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ABSTRACT

Summary: Many natural nucleic acid sequences have evolutionarily
conserved secondary structures with diverse biological functions.
A reliable computational tool for identifying such structures would
be very useful in guiding experimental analyses of their biological
functions. NASP (Nucleic Acid Structure Predictor) is a program that
takes into account thermodynamic stability, Boltzmann base pair
probabilities, alignment uncertainty, covarying sites and evolutionary
conservation to identify biologically relevant secondary structures
within multiple sequence alignments. Unique to NASP is the
consideration of all this information together with a recursive
permutation-based approach to progressively identify and list the
most conserved probable secondary structures that are likely to have
the greatest biological relevance. By focusing on identifying only
evolutionarily conserved structures, NASP forgoes the prediction of
complete nucleotide folds but outperforms various other secondary
structure prediction methods in its ability to selectively identify actual
base pairings.

Availability: Downloable and web-based versions of NASP are freely
available at http://web.cbio.uct.ac.za/~yves/nasp_portal.php
Contact: yves@cbio.uct.ac.za

Supplementary information: Supplementary data are available at
Bioinformatics online.
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Besides a capacity to store information within the sequences of their
component nucleotides, single-stranded nucleic acids may also store
information within their secondary structures. Under physiological
conditions many single-stranded RNA or DNA molecules longer
than approximately 20 nucleotides form meta-stable secondary
structures, which can have important roles in genome replication and
gene expression. Although a number of computational methods exist
for predicting nucleic acid secondary structures from either single
sequences or alignments (Bernhart ez al., 2008; Hamada et al., 2009;
Knudsen and Hein, 2003; Markham and Zuker, 2008), even the best
of these incorrectly infer a high proportion of base pairings. Also,
only a few methods provide any measures of statistical support either
for their folding predictions, or for the overall presence of secondary
structure (Babak er al., 2007; Simmonds et al., 2004). From the
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perspective of experimental biologists seeking to test the functional
relevance of secondary structures, it would be very useful to have
a computational tool that, with the lowest possible false positive
rate, will identify sites that pair within evolutionarily conserved
secondary structures.

NASP is an attempt to improve the selectivity with which
individual secondary structures can be identified. It uses base pairing
probabilities provided by the UNAfold nucleic acid folding program
hybrid-ss (Markham and Zuker, 2008) that applies a combined
partition function calculation, stochastic sampling and dynamic
programming approach to compute base pairing probabilities
and minimum free energy (MFE) estimates from single-stranded
nucleotide sequences. The rationale behind NASP is simple: we
assume that randomly shuffling nucleotides within sequences that
have evolved to form stable secondary structures should influence
their overall base pairing potential such that the shuffled sequences
should yield higher MFE estimates than the real sequences from
which they were produced. By comparing MFE estimates made
with real sequences to those made with randomized versions of
these sequences, NASP tests whether there is evidence that the
real sequences have greater structure forming capability than can
be accounted for by chance.

For each sequence, k, in an input alignment, hybrid-ss estimates
the over-all Gibbs free energy of an optimally folded nucleotide
sequence and yields a list of Boltzmann probabilities Py (i, j) of
individual potential base pairings. NASP then computes a consensus
base pairing matrix, M, whose entries satisfy

N
Mjj =2 ;> " wy log(Pr(i.j)/Pr)
k

where: N is the number of sequences; Py (i, j)’s are chosen to be
above a user specified threshold probability Pr; wy is the mean
pair-wise Hamming distance of sequence k from all others in the
alignment, such that w; weighs the contribution to M;; of more
divergent sequences more heavily than those of less divergent
sequences; §;; is O if the gap frequency at either position i or j
is >0.75 and 1 otherwise; Cij, is the mutual information of columns
i and j and accounts for compensatory mutations. It is given by

Cijj=— Z fij(a,b)logy(fij(a, b)/f;()f;(b))
(a,b)
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Table 1. NASP compared with other RNA folding programs using sequences with known folds (best scores in bold)

NASP
Dataset Length #seq® MPIP Pre® Postd RNAalifold CentroidAliFold Pfold EvoFold

Sel MCC FP® Sel MCC FP Sel MCC FP Sel MCC FP Sel MCC FP Sel MCC FP
Corona_pk3 63 10 H 1 1 01 0.84 01 0.89 01 1 0 063 055 3 064 067 2
Corona_pk3 63 10 H 1 1 01 0.84 01 0.89 01 1 0 063 055 3 064 067 2
Hammerhead_1 45 1 0.71 0.77 51 0.70 0 0.83 0.83 3 083 0.83 3 082 078 3 ND ND ND
Purine 102 4 H 1 0.95 01 0.80 01 0.95 01 0.95 0 1 077 0 0.66 095 1
HIV-1 NL4-3 9173 1 030 032 1556 0.46 029 399 0.31 0.35 1684 0.49 044 421 NDf ND ND ND ND ND
S2m 43 38 M 0.62 0.63 51 0.64 01 1 0 0.82 0.72 2 0.82 078 2 025 027 12
SSU_rRNA 1542 11 M 0.72 0.72 128 0.84 0.68 51 0.67 0.63 135 0.66 0.59 128 ND ND ND ND ND ND

4The number of sequences in the alignment.

>The mean pair-wise sequence identity. M stands for medium similarity (MPI between 60% and 90%) and H for high similarity (MPI between 80% and 99%).
SNASP performances before enrichment and permutation testing. The numbers in bold represent the best scores.

d NASP performance after permutation testing by mononucleotide shuffling.
®The number of falsely predicted base-pairs.
fData is unavailable due to restrictions on input sequence lengths and number.

where; f;(a) is the frequency of nucleotide a (= A, C, G or T) at
alignment position i; f;;(a, b) is the frequency of finding nucleotide
aatposition i and b at position j in the alignment. C;; =0 if columns i
and j have evolved independently and is > 0 otherwise. Thus during
the calculation of M;; the factor 2€7 is used to weigh co-evolving
base pairs more heavily than other sites.

NASP aims to find a set of base pairs i,j that maximizes
>~ M;;. To avoid alignment gaps obscuring signals of conserved
structural motifs within M we allow relaxation on the requirement
that homologous nucleotides must fall within the same alignment
column. Specifically, we consider nucleotides within different
sequences to be potentially homologous if they are separated by
no more than d bases within the alignment (where d is a user-
specified non-negative integer, usually between 0 and 10). Whereas
if d=0 only nucleotides within the same alignment column will be
considered homologues, if d=10 all nucleotides falling within 10
alignment columns up- and down-stream of a nucleotide column
will be considered its potential homologues. This translates into

W= XX M

lr—il<d ls—jl=d

NASP scans M through the anti-diagonal and recursively
identifies groups of potentially base paired nucleotides displaying
the highest degree of evolutionary conservation (i.e. contiguous
non-zero entries in M that have the highest sum). At each step:

(1) The coordinates of nucleotides within the bounds of what
appear to be the largest and most evolutionarily conserved
structure represented in M are added to a list of potentially
paired sites (Supplementary Figure S1).

(2) All alignment columns that are not included in this list are
randomly shuffled 100 or more times with the MFEs of each
sequence in each shuffled alignment being compared with
those of sequences in the original alignment.

(3) The existence of additional unaccounted for structural motifs
in the sequences is inferred when the MFE estimates of all
sequences in the unshuffled alignment are smaller than those

of at least 95% of the corresponding sequences in the shuffied
alignments. The probability that there remain no unaccounted
for paired nucleotides within the alignment fraction excluded
from the potentially paired site list is estimated as the fraction
of shuffled sequences with MFE estimates lower than those
of their unshuffled counterparts.

(4) When the MFEs of the unshuffled sequences are less than
those of 95% of their shuffled counterparts, the recursion
continues from (1) with sites in the next most evolutionarily
conserved structure being added to the paired site list.

The time complexity of NASP, which should be substantially
reduced given that MFEs are computed in parallel, is O(NPL?) and
the space complexity is O(L2) where L is the length, N the number
of sequences in the alignment and P the number of permutation
tests. Currently our web version of NASP accepts datasets of, for
example 30 x 3 Kb sequences or 10 x 10 Kb sequences and analyses
these within 144 h (results from comparison of computational times
are shown in Supplementary Table S1).

Given a sequence alignment containing evidence of evolutionarily
conserved secondary structures as input, NASP outputs (i) the
coordinates of potentially conserved stems and P-values indicating
statistical support for additional unaccounted for secondary
structures remaining in the sequences following each recursion,
(i) the consensus structure in both the Vienna bracket-dot and
a concatenation file formats and (iii) the consensus base-pairing
matrix, M, in both text and graphical formats.

Tests using known reference RNA structures (Table 1 for
examples and Supplementary Table S1 for the complete set) indicate
that the overall selectivity (the proportion of inferred base pairs that
are actually in the reference structures) of NASP is considerably
better than that of RNAalifold (Bernhart et al., 2008), Pfold
(Knudsen and Hein, 2003), CentroidAliFold (Hamada et al., 2009)
and EvoFold (Pedersen et al., 2006). The cost of NASP’s low false
positive rate is, however, a decreased true positive rate such that
its overall accuracy (measured here using the Mathews Correlation
Coefficient, MCC of Gardner and Giegerich, 2004) is slightly lower
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than that of RNAalifold (which was overall the most accurate of
the programs we tested; Supplementary Table S1). Nevertheless, we
must stress that the primary focus of NASP is the identification of
base pairings with a false positive rate that is as low as possible:
a focus that should prove particularly useful in studies aiming to
evaluate the function of evolutionarily conserved (and therefore
probably functional) nucleic acid secondary structures in that it
should substantially reduce the time and expense needed to home in
on those structures with the greatest biological relevance.
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