in their input, but concentrate on the tri-methylation of lysine 4
on histone H3 (H3K4me3), which has been well-characterized as a marker of
transcriptionally active promoters (Barski et al., 2007; Guenther et al., 2007),
and has been shown to be useful for predicting TFBSs (Whitington et al.,
2009). We also use our predictor to test whether, in a given tissue, all TFs
recognize a broadly common H3K4Me3 signature, or if the signature varies
for different TFs. We then explore whether the H3K4Me3 signature learned
by our predictor varies across different tissues and species. We compare our
predictor to a range of other TF binding prediction methods, including PWM
scanning and two conservation-based methods (phylogenetic motif models
and Bayesian branch length scores).

2.1 Scoring methods
We study the ability of five different scores to predict if a promoter is
bound by a TF. We compare PWM (motif) scores, histone scores, our novel
PWM+histone naïve Bayes scores and two scores based on conserved motifs.

2.1.1 PWM scores Our tissue-independent estimate of the binding of TF
f to promoter p is the maximum PWM score of the promoter,

Mf (p) = max−300≤j≤+100
PWM(f ,p,j), (1)

where PWM(f ,p,j) is the log-likelihood ratio score of a binding site for f
starting at position j within promoter p (Stormo, 1998). We generate the
PWM for f from a position-specific frequency motif (see Section 2.2 for
motif sources) using a pseudocount of 0.01 and a 0-order background model.
We calculate the 0-order background model from all promoter sequences
in the the appropriate genome using fasta-get-markov (Bailey et al.,
2009). We use a slightly larger definition of promoters for computing the
background: −1000 bp to +200 bp relative to the TSS.

2.1.2 Histone scores Our tissue-dependent histone score for promoter p
in tissue t is the the sum of ChIP-seq tags for a histone mark hi assigned to
each base pair in the promoter,

Hi,t(p,t) =
100∑

j=−300

TCi(p,j), (2)

where TCi(t,p,n) is the number of mapped sequence tags for histone mark
hi in tissue t at position j in promoter p. See Section 2.2 for tissue types and
data sources and Table 2 for the set of histone modifications, h1,...,hn, that
we use.

2.1.3 PWM+histone Naïve Bayes scores Our tissue- and factor-
dependent score for binding of TF f to promoter p in tissue t is an estimate
of the posterior probability of binding conditioned on the PWM and histone
scores. We define this score as a function of a feature vector, X , containing
the PWM and histone scores for a promoter,

X =〈Mf (p),H1,t(p),...,Hn,t(p)〉,
and the Boolean random variable, Bpft , which is 1 if and only if the TF is
bound to the promoter in the given tissue. We can the write the naïve Bayes
score for promoter p for TF f and tissue t as

N(X) = P(Bpft=1 | Mf (p),H1,t(p),...,Hn,t(p)). (3)

To estimate the posterior probability on the right-hand side of Equation (3),
we make the standard naïve Bayes assumption that each of the features (the
PWM and histone scores) is conditionally independent of every other feature,
given the class (Bpft). Under these assumptions, the posterior probability is
equal to

F(p,f ,t,1)

F(p,f ,t,0)+F(p,f ,t,1)
,

where

F(p,f ,t,x) = P(Bpft=x)

×P(Mf (p)|Bpft=x)×
n∏

i=1

P(Hi,t(p)|Bpft=x) (4)

We would like to estimate the conditional score distributions in the second
line of the definition of F(p,f ,t,x) using Gaussian distributions. The PWM
scores fit reasonably well to a Gaussian distribution if we log transform
them (Supplementary Fig. S2), as we do for the histone scores. We would
also like the estimated distributions of PWM scores for different TFs and
histone scores in different tissues to be comparable. To achieve this, we
normalize all scores by converting them to z-scores:

M∗(p) = log(Mf (p))−µ̂f

σ̂f

H∗
i (p) = log(Hi,t(p))−µ̂i

σ̂i
,

where the sample means and SDs of the PWM scores and the log-transformed
histone scores are taken over all promoters for a single TF, f , or histone
modification, hi.

We also make the assumption that the prior probability of binding is
the same for all promoters, TFs and tissues and replace Bpft with the single
random variable B. We now define F∗(p,x) in terms of the transformed scores
and B as

F∗(p,x) = P(B=x)×P(M∗(p)|B=x)×
n∏

i=1

P(H∗
i (p)|B=x), (5)

and our naïve Bayes score becomes

N(X) = F∗(p,1)

F∗(p,0)+F∗(p,1)
.

We train our naïve Bayes score using a training set of labeled examples
of the form (X,B). We describe training in more detail in the Supplementary
Material. Our estimate of P(B=1) is just the proportion of the examples where
B=1, and our estimate of P(B=0) is 1-P(B=1). To estimate the conditional
densities of the transformed scores, we compute the sample mean and sample
variance of the score over the appropriate subset of examples, and use them
as the parameters (µ, σ) of a Gaussian density.

2.1.4 Conservation-based motif scores We study two different
conservation-based scores. The first conservation-based score is based on
the phylogenetic motif model concept (Hawkins et al., 2009), which uses a
PWM and a multiple alignment of homologous genomic regions to predict
conserved TF binding sites. We developed a score function based on the
Monkey algorithm (Moses et al., 2004), which we call ‘Monkey+’. We
selected Monkey as it was found to be most accurate in a recent comparison
of phylogenetic motif model scanners (Hawkins et al., 2009). Monkey does
not score every base in the genome nor every promoter due to alignment
gaps, however, so Monkey+ assigns each promoter the maximum of the
Monkey score or the PWM score (see Supplementary Material for further
detail). We use a tree and alignment of mouse (mm8) and human (hg18)
promoters from the multiz17way alignment (Kent et al., 2002). We find
that Monkey performs better with this limited subset of species than with
additional species included in the multiz17way alignment (data not shown).

Our second conservation-based score is the Bayesian Branch Length Score
(BBLS) as introduced by Xie et al. (2009). We use the multiz17way alignment
and tree from the UCSC Genome Browser (Kent et al., 2002). We eliminate
from our mouse (mm8) promoters those that do not align to a minimum
of one of the five species Mus musculus, Rattus norvegius, Homo sapiens,
Canis domesticus and Bos taurus, leaving 25 014 out of 28 355 promoters.
We use the maximum BBLS score for each promoter.
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Table 1. Overview of bound promoter reference sets

TF mES cells K562 cells GM12878 cells

Peaks PP (%) Prom+ Prom− Peaks PP (%) Prom+ Prom− Peaks PP (%) Prom+ Prom−

CTCF 39609 1.9 958 27397 65337 4.4 3184 39656 69505 5.2 3845 38995
Esrrb 21647 2.7 754 27601 – – – – – – – –
Gata1 – – – – 9463 4.4 511 42329 – – – –
Gata2 – – – – 12488 4.6 670 42170 – – – –
c-Myc 3422 19.8 969 27386 66453 11.4 9291 33549 – – – –
n-Myc 7182 20.5 2100 26255 – – – – – – – –
Egr1 – – – – 2846 44.6 1481 41359 407 73.2 400 42440
Srf – – – – 554 30.3 208 42632 480 44.8 269 42571
Usf1 – – – – 8839 20.0 2134 40706 2847 44.3 1542 41298
Klf4 10875 12.3 1887 26468 – – – – – – – –
Nfyb – – – – 15611 20.8 4040 38800 – – – –
STAT3 2546 5.1 170 28185 – – – – – – – –
Tcfcp2l1 26910 3.7 1357 26998 – – – – – – – –
Zfx 10338 12.2 1742 26613 – – – – – – – –
Jund – – – – 2325 20.0 601 42239 8034 1.2 106 42734
Yy1 – – – – 6464 38.9 3201 39639 – – – –

The table shows the numbers of core promoters labeled as bound (Prom+) or unbound (Prom−), the number of declared ChIP-seq peaks, and the percentage of these that occur
in our promoter regions (PP), for each TF–tissue pair. The total number of promoters (bound and unbound) is 28 355 in mES cells (mm8) and 42 840 in K562 and GM12878 cells
(hg18). Missing entries correspond to TF–tissue pairs for which no ChIP-seq data is available.

2.2 Constructing reference sets of bound promoters
We use TF ChIP-seq data from a number of tissues to evaluate our scoring
methods. For a given TF–tissue pair, we define the set of ‘bound’ core
promoters as those containing the mid-point of a ChIP-seq peak, and all other
core promoters as ‘unbound’. We construct 23 sets of labeled promoters,
where each set specifies the bound promoters for a given TF–tissue pair.
Table 1 lists the TF–tissue pairs for which we construct labeled promoter
sets. The three tissues we study come from mouse [E14.5 embryonic stem
cells (mES)] and human (K562 and GM12878 cell lines). Our definition of
the core promoter of a gene is the genomic region from 300 bp upstream
to 100 bp downstream of the TSS. For each organism, we use all of the
TSSs defined in the ‘knownGenes’ track of the UCSC Genome Browser
(Hu et al., 2008). For mouse (mm8) we have 28 355 core promoters and for
human (hg18) we have 42 840.

To label promoters in the mES cell reference sets, we use published ChIP-
seq peak data for CTCF, Esrrb, Klf4, Stat3, Tcfcp2l1, Zfx, c-Myc and n-Myc
from Chen et al. (2008). We exclude a number of TFs for which Chen
et al. (2008) were unable to find a motif, or found a composite motif. To
label promoters in the K562 and GM12878 cell line reference sets, we use
the ENCODE project (Thomas et al., 2007) transcription factor ChIP-seq
‘narrowPeak’ data. We select 10 TFs with known binding site motifs for
which TF ChIP-seq data is available in K562 cells (CTCF, c-Myc, Egr1,
Usf1, Srf, Jund, Nfyb, Gata1, Gata2 and Yy1), and 5 TFs in GM12878 cells
(CTCF, Egr1, Jund, Srf and Usf1). We give a summary description of each
of our labeled reference sets in Table 1.

2.3 PWM, sequence and histone data
For calculating PWM scores, we require a PWM for each TF of interest
as well as genomic sequence for each of our core promoters. We obtain
genomic sequence for each of the core promoters defined above for mouse
(mm8, February 2006) and human (hg18, March 2006) using the UCSC
Genome Browser (Kent et al., 2002). For the TFs CTCF, Esrrb, Klf4, Stat3,
Tcfcp2l1, Zfx, c-Myc and n-Myc, we use the position-specific frequency
motifs from Chen et al. (2008). For the remaining TFs, we use position-
specific frequency motifs from JASPAR (Portales-Casamar et al., 2010). We
give further details of the TFs and their PWMs in Supplementary Table S4.

For calculating histone scores, we use histone modification ChIP-seq data
from each of the three tissues of interest. For the GM12878 and K562 cell
lines from the ENCODE project, we use the ENCODE project’s histone
modification ChIP-seq data for each of these tissues (Thomas et al., 2007).
For the E14.5 mES cells, we use histone modification data for V6.5 mouse
ES cells (Meissner et al., 2008; Mikkelsen et al., 2007). Although at a slightly
different developmental stage, these data have been shown to be informative
for predicting TF binding in ES14.5 mES cells (Whitington et al., 2009;
Won et al., 2010). We use the published ‘wig” files, which contain smoothed
counts of mapped sequence tags for bases at a 25 bp increments, and we
assign this value to the tag count variable [TCi in Equation (2)] for each base
pair encompassed.

2.4 Implementation
We implement each of our scoring methods (except Monkey+ and BBLS)
as a downloadable tool, which we call Dr Gene. Dr Gene is written in
Perl and makes use of the e1071 R package (Dimitriadou et al., 2005), and
AMA from the MEME suite (Bailey et al., 2009). The distribution of Dr
Gene includes our 23 annotated reference sets, core promoter sequence data
(FASTA format) for human and mouse promoters, histone scores for each of
the three tissues and the PWMs we use.

3 RESULTS

3.1 Predicting the promoters bound by a TF using
PWM+histone naïve Bayes scores

Our initial experiments to determine the efficacy of PWM+Histone
naïve Bayes scoring use ‘hold-one-TF-out’ cross-validation. This
approach is intended to estimate how accurately a particular scoring
function would predict which promoters are bound by a given TF
(for which we have a PWM) in a given tissue. It assumes that we
possess ChIP-seq data for one or more histone modifications and
TF ChIP-seq for one or more TFs, which we can use to train a
naïve Bayes score. In ‘hold-one-TF-out’cross-validation, we choose
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Table 2. Overall accuracy of TF–promoter binding predictions

Scoring method Tissue type Mean AUC

GM12878 (5 TFs) K562 (10 TFs) mES (8 TFs) For all tissues

Naïve Bayes PWM+H3k4me2 0.85 (0.03) 0.90 (0.01) 0.85 (0.01) 0.87 (0.02)
Naïve Bayes PWM+H3k4me2, H3k4me3 0.86 (0.03) 0.89 (0.01) 0.87 (0.01) 0.87 (0.01)
Naïve Bayes PWM+H3k4me3 0.86 (0.03) 0.90 (0.01) 0.88 (0.01) 0.88 (0.01)
Naïve Bayes PWM+H3k9ac 0.85 (0.03) 0.89 (0.01) – 0.87 (0.02)
Naïve Bayes PWM+H3k27ac 0.84 (0.04) 0.88 (0.01) – 0.86 (0.02)
Naïve Bayes PWM+H3k9ac, H3k27ac 0.86 (0.03) 0.88 (0.01) – 0.87 (0.01)
Naïve Bayes PWM+H3k4me2, H3k4me3, H3k9ac, H3k27ac 0.86 (0.02) 0.88 (0.01) – 0.87 (0.01)
Naïve Bayes Monkey++H3k4me3 – – 0.87 (0.01) 0.87

PWM 0.74 (0.06) 0.77 (0.04) 0.82 (0.02) 0.77 (0.02)
H3K4me3 0.76 (0.02) 0.81 (0.02) 0.84 (0.02) 0.80 (0.02)
Monkey+ – – 0.79 (0.02) 0.79
BBLS – – 0.79 (0.02) 0.79

The table shows the mean AUC of different methods for scoring promoters. Results are shown for predictions in three different tissues. The number of TF ChIP-seq binding datasets
used in each tissue is indicated. Results for naïve Bayes scores are the average AUC in a ‘hold-one-TF-out’ experiment. Results for the other scoring methods are the mean of the
AUC values for each of the TFs used in the given tissue. All results are rounded to two decimal places. Standard errors are given in parentheses. Highest accuracies for a given tissue
and overall are in bold font. Missing data for mES is due to lack of availability of histone acetylation data. Monkey+ and BBLS were only tested in mES cells. For a complementary
table showing sensitivity at a false positive rate of 1%, see Supplementary Table S1.

a single tissue and one or more histone modifications, and train a
naïve Bayes score using the chosen histone data and the ChIP-seq
binding data for all but one TF. We then measure the accuracy of
the naïve Bayes score by computing the ROC curve (Sing et al.,
2005; Swets, 1988) for the held-out TF. To get a single measure of
the accuracy of the scoring function, we compute the area under
the ROC curve (AUC). We repeat this process, holding out each
TF in turn, and average the individual AUC values. This gives
us the cross-validated AUC for the given scoring function in the
given tissue. In Table 2, we show the results for naïve Bayes
scores that use the individual histone modifications H3K4me2,
H3K4me3, H3K9ac, H3K27ac and several combinations thereof
in mES, GM12878 and K562 cells. For comparison, Table 2 also
shows the average AUC of each of the other scoring methods—
PWM scores, histone scores and the conservation-based Monkey+
and BBLS scores—for the same TFs in each of the three tissues.
(These AUC values are not cross-validated because those scores do
not require training.)

In each of the three tissues, predicting which promoters are bound
by a TF using a PWM+histone naïve Bayes score is substantially
more accurate on average than using just the PWM score or
either conservation-based score (Table 2). Over all tissues, the
mean accuracy (AUC) increases from 0.77 using PWM scores to
0.88 using the PWM+H3K4me3 naïve Bayes scores. Naïve Bayes
scores using any of the histone modifications and combinations
of modifications tested give similar improvements in prediction
accuracy, with mean AUC over all three tissues between 0.86 and
0.88. In all three tissues, naïve Bayes scores using the single histone
modification H3K4me3 works on average as well as or better than
all other naïve Bayes scores in this experiment, and is available in
all three tissues.

The relative performance of the different prediction methods is
the same when we use sensitivity at 1% false positive rate (FPR) to
measure accuracy (Supplementary Table S1). Under this metric, the
PWM+histone naïve Bayes score has sensitivity between 20% and

25%, double that of both the PWM score and the two conservation-
based scores (13% for Monkey+, 11% for BBLS).

The PWM+histone naïve Bayes score actually has higher
accuracy (AUC) than the PWM score in 22 of the 23 folds of
cross-validation (Supplementary Table S2). That is, for all but one
of the held-out TFs, the PWM+histone naïve Bayes score trained
using the ChIP-seq binding data for the remaining TFs is more
accurate at predicting which promoters it binds in a given tissue. This
improvement in accuracy is statistically significant (P<0.00001,
sign test).

The single TF-tissue combination for which the PWM score is
more accurate that the PWM+histone naïve Bayes score is CTCF
in mES cells. CTCF is atypical of the TFs in this study, as it is
an insulator-binding protein, suggested to be involved in chromatin
remodeling (Fu et al., 2008). The CTCF motif also has a very
high information content. Not surprisingly, both the PWM score
and the H3K4me3 score distributions are quite different for CTCF
than for the remaining TFs (Supplementary Table S3). As a result,
the naïve Bayes score trained using hold-one-TF-out is based on
estimates of the PWM and H3K4me3 score distributions that are
quite inaccurate when used to predict binding by CTCF. On the other
hand, the PWM score is not trained, so its accuracy as a predictor
is not affected by this problem. As can be seen in Supplementary
Table S3, the correct mean of the H3K4me3 score for the CTCF-
bound promoters is much lower than that of the other TFs (∼0.7
versus ∼1.0, respectively). Similarly, the correct mean of the PWM
score for the CTCF-bound promoters is much higher (∼1.8 versus
∼1.0). As a result, training with CTCF left out results in a naïve
Bayes score whose two component features are both poor predictors
of binding by CTCF. Combining these two features into a single
naïve Bayes score [Equation (5)] results in a score that is less
accurate than the (untrained) PWM score.

It is interesting to note from Table 2 that the H3K4me3 score,
which does not use the PWM for a particular TF when scoring
promoters, is at least as accurate at predicting bound promoters in
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a given tissue as the PWM score. In our experiments, the AUC of
the H3K4me3 score is higher than that of the PWM score when
predicting TF binding in each of the three tissues. The average AUC
for the three tissues is 0.80 for the H3K4me3 score, and only 0.77 for
the PWM score. This highlights the ability of histone modification
data alone to indicate which promoters are available for binding in a
given tissue. Although the PWM score and H3K4me3 have similar
predictive accuracies, they are essentially orthogonal since PWM
scores are the same for all tissues and H3K4me3 scores are the
same for all TFs. This makes it possible for the PWM+H3K4me3
to achieve higher predictive accuracy than either of its component
scores (0.88).

We find no evidence that conservation-based scores are more
effective than PWM scores for predicting tissue-specific TF-bound
promoters. The mean accuracy (AUC) of both BBLS and Monkey+
scores in the mES cell experiments is 0.79, no better than that
of PWM scores (0.82), as shown in Table 2. What is more,
Monkey+ scores are less accurate than PWM scores at predicting
bound promoters in all the individual mES experiments. Similarly,
BBLS scores are less accurate at predicting bound promoters for
7 of 8 individual mES experiments (Supplementary Table S1).
Nonetheless, we wondered if a conservation + histone score might
be more effective than a PWM+histone score, so we trained a
Monkey++H3K4me3 naïve Bayes score. Somewhat surprisingly,
the average accuracy of the Monkey++H3K4me3 naïve Bayes
score in the mES experiments (0.87) is no better than that of
the PWM+H3K4me3 naïve Bayes score (0.88) (Table 2). We
thus found no evidence that scores combining conservation and
histone modification are more accurate than PWM+histone scores
for predicting promoters bound by a TF in a specific tissue.

3.2 Naïve Bayes score accuracy at different levels of
sensitivity

Predictions of promoters bound by a TF made by the our
PWM+H3K4me3 naïve Bayes scores are in fact more accurate (on
average) at all sensitivity and specificity levels compared with PWM
scores, as shown by the ‘average ROC’ curves in Figure 1. Whereas
AUC combines the accuracy of a scoring function over all prediction
sensitivities into a single number, Figure 1 shows how the average
specificity of three different scoring methods—PWM+H3K4me3
naïve Bayes scores, PWM scores and H3K4me3 scores—varies with
sensitivity. Each point on one of these curves shows the mean false
positive rate achieved by the particular scoring function at a given
true positive rate (sensitivity). We create ‘average ROC’ curves for a
naïve Bayes score by averaging the ROC curves constructed above
during ‘hold-one-TF-out’ cross-validation. For each score function,
all ROC curves for all left-out TFs and all tissues are combined in
a single averaging process, rather than first averaging over single
tissues and then combining, as we do for AUC.

The fact that the ‘average ROC’ curve for the PWM+H3K4me3
naïve Bayes scores is above the curves for PWM scores and
H3K4me3 scores in Figure 1 indicates that the naïve Bayes scores
are more accurate (on average) for predicting binding of a TF to
a promoter at all sensitivities and all specificities. Conversely, the
fact that the ‘average ROC’ curves for the PWM scores and the
H3K4me3 scores cross is due to PWM scores being more accurate
at low sensitivity levels, but less accurate at high sensitivity levels,
than H3K4me3 scores. Careful examination of Figure 1 reveals that

Fig. 1. Accuracy of TF–promoter binding predictions at all sensitivities.
Each curve shows the ‘average ROC’ of a different scoring function.
Averages are over the ROC curves for a total of 23 TF–tissue combinations.
Error bars show standard error. The values for the PWM+H3K4me3 predictor
are cross-validated using the ‘hold-one-TF-out’ approach. Inset expands
lower left corner of plot.

the PWM+H3K4me3 naïve Bayes score makes about half as many
false positive predictions at sensitivity levels from 10% to 80%.
For example, at high sensitivity (80%), the false positive rates are
20% for naïve Bayes scores, and 40% for PWM scores. Similarly,
at a false positive rate of 1%, the PWM+H3K4me3 naïve Bayes
score has a mean sensitivity of 21%, compared to 13% for PWM
scores (Supplementary Table S1). In terms of the actual numbers
of predictions, the PWM+H3K4me3 naïve Bayes and PWM scores
make on average 56 and 117 false positive predictions, respectively,
when predicting 50 promoters that are actually bound (true positives)
by a given TF (data not shown).

3.3 Training naïve Bayes scores: how many TF
ChIP-seq datasets are enough?

The results we have described thus far (Table 2 and Fig. 1) show the
predicted accuracy of the naïve Bayes score when it is trained using
TF ChIP-seq binding data from (on average) about seven TFs. We
wondered whether the accuracy of the PWM+histone naïve Bayes
score would be greatly reduced if ChIP-seq binding data for fewer
TFs were available for training the score. To investigate this, we
perform a series of ‘hold-one-TF-out’ cross-validation experiments
using binding and histone data from mouse ES cells. We find that
the prediction accuracy of the PWM+H3K4me3 naïve Bayes score
(mean cross-validated AUC) decreases only slightly (from 0.88 to
0.87) when we reduced the number of TF ChIP-seq datasets used in
training from seven to one (Fig. 2). This result suggests that ChIP-
seq binding data for only a single TF is sufficient to train our naïve
Bayes score to predict promoters bound by other TFs in a given
tissue.
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Fig. 2. A single TF ChIP-seq dataset is sufficient for training the
PWM+H3K4Me3 naïve Bayes score. The plot shows the average cross-
validated ROC and AUC of the PWM+H3K4Me3 naïve Bayes score trained
on 1, 2, 4 or 7 TF ChIP-seq datasets from mES cells. Each ROC curve is
the average of

(8
n

)×(8−n) individual ROC curves. Each individual ROC
curve is estimated by applying a predictor trained using n of the 8 mES TF
ChIP-seq datasets to one of the other 8-n held-out TF datasets. Error bars
show standard error.

Table 3. Accuracy of PWM+H3K4me3 naïve Bayes scores trained without
using TF ChIP-seq data

‘Bound’ criteria ‘Unbound’ criteria Mean AUC
(standard error)

H3K4me3 PWM PWM

Top 10% Top 100 Random 1000 0.83 (0.01)
Top 10% Top 250 Random 2500 0.85 (0.01)
Top 10% Top 500 Random 5000 0.86 (0.01)
Top 10% Top 1000 Random 10 000 0.85 (0.01)

Naïve Bayes trained using TF ChIP-seq 0.88 (0.01)
PWM scores 0.77 (0.02)

Training sets are constructed by labeling promoters as ‘bound’ or ‘unbound’ using the
criteria shown. ‘Bound’ criteria are applied sequentially, using the scores indicated
(columns 1 and 2). ‘Unbound’ criterion applies to the bottom 50% of promoters sorted
by PWM score (column 3). The AUC (column 4) is averaged over a total of 23 TF–tissue
combinations, and the best result is shown in bold. For comparison, the last two rows
show the mean cross-validated AUC of PWM+H3K4me3 naïve Bayes trained using
ChIP-seq data, and the average AUC of PWM scores (repeated from Table 2).

Surprisingly, it is actually possible to train a PWM+histone naïve
Bayes score with no TF ChIP-seq data and yet achieve a substantial
improvement in prediction accuracy compared with using PWM
scores (Table 3). The idea is to use a combination of PWM scores and
histone scores (but no TF ChIP-seq data) to create a training set. We
label promoters with high PWM and histone scores as ‘bound’ in the
training set, and promoters with very low PWM scores as ‘unbound’.
We create a separate training set for each TF using its PWM, as
there no need to perform cross-validation to estimate the accuracy
of the approach. We train the naïve Bayes score as before but using
the ‘synthetic’ training set rather than promoters labeled using TF
ChIP-seq, and then compute the ROC curve of the score using the

TF ChIP-seq derived labels. This training approach is similar to
the one used in recent work that trained hidden Markov models
for predicting TF binding to large (2 kb) enhancer and promoter
regions (Won et al., 2010).

We tested four protocols for training PWM+H3K4me3 scores
without TF ChIP-seq data and found that the best of them resulted in
mean AUC of 0.86, nearly as good as the mean cross-validated AUC
(0.88) achieved by PWM+H3K4me3 naïve Bayes trained using TF
ChIP-seq data to label the training examples (Table 3). In all four
protocols, we constructed a labeled set of ‘bound’ examples by first
selecting the top 10% of promoters according to H3K4me3 score
in a given tissue, and then choosing the top n of them according to
PWM score. The values of n are given in column two of Table 3.
All ‘unbound’ sets were constructed by randomly sampling m=10n
promoters from among the bottom 50% of promoters, sorted by
PWM score. In each protocol, the ratio of ‘bound’ to ‘unbound’
examples is thus 1:10, which is approximately equal to the average
ratio in our 23 datasets when TF ChIP-seq data is used to label
the promoters. In these experiments, the protocol using the top 500
promoters according to PWM score as the ‘bound’ set achieves the
highest accuracy, performing substantially better than using PWM
scores alone to predict promoters bound by a given TF in a given
tissue (AUC = 0.86 and AUC = 0.77, respectively; sensitivity at 1%
FPR is 22% and 13%, respectively). It would therefore appear
that zero TF ChIP-seq datasets are (nearly) enough for training
PWM+histone naïve Bayes scores.

3.4 Predicting TF-bound promoters in novel tissues
Despite the surprising accuracy of naïve Bayes scores trained
without TF ChIP-seq data, we have shown that scores trained using
TF ChIP-seq data from the tissue in which we wish to predict TF
binding are somewhat more accurate. But what if no TF ChIP-
seq data is available in the tissue of interest? We wondered if an
accurate PWM+histone naïve Bayes score could be trained using
histone and TF ChIP-seq data from tissue ‘A’ and then applied to
predicting TF-bound promoters in tissue ‘B’. (Naturally we would
use histone ChIP-seq data from tissue ‘B’during the prediction step.)
The answer is that PWM+histone naïve Bayes scores trained in this
way are nearly as accurate as those trained with ChIP-seq data from
the tissue of interest.

We measure the accuracy of PWM+H3K4me3 naïve Bayes scores
trained and tested on different tissues using ‘hold-one-tissue-out’
cross-validation. We choose one of our three tissues as the tissue of
interest, and train a naïve Bayes score using all TF and H3K4me3
ChIP-seq data from the other two tissues. Thus, each naïve Bayes
score is trained with all the labeled data for about two-thirds of our
23 TF–tissue combinations. We then measure the accuracy (AUC)
of the trained naïve Bayes score at predicting the promoters bound
by a single TF in the (left-out) tissue of interest. To avoid bias, we
omit from the training set any data for the TF used in this accuracy
measurement. This only affects the six TFs for which we have ChIP-
seq binding data in multiple tissues (Supplementary Table S2). The
result of this experiment is that the mean AUC is identical with that
achieved when we train and test in the same tissue (AUC = 0.88).
What is more, among the 23 TF–tissue combinations tested, the
naïve Bayes scores trained using different tissues often have higher
AUC than those trained using the same tissue (6 out of 23 cases, see
Supplemental Table S2). These results suggest that PWM+histone
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naïve Bayes scores can be used to predict TF–promoter binding in
tissues other than those for which they were trained.

4 DISCUSSION
Our new method for predicting if a promoter is bound by a TF
computes a score that combines the promoter’s maximum PWM
score and the total ChIP-seq tag counts of histone modifications
within the promoter in the tissue of interest. A single histone
modification—H3K4me3—appears to be as informative about
the presence of TF binding as any of the combinations of
histone modifications we tested. This means that our approach
is immediately practical, since genome-wide ChIP-seq data for
H3K4me3 in many tissues is already available. The software we
make available (Dr Gene) can be used to make tissue-specific
predictions of binding of a TF for which a PWM is available and
for which H3K4me3 ChIP-seq data exist in the tissue of interest.
As the results in Table 3 show, the accuracy of predictions will be
improved if TF ChIP-data are available for at least one TF in the
tissue of interest, but this is not necessary. Our predictor can be
trained and used in tissues for which no TF ChIP-data yet exists.

The effectiveness of combining PWM scores with H3K4me3
scores for predicting TF binding is consistent with our previous
work (Whitington et al., 2009). There, we filtered out regions
with low H3K4me3 scores, and then made binding predictions
based on PWM scores. A drawback of this earlier approach is that
regions with marginal H3K4me3 scores are treated as ‘unbound’
without considering their PWM score at all. Our current method
removes this drawback, and also focuses exclusively on predicting
bound promoters. The surprising ability of the H3K4me3 score of a
promoter to predict whether it is bound by any TF (see green curve
in Fig. 1) indicates that this score could function as an extremely
good ‘prior’ for predicting TF binding.

Evaluating in silico methods for predicting TF binding is
problematic. We have chosen to consider all core promoters as
‘bound’ that contain the midpoint of a TF ChIP-seq peak. However,
some ChIP-seq peaks may represent indirect binding by the TF, so
the core promoter may not contain a strong match to the TF’s PWM.
It is tempting, therefore, to remove promoters lacking strong PWM
matches from the list of bound core promoters in a given reference
set. We feel that doing so would give an unfairly optimistic estimate
of the accuracy of PWM-based prediction methods, including our
naïve Bayes score. Reference sets constructed using a given PWM
method would be biased in favor of that PWM, since any core
promoters that are directly bound by the TF but do not match the
(possibly inaccurate) PWM would be eliminated. Our method of
evaluation therefore considers all promoters as bound for which
TF ChIP-seq data indicates binding within the core promoter, even
though such binding may be indirect, and thus impossible for the
TF’s PWM to detect. In addition, we recognize that some directly
bound promoters will be labeled as ‘unbound’ in our reference sets
due to missing peaks caused by limitations in the raw ChIP-seq data
(e.g. sequencing depth), and by the accuracy of the algorithms used
to determine ChIP-seq peaks.

Both conservation-based prediction approaches that we test here
are on average actually less accurate than using a PWM to predict the
core promoters bound by a TF. This does not necessarily mean that
conservation-based predictions of TF binding sites are less accurate
than PWM-based predictions if one is trying to predict all sites bound
in any tissue. However, because we use tissue-specific ChIP-seq

data to label core promoters, sites that are not bound in the tissue of
interest, but are highly conserved because of function in a different
tissue or tissues, will be treated as false positives. This potentially
explains the slightly lower accuracy of the conservation-based
prediction methods tested here. It is still somewhat unexpected that
combining a conservation-based binding score with the H3K4me3
score (Monkey++H3K4me3) is no more accurate than the non-
conservation-based PWM+H3K4Me3 score. This may be due to
characteristics of our reference sets—such as the problems of
indirectly bound promoters and missing peaks discussed above—
limiting the accuracy attainable by any PWM-based prediction
method.
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