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ABSTRACT

Motivation: Human genomic variability occurs at different scales,
from single nucleotide polymorphisms (SNPs) to large DNA
segments. Copy number variations (CNVs) represent a significant
part of our genetic heterogeneity and have also been associated with
many diseases and disorders. Short, localized CNVs, which may play
an important role in human disease, may be undetectable in noisy
genomic data. Therefore, robust methodologies are needed for their
detection. Furthermore, for meaningful identification of pathological
CNVs, estimation of normal allelic aberrations is necessary.
Results: We developed a signal processing-based methodology
for sequence denoising followed by pattern matching, to increase
SNR in genomic data and improve CNV detection. We applied
this signal-decomposition-matched filtering (SDMF) methodology to
429 normal genomic sequences, and compared detected CNVs to
those in the Database of Genomic Variants. SDMF successfully
detected a significant number of previously identified CNVs with
frequencies of occurrence ≥10%, as well as unreported short CNVs.
Its performance was also compared to circular binary segmentation
(CBS). through simulations. SDMF had a significantly lower false
detection rate and was significantly faster than CBS, an important
advantage for handling large datasets generated with high-resolution
arrays. By focusing on improving SNR (instead of the robustness of
the detection algorithm), SDMF is a very promising methodology for
identifying CNVs at all genomic spatial scales.
Availability: The data are available at http://tcga-
data.nci.nih.gov/tcga/
The software and list of analyzed sequence IDs are available at
http://www.hsph.harvard.edu/∼betensky/
A Matlab code for Empirical Mode Decomposition may be found at:
http://www.clear.rice.edu/elec301/Projects02/empiricalMode/code
.html
Contact: caterina@mit.edu
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1 INTRODUCTION
Genome-wide DNA aberrations (duplications, deletions and
rearrangements) are part of the normal human genetic variability.
Copy number variations (CNVs) occur at thousands of loci across

∗To whom correspondence should be addressed.

the genome (Carter, 2007; Iafrate et al., 2004; Redon et al.,
2006). To date, over 66 000 DNA aberrations at ∼16 000 loci have
been identified [Database for Genomic Variants (DGV)]. CNVs
may occur in >10–20% of the genome (Beckmann et al., 2007;
Zhang et al., 2009), and pairwise comparisons of human genomes
suggest that they may differ by at least 1%, a 10-fold higher
percentage than the previously estimated 0.1% based on single
nucleotide polymorphism (SNP) incidence (Beckmann et al., 2007).
CNVs have also been associated with many diseases and disorders
(Kalliomeni et al., 1992; Sebat et al., 2007), and may specifically
play an important role in sporadic diseases (Lupski, 2007).

Array comparative genomic hybridization (aCGH) is a high-
resolution technology that enables simultaneous interrogation of the
entire genome. It involves hybridization of differentially fluorescent
dye-labeled reference and test sequences on a microarray, and
estimation of relative allelic changes as the log2-ratio of the two
fluorescence intensities. CNV detection is often limited by the
resolution of the microarray and the data signal-to-noise ratio (SNR).
Current platforms with >1 million probes enable the detection of
shorter CNVs (10–25 kb), and consequently capture the finer scale
of genomic variability (Lupski, 2007; Perry et al., 2008). In practice,
detection of short CNVs is still limited by high noise levels in the
data. Consequently, methodologies that explicitly increase SNR to
improve CNV detection are needed.

Several detection methods have been proposed and applied to
genomic data with variable success (Barros et al., 2007; Engler et al.,
2006; Wineinger et al., 2008). They include smoothing procedures
(Hupe et al., 2004), Hidden Markov Models (HMM) (Fridlyand
et al., 2004; Snijders et al., 2001), Circular Binary Segmentation
(CBS) (Olshen et al., 2004), a change-point method that segments a
chromosome into regions of constant copy number, and the Genome
Alteration Detection Algorithm (GADA) (Pique-Regi et al., 2008),
based on Bayesian learning. These methods aim to improve the true
positive detection rate, not to increase SNR. Their performance also
depends on the selection of appropriate thresholds for calling CNVs.
The false discovery rate (Benjamini et al., 1995) or the Genomic
Identification of Significant Targets in Cancer (GISTIC) approach
are often used to establish these thresholds (Beroukhim et al., 2007).

Genomic and measurement noise, as well as impurities and
artifacts may contaminate aCGH data, decrease their SNR and
introduce spurious spatial correlations (Fridlyand et al., 2004;
Marioni et al., 2007). Dimensionality reduction methods, including
principal component analysis (PCA), independent component
analysis (ICA) and wavelet decomposition (Alter et al., 2000;
Hsu et al., 2005), have been applied for denoising and artifact
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suppression in genomic data. The lack of physical interpretation of
some components, or lack of a priori knowledge of an appropriate
mother wavelet, are respective drawbacks of these methods.

Signal processing methods for locally increasing SNR are widely
used in the physical sciences and engineering, where measured
signals are often severely contaminated by different types of
noise. When a waveform of interest is known or can be robustly
estimated, it may be recovered from a noisy signal via pattern
matching methods, e.g. matched filtering, which increases SNR
locally, in regions where the known signal (the template) matches
the observed signal, and reduces SNR elsewhere (Turin, 1960;
Willett et al., 1991). The application of signal processing methods
to genomic data has been very limited, since these data are not
truly continuous (Lai et al., 2005). However, such methods may be
very useful for improving CNV detection. In this article, data-driven
signal decomposition (for denoising), followed by matched filtering,
hereafter referred to as Sequence-Decomposition-Matched Filtering
(SDMF), is proposed to locally improve SNR, and consequently
restrict the genomic regions of interest and increase the specificity of
CNV detection. SDMF is applied in normal genomic sequences from
The Cancer Genome Atlas (TCGA). The performance of SDMF
is compared to CBS through simulations. Detected CNVs are also
compared to identified CNVs in the DGV.

2 APPROACH
Atwo-step methodology is proposed, summarized in Figure 1. Signal
decomposition is performed to increase the overall data SNR and
suppress artifacts, followed by matched filtering where pairs of
genomic sequences are treated as both template and test signals
and pattern matched, to increase SNR locally. CNVs are ultimately
called based on their frequency of occurrence.

3 METHODS

3.1 Sequence decomposition for artifact elimination
3.1.1 Data ACGH sequences (log2 intensity ratios) from 429 normal
samples were obtained from the Cancer Genome Atlas (TCGA). These
included all 322 normals matched to glioblastoma samples, from all available
data batches (1–4, 6–10, 16, 20, 26), and all 107 normals matched to
ovarian cancer samples, from all available data batches (9, 11, 15). The
Agilent Human Genome CGH Microarray 244A was used for hybridization
in both sets. Cytoband information was obtained from Agilent and TCGA
(Gene list, http://chem.agilent.com). Detected CNVs were compared to those
catalogued in the DGV. All sequences were segmented into individual
chromosomes, which were then analyzed separately.

3.1.2 Mode estimation and signal decomposition A wave-like genomic
artifact has been identified in array CGH, SNP arrays and whole-genome

Template

Test sequence

Decomposition
Sequencesequences

Array CGH

&
Mode Elimination

Denoisingfor

sequences

Mode−reduced

CNVs

Matched−filtering
&

SNR Thresholding 

Frequency of
Occurrence

Fig. 1. Schematic representation of the SDMF method and CNV detection.

tiling arrays (Diskin et al., 2008; Komura et al., 2006), and appears to be
highly correlated with the guanine–cytosine (GC) content in DNA (Diskin
et al., 2008). This artifact introduces spurious spatial correlations in the
data, which makes the detection of CNV breakpoints difficult. Previous
studies have applied different methods to suppress the artifact (Diskin et al.,
2008; Marioni et al., 2007; Van de Wiel et al., 2009). Each has advantages
and shortcomings. For example, smoothing methods may eliminate small
amplitude CNVs in addition to artifacts.

The structure of typically non-stationary genomic log2 sequences may
be investigated using an appropriate decomposition method. There are very
few truly data-driven methods for non-stationary signals, that do not make
a priori assumptions on the shape of the unknown signal components
(referred to as modes). The most-widely used method is the Empirical Mode
Decomposition (EMD) (Huang et al., 1998), which recursively decomposes
a non-stationary signal into modes with significant amplitude contributions.
These modes must satisfy two conditions: (i) they must have zero mean and
(ii) they must contain a single extremum between zero crossings. In addition,
they must be such that the signal reconstruction error between the original
signal x(k) and mode-based estimated signal x̂(k) [see Equation (2)], defined
as 1

K

∑K
k=1(x(k)− x̂M (k))2, is minimized. The algorithm first identifies one set

of maxima and one set of minima in a signal, and fits respective cubic spline
functions through them to obtain the upper and lower signal envelopes. The
mean of the two envelopes m1,1 is then subtracted from the original signal. If
the mean of the residual h1,1 is zero, then h1,1 is the first mode. In practice,
multiple iterations are necessary, at which new means are estimated and
removed from successive residual signals. This procedure continues until
convergence, i.e. until the first q that satisfies:

∑K
k=0 |h1,q−1(k)−h1,q(k)|2∑K

k=0 h2
1,q−1(k)

<ε, (1)

which implicitly ensures that h1,q is zero mean. In Equation (1), k denotes
probe and K is the total number of probes in a chromosome sequence.
The first mode is then defined to be d1(·)=h1,q(·), and is subtracted
from x(·) to obtain the residual r1(·), which is then treated as the new
signal. The sifting process is repeated for r1(·),...,rM−1(·), to obtain
modes d2(·),...,dM (·). The decomposition stops once the difference between
successive reconstruction errors, based on sets with progressively higher
number of modes, is negligible. Additional criteria have been used to stop
the mode estimation (Huang et al., 1998), e.g. (i) the root mean-squared

residual rM,rms =
√

1
K

∑K
k=0 r2

M (k)�1, and/or (ii) a depletion of extrema
through which to fit the envelopes, and/or (iii) a pre-defined upper bound
on the number of modes is reached. Here we set an upper bound (Mmax =
30), which was, however, never reached. The signal reconstruction error was
typically minimized when M ≤15 modes were estimated. Thus, EMD is also
a dimensionality reduction approach. The reconstructed signal based on M
modes is given by:

x̂M (k)=
M∑

i=1

di(k) (2)

for k =1,...K . Some of these M modes may still correspond to high-
amplitude artifacts and/or noise. Thus, a subset M

′ ≤M is ultimately selected,
as described below.

Although a powerful method, there are sources of variability in the EMD
estimation. First, there are theoretically infinite combinations of modes with
different amplitude distributions that can be estimated from a given signal
(Huang et al., 1998). There is currently no consensus on what constitutes
an optimal basis (these modes form an approximately orthogonal basis)
(Huang et al., 1998), and thus the requirement of basis uniqueness is
not satisfied. Second, the stoppage criteria for mode estimation are often
arbitrarily set. Thus, a criterion for the selection of an optimum set of
modes is desirable. Thresholding approaches, model selection criteria and
penalized least-squares approaches can all be used to estimate a subset of
modes (Donoho et al., 1994), since the stoppage criterion may not penalize
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Fig. 2. Original (black) and mode-reduced (red) sequences based on 20 (A),
15 (B) and 10 modes (C). Respective residual errors of the reconstructed
signals are 1.4e-5, 1.38e-2, 6.7e-3.

higher order (redundant) decompositions. However, these methods do not
directly provide a means for selecting an optimum mode subset. A different
upper bound may result in a different distribution of modes, and a higher
number of modes is not necessarily optimal. An example of a sequence
and reconstructed signals using upper bounds of 20, 15 and 10 modes,
respectively, are shown in Figure 2. The reconstruction error based on 15
modes is two orders of magnitude higher than the error corresponding to 10
modes.

To assess the effect of individual modes, signal x(k) may be decomposed
into a set of modes that are sequentially eliminated to obtain the m-mode
reduced x̂m(k). This is then compared to x(k):

x(k)=s(k)+ε(k) (3)

x̂m(k)= ŝm(k)+wm(k) (4)

where s(k) is the noiseless signal, ŝm(k) is the estimate of this signal and
ε∼N(0,σ2

ε ) and wm ∼N(0,σ2
w) with σ2

wm
<σ2

e are the additive Gaussian noise
of the original and reconstructed signals, respectively. The requirement for
denoising may be expressed as σ2

ŝ ≤σ2
ε , i.e. the variance of the estimated

signal is less than the variance of the noise in the measured signal. When
additional modes are eliminated, the noise variance decreases further, i.e.
σε >σwm=1 >σwm=2 >...>σwm=M . However, sequential mode reduction may
also eliminate significant components, resulting in large signal reconstruction
errors. Thus, we need to bound the number of eliminated modes. We define
the risk function as:

Rm(ŝm,s)= 1

K

K∑
k=1

(x(k)− x̂m(k))2 (3,4)= (5)

= 1

K

K∑
k=1

(s(k)− ŝm(k)+ε(k)−wm(k))2 =

= 1

K

K∑
k=1

(s(k)− ŝm(k))2+

+(ε(k)−wm(k))2 +2(s(k)− ŝm(k))(ε(k)−wm(k))

When 0 modes are eliminated from the original signal, x̂0(k)=x(k) and R0 =
0. When the reconstructed signal is the optimum estimate of the s(k), then

ŝm(k)≈s(k) and Equation (5) becomes:

Rm,optim(ŝm,s)≈ 1

K

K∑
k=1

(ε(k)−wm(k))2 = (6)

1

K

K∑
k=1

ε2(k)+ 1

K

K∑
k=1

wm(k)2 − 2

K

K∑
k=1

ε(k)wm(k)=

=σ2
ε +σ2

wm
−2Cov(ε,wm)

It is assumed that ŝm(k) and w(k) are independent and thus σ2
x̂ =σ2

ŝ +σ2
w.

Then, if we set the variance of the mode-reduced signal x̂ equal to the risk
function, we have [from Equation (6)]

σ2
ŝ +σ2

wm
=σ2

ε +σ2
wm

−2Cov(ε,wm)⇒σ2
ŝ =σ2

ε −2Cov(ε,wm) (7)

which ensures the desired σ2
ŝ ≤σ2

ε (assuming wm and ε are positively
correlated), with equality when ε(k) or wm(k) is zero, i.e. a noiseless
measurement x(k)=s(k) or noiseless estimate x̂(k)= ŝm(k) and asymptotic
equality when K →∞.

There are several threshold estimation approaches for denoising, e.g.
wave-shrinkage (Donoho et al., 1994). Although perhaps not optimal, our
proposed approach has the advantage of not requiring detailed estimation
of the threshold. Setting the variance of the mode-reduced signal equal to
the risk function ensures that mode reduction increases SNR. An example
is shown in Figure 3, using a subset of the data. Typically, the variance and
risk function intersected at mode 1 or 2, depending on the chromosome, and
thus 1–2 modes were eliminated.

We compared the proposed approach to loess curve fitting (Marioni
et al., 2007), PCA and ICA. Corresponding changes in SNR (averaged
over all sequences) are shown in Figure 4. SNR was computed as the log2
ratio at each probe divided by the SD of the signal, to be consistent with
the definition of SNR in Marioni et al. (2007). Elimination of redundant
ICA/PCA components and loess fitting yielded only modest changes in
SNR. In contrast, mode elimination resulted in substantial increases in SNR.
Similar results were obtained for all chromosomes.

3.2 Effect of normalization by a common reference
In addition to the wave-like artifact, a common reference for normalization
may also introduce spurious spatial correlations in genomic data. To explore
this, the normalization was reversed by adding the log2 reference to each
observed sequence, to obtain non-normalized data:

log2(
xi(k)

x̄batch(k)
x̄batch(k))= log2(xi,obs)(k)+ log2(x̄batch(k)) (8)

where xi is the non-normalized sequence and xi,obs the batch-normalized
sequence. Each non-normalized sequence was decomposed. Contributions
of low-amplitude modes were compared in raw and normalized sequences.
The wave-like artifact was not suppressed in non-normalized data, which
implies that it is unrelated to the normalization, as also noted in Diskin et al.
(2008).

We assessed the effect of renormalization (measured by the variance of
the sequence) by renormalizing each sequence by the mean of all others, as
shown is Figure 5 (for 20 sequences). The variance of renormalized raw and
mode-reduced data were compared. The diagonal entries correspond to the
variance of the non-normalized sequence. The effect of normalization was in
some sequences significantly higher (∼O(1)) than in others, e.g. the variance
increase in sequence 1 was negligible when the sequence was normalized
by 2–4, 8–14, 18–20, but substantial when normalized by sequences 15–
17. In contrast, renormalization of mode-reduced sequences resulted in
small variance changes. Thus, denoising via mode elimination reduces the
uncertainty associated with normalization by different sequences.

3.3 Matched filtering
Matched filtering is a waveform-matching method that is widely used in
pattern recognition, sonar and communications, to detect a desired waveform
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A B

Fig. 3. Effects of sequential mode elimination on the risk function (black)
and variance (red) of the mode-reduced sequence. (A) The inter sequence
parameter variability for one chromosome (dashed lines). Mean parameter
values for several chromosomes (B).

c(k) in a measured signal xobs(k). The matched filter is a quasi-optimum
filter that locally maximizes the output SNR by decreasing SNR in regions
of mismatch between observed and desired (template) signals and increasing
SNR in matched regions. It improves SNR by reducing the noise spectral
bandwidth to that of the desired waveform (Turin, 1960). Theoretically,
the optimum filter that maximizes SNR is the time-reversed signal itself,
i.e. c(k)=xobs(−k) under the assumption of Gaussian noise, and matched
filtering is a convolution operation:

xMF(k)=ctemplate(k)⊗xobs(k) (9)

Template signal: typically, the template c(k) is either precisely known or
robustly estimated. An observed signal is then matched-filtered with this
template. However, in this study there was no unique or known template.
Every normal chromosome sequence was treated both as a template and
an observation. To identify CNVs, regions of signal mismatch rather than
regions of match were examined. Each of Ns mode-reduced sequences was
segmented according to the filter length described below, and each of Q
segments was filtered with Ns −1 corresponding segments (the templates), to
obtain Ns −1 matched-filtered segments. The ratio of pre- over post-filtering
SNR �SNR, was computed for each segment, and averaged over Ns −1
SNRs. A matrix of �SNRs was ultimately obtained of size Ns ×Q. A segment
was further examined for potential CNVs if �SNR, averaged over Ns was
less than an estimated threshold, described below.

Filter length: the choice of filter length is important for achieving
optimal SNR. We examined the change in SNR following matched
filtering as a function of filter length. We used the typical definition of
SNR = 20 log10

<x(.)>rms
<ν(.)>rms

in dB, estimated the change in SNR as �SNR=

A B

C D

Fig. 4. Comparison of artifact elimination via PCA (A), ICA (B), loess curve
fitting (C) and mode elimination (D). Each plot is for SNR before (x-axis)
versus SNR after application of the respective method (y-axis), averaged
over all normal sequences.

20 log10
<xMF>rms
<xobs>rms

, where < ·>rms denotes root-mean squared. Figure 6
shows the average (over all sequences and chromosomes) SNR change
as a function of filter length. Since the first change in slope of average
SNR change occurs at a length of ∼500 probes, which was determined
empirically to be sufficiently long for matched filtering, we selected this
as the segment/filter length, though it may not be optimal.

Threshold for estimating regions of mismatch: contrary to the traditional
application of matched filtering, for CNV detection we are interested in
regions of mismatch rather than regions of maximum match. This is because
we presume that CNVs occur with relatively low frequency. Regions of
mismatch not only include both allelic variability between two sequences
but also potentially distinct noise and artifacts. Thus, the first step of
mode decomposition for denoising is necessary. Furthermore, a threshold
or random mismatch due to noise rather than true waveform mismatch
must also be estimated, instead of assuming that any decrease in SNR,
i.e. �SNR≤0, following matched filtering reflects waveform mismatch. We
simulated and matched-filtered 500 pairs of identical, and thus theoretically
perfectly matched signals, but corrupted with distinct additive Gaussian noise
sequences, while maintaining high SNR. We estimated that noise-induced
mismatch resulted in a maximum decrease in SNR of 1.5 dB. Therefore,
regions where mean SNR in the filtered sequence decreased by more than
−1.5 dB were identified as regions of potential true waveform mismatch.

CNV call: matched filtering increases/decreases SNR according to
match/mismatch, and thus the resulting signal amplitude in the filtered data
may be different from the log2 ratios in the original (but denoised) data.
Thus, once potential segments of mismatch have been identified, we need to
examine the corresponding segments in the denoised data for determining the
actual type of aberration at the probe level. For simplicity, we set a detection
threshold of one loss or one gain, i.e. log2

3
2 for gain and log2

1
2 for loss. The
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A

B

Fig. 5. Effect of renormalization on the variance (shown as color) of 20 raw
(A) and corresponding mode-reduced sequences (B).

Fig. 6. Ratio of SNR of matched-filtered data over raw data as a function of
the filter length. The solid line corresponds to mean SNR change, averaged
over all sequence SNRs, and superimposed is the variability of this ratio.

probability of a CNV at probe k was defined as the union of the probabilities
of (mutually exclusive) gain and loss. This is practically equivalent to the
maximum of these probabilities since one of the probabilities is typically
negligible relative to the other:

Pr(CNVk)=
∑Ns

j=1 log2(j,k)≥ log2( 3
2 )

Ns
+

∑Ns
j=1 log2(j,k)≤ log2( 1

2 )

Ns
(10)

where Ns is the total number of sequences, and log2(j,k) corresponds to the
mode-reduced sequence j at probe k. A probability of 0.1 (10% frequency)
was chosen as the threshold for a CNV call. Although this choice is somewhat
arbitrary, low CNV frequencies ≤10% have been reported in the normal
genome (Ionita-Laza et al., 2008; Jakobsson et al., 2008).

4 RESULTS

4.1 CNV detection in the normal genome
We applied SDMF to 429 normal sequences from the TCGA
database, and compared them to CNVs in the DGV detected in
datasets with least 420 samples, irrespective of their frequency of
occurrence, as well as CNVs in two studies with 270 samples and
high frequency (≥40%) (McCarroll et al., 2008; Pinto et al., 2007).
For the Y chromosome, the maximum sample size in any study
was 270. For two CNVs to be comparable, we assumed a very
conservative 50% spatial overlap of the length of the detected CNV
with respect to the length of the CNV in the DGV. In cases where
the same CNV was reported by multiple studies, but with slightly
different lengths, the intersection of these regions was assumed as
the CNV length. Finally, when a detected aberrations was entirely
contained within the genomic coordinates of the corresponding CNV
in the DGV, it was called a separate CNV irrespective of its overlap
(this occurred in only very few instances). On average, filtering
restricted the regions of mismatch for further examination to 19–
34% of the total number of segments, depending on the chromosome.
This is expected as these were all normal sequences, and thus with
high waveform similarities and low mismatch. Table 1 summarizes
the number of CNVs in DGV, in each chromosome, irrespective of
frequency (column 2); the overall sensitivity of SDMF with respect
to DGV, calculated as the ratio of the number of CNVs in the
intersection of the two sets over the total number of CNVs in DGV
(column 3); Cohen’s kappa statistic (Cohen, 1960), as a measure
of agreement between SDMF and DGV that accounts for overlap
between the two occurring by chance (column 4); CNVs detected by
SDMF with least 10% frequency (column 5); CNVs in DGV with at
least 10% frequency (column 6); sensitivity of SDMF with respect
to CNVs in DGV with frequencies at least 10% (column 7); and
the corresponding kappa (column 8). Note that the kappa statistic is
calculated at the probe level, by assuming that the maximum number
of CNVs is the number of probes in each chromosome. However,
CNVs in DGV have been detected with a wide range of arrays of
different resolution. To account for this, we obtained the genomic
coordinates for each identified CNV in the DGV and calculated the
corresponding number of probes in our data, so that the two sets are
comparable for the estimation of kappa.

A significant number of detected CNVs have also been reported
in DGV with frequencies ≥10%. For this subset, the sensitivity of
SDMF with respect to DGV was ≥83%. The overall sensitivity of
SDMF was lower (17–60%). Furthermore, based on the accepted
interpretations of levels of kappa (Landis et al., 1977), the agreement
between DGV and SDMF was slight (0<κ<0.2) to moderate (0.4<

κ<0.6), depending on the chromosome. This may be due due to: (i)
differences in the populations of DGV and TCGA normals; (ii) novel
CNVs detected by SDMF; and (iii) the use of distinct thresholds for
CNV calls in different studies. We can only assess the false positive
rate of SDMF through simulations.

4.2 Comparison of SDMF with CBS via simulation
SDMF may be applied to identify regions of mismatch, and thus to
detect CNVs occurring at low frequencies in a relatively large set
of genomes, or to identify regions of significant waveform match
between sequences, and thus to detect common CNVs occurring
at high frequencies. We compared SDMF to CBS. Although other
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Table 1. CNVs in DGV (column 2), sensitivity of SDMF with respect to
DGV (column 3), κ statistic (column 4), CNVs in DGV and in this study, with
at least 10% frequency (columns 5 and 6), sensitivity of SDMF with respect
CNVs in DGV with at least 10% frequency (column 7) and the corresponding
κ (column 8).

Chr DGV Sens. SDMF κ SDMF DGV Sens. SDMF κ10%

w.r.t. DGV ≥10% ≥10% w.r.t. DGV≥10%

1 1235 0.44 0.41 1178 115 0.92 0.15
2 833 0.46 0.46 586 83 0.89 0.21
3 726 0.42 0.5 456 82 0.96 0.29
4 727 0.34 0.38 478 108 0.91 0.32
5 652 0.31 0.32 495 80 0.95 0.26
6 586 0.43 0.4 550 100 0.9 0.27
7 642 0.48 0.56 423 75 0.94 0.27
8 638 0.4 0.4 530 76 0.92 0.22
9 585 0.49 0.54 428 37 0.94 0.14
10 568 0.46 0.47 488 55 0.95 0.18
11 607 0.23 0.28 313 73 0.91 0.33
12 577 0.41 0.42 473 74 0.94 0.25
13 347 0.37 0.4 256 12 0.92 0.08
14 382 0.28 0.33 225 31 0.94 0.2
15 441 0.44 0.54 253 37 0.95 0.23
16 411 0.39 0.42 296 45 0.91 0.23
17 365 0.51 0.57 269 52 0.91 0.28
18 213 0.17 0.25 65 12 0.83 0.26
19 446 0.28 0.32 241 36 0.89 0.22
20 255 0.54 0.58 203 24 0.88 0.18
21 159 0.57 0.67 106 15 0.93 0.22
22 287 0.23 0.35 72 17 1 0.38
X 309 0.59 0.62 267 22 0.91 0.14
Y 27 0.6 0.52 34 2 1 0.11

methods have been shown to be computationally faster, e.g. Pique-
Regi et al. (2008), CBS is widely used for CNV detection (Olshen
et al., 2004), by simulating both cases (match/mismatch). The
respective performance of the two methods was measured by the
true and false detection rates, as a function of SNR and inter-CNV
distance. Sequences were corrupted with additive, multiplicative or
periodic (sine wave) Gaussian noise. SNR was measured in decibel.
We simulated 1000 sequences (100 per each of 10 noise levels).
In this set, CNV frequency was 100% and matched filtering was
applied in the traditional sense, to identify regions of maximum
match between template and test sequences, which corresponded
to regions containing CNVs. To simulate low-frequency occurring
CNVs, all but 10–25% of sequences in this set were randomly
selected and replaced by pure Gaussian noise. An example of a
sequence containing 1 short CNV (300 markers long), contaminated
with progressively higher additive noise levels (decreasing SNR)
is shown in Figure 7. Note that SDMF was applied to simulated
data in the same way as in real data, using noise-contaminated
sequences as both the template and test signals. All sequences were
first mode-decomposed for denoising.

The matched-filtered sequences corresponding to Figure 7 are
shown in Figure 8. matched filtering successfully suppressed noise
in regions of mismatch, even in very low SNR (−7 to −10 dB),
locally increased SNR in the neighborhood of the CNV by at
least 5 dB and decreased SNR elsewhere by at least 3 dB. This
example demonstrates the ability of SDMF to detect even short

Fig. 7. Simulated genomic sequences with one CNV and decreasing SNR
(0 to −9 dB, top left to bottom right plots), and superimposed original
(uncorrupted) sequence (red).

Fig. 8. Individual raw (black) and match-filtered sequences (green).

CNVs in very high noise levels. Note that when a template with
high SNR is precisely known, the first step of signal denoising by
mode-reduction results only in modest additional increases in SNR
(<2 dB). However, when a robust template is not precisely known
and/or is noisy, mode decomposition is a necessary pre-processing
step.
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Fig. 9. Original (black) and CNV detections based on CBS (green).

In the examples shown in Figure 9, CBS performed very well
for SNR ≥−6dB, but detected spurious CNVs at lower SNRs. In
contrast, SDMF correctly identified one CNV in all sequences. In
cases of pure noise (no CNVs), neither SDMF nor CBS identified
any CNVs. Also, the additional simulations for mismatch did
not change the results of CBS, which processes each sequence
individually. True and false detection rates of SDMF and CBS as
a function of SNR, noise type and distance between CNVs are
summarized in Table 2. SDMF correctly detected at least 70%
of CNVs irrespective of SNR and noise type, compared with at
least 15% detected by CBS. Multiplicative noise decreased the
true detection rate in both methods, but periodic noise did not
significantly affect detections by SDMF, possibly due to the initial
denoising. With regard to inter-CNV distance, for fewer than 1000
markers, SDMF detected 84% of CNVs, versus 40% by CBS, at
low SNR. CBS sometimes detected closely spaced CNVs as a single
CNV. Also, the estimated mean gain/loss, which depended on the
accuracy of the CNV breakpoints, was more precisely estimated
by SDMF, particularly for SNR <−6 dB. Finally, false detection
rate, estimated as the ratio of falsely identified CNV probes over
the number of true non-CNV probes, increased significantly for
multiplicative and periodic noise for CBS but not for SDMF. This
calculation was based on 8000 probes and a varying number of
CNVs of different lengths. In simulations for mismatch, the true
detection rate was higher for SDMF than CBS and the false detection
rate was lower. As expected, the false detection rate of SDMF in
these simulations was slightly higher than the corresponding rate in
simulations for waveform match, since it is calculated at the probe
level and random mismatch at low SNR may affect the estimated
CNV length. In general, although SDMF substantially outperformed
CBS at low SNR, CBS performed well for higher SNR. However,
the computational cost of CBS was significantly higher (O(5) in
simulations and O(8) in real data). Next-generation CGH arrays with

Table 2. True and false detection rates for SDMF (S) and CBS (C) as a
function of SNR, noise type and simulation type (match/mismatch), and %
difference between estimated and true mean log2 ratio

Parameter Method −10 −8 −6 −4 −2

SNR/Additive noise: Match
True S 0.84 0.91 0.95 1 1
+ve rate C 0.42 0.75 0.82 0.95 1

False S 0.05 0 0 0 0
+ve rate C 0.42 0.11 0 0 0

�mean S 0.01 0 0 0 0
log2 ratio C 0.2 0.11 0 0 0

SNR/Multiplicative noise: Match
True S 0.73 0.85 0.9 0.96 1
+ve rate C 0.27 0.55 0.64 0.92 1

False S 0.19 0.15 0.05 0 0
+ve rate C 0.68 0.36 0.23 0.13 0.1

� mean S 0.04 0.02 0 0 0
log2 ratio C 0.3 0.26 0.1 0 0

SNR/Periodic noise: Match
True S 0.8 0.9 0.92 1 1
+ve rate C 0.17 0.46 0.6 0.84 0.9

False S 0.11 0.05 0 0 0
+ve rate C 0.67 0.52 0.45 0.23 0.1

�mean S 0.04 0.01 0 0 0
log2 ratio C 0.35 0.29 0.16 0.09 0

SNR/Additive noise: Mismatch
True S 0.83 0.9 0.95 1 1
+ve rate C 0.42 0.75 0.82 0.95 1

False S 0.14 0.06 0 0 0
+ve rate C 0.42 0.11 0 0 0

very high resolution will require computationally efficient analysis
methods. SDMF can handle large genomic datasets, whereas CBS
is limited in that respect.

5 DISCUSSION
We have developed SDMF, a computationally efficient methodology
that combines the signal processing tools of signal decomposition
and matched filtering for CNV detection in array CGH data. The
latter are inherently noisy and robust CNV detection is difficult at
low SNR. SDMF treats genomic sequences as spatially continuous,
non-stationary signals, which are denoised through elimination
of noise-related components. Spatially localized matched filtering
is then applied to identify regions of pairwise match/mismatch.
Through these two processes, SDMF increases SNR and improves
the specificity of CNV detection. Note that SDMF requires
the selection of the matched-filter length and thresholds for
match/mismatch and loss/gain for CNV detection. These were not
explicitly optimized in this study. The choices of filter length and
match/mismatch thresholds are dataset dependent. The log2 ratio
threshold depends on the goal of the study, e.g. for detection of
pathological CNVs it may be based on the log2 ratios of normal
CNVs. SDMF was applied to 429 normal sequences from the
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TCGA, and detected CNVs were compared to those in the DGV.
Very high sensitivity (≥83%) relative to the DGV for CNVs with
frequency ≥10% was estimated. In simulations, SDMF had a higher
true detection rate and significantly lower false detection rate and
computational cost than the CBS method, an important advantage
when analyzing large datasets from very high-resolution arrays.

In summary, SDMF is a promising approach for CNV detection
even in very noisy genomic data. Microarray platforms are rapidly
improving and remain the most appropriate tool for interrogating
the entire genome at a reasonable cost. Although next-generation
sequencing technologies are very promising, their cost currently
prohibits the analysis of the entire genome, and may require
significant amounts of DNA not always available. Furthermore,
there is much information to be gained from existing well-annotated
array-based studies through the application of highly sensitive and
computationally efficient methods such as SDMF.
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