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Abstract
Non-Cartesian imaging provides many advantages in terms of flexibility, functionality, and speed.
However, a major drawback to these imaging methods is off-resonance distortion artifacts. These
artifacts manifest as blurring in spiral imaging. Common techniques that remove the off-resonance
field inhomogeneity distortion effects are not sufficient, because the high order concomitant
gradient fields are nontrivial for common imaging conditions, such as imaging 5 cm off isocenter
in an 1.5T scanner. Previous correction algorithms are either slow or do not take into account the
known effects of concomitant gradient fields along with the field inhomogeneities. To ease the
correction, the distortion effects are modeled as a non-stationary convolution problem. In this
work, two fast and accurate post-gridding algorithms are presented and analyzed. These methods
account for both the concomitant field effects and the field inhomogeneities. One algorithm
operates in the frequency domain and the other in the spatial domain. To take advantage of their
speed and accuracy, the algorithms are applied to a real-time cardiac study and a high-resolution
cardiac study. Both of the presented algorithms provide for a practical solution to the off-
resonance problem in spiral imaging.

Keywords
concomitant gradient field; field inhomogeneity; spiral; non-stationary convolution

Introduction
High-resolution magnetic resonance imaging (MRI) is based on the resonance properties of
molecules at a particular frequency. However, as recognized and studied previously, off-
resonance effects are inevitable given the nature of the imaging technology (1). The effects
result in phase errors manifesting as different artifacts depending on the imaging strategy. In
spiral imaging, the artifacts are seen as geometric distortion and blurring. The exact cause of
the off-resonance effects includes main B0 field inhomogeneity, tissue-induced
susceptibility, chemical shifts, and eddy currents. Another cause, which will be the focus of
this study, is the concomitant gradient fields. The off-resonance from this effect is
unavoidable because according to Maxwell’s equations, the uniform gradients used in
imaging are always accompanied by higher order terms. These extra terms are proportional
to the gradients applied and inversely proportional to the main field strength (2). This off-

Address correspondence to: Joseph Y Cheng, Packard Electrical Engineering, Room 208, 350 Serra Mall, Stanford, CA 94305-9510,
TEL: (858) 775-4923, jycheng@mrsrl.stanford.edu.

NIH Public Access
Author Manuscript
Magn Reson Med. Author manuscript; available in PMC 2012 August 1.

Published in final edited form as:
Magn Reson Med. 2011 August ; 66(2): 390–401. doi:10.1002/mrm.22802.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



resonance distortion becomes more severe in modern high-performance systems with
gradient amplitudes of ≥ 40 mT/m and slew rates of ≥ 150 T/m/s (3–6).

In non-Cartesian scans, the distortion effects are not straightforward to correct, and
intelligent schemes must be designed to alleviate the problem. To use the advantages of non-
Cartesian scans, such as speed and efficiency of the spiral trajectory, this image degradation
must be addressed. Strategies implemented to reduce the off-resonance effects cover
different aspects of the MR imaging process: pulse sequence and reconstruction. On the
pulse sequence side, solutions include altering the gradient design (3,6) and pulsing the main
magnetic fields (7). However, in typical MRI scans where speed is important, these schemes
are not plausible. Therefore, we focus our correction efforts in the reconstruction process.
Algorithms previously developed to correct for field inhomogeneity can be used to correct
for the concomitant gradient fields. The correction scheme can be applied to different
aspects of the image reconstruction: the time-dependent signal (8,9), the gridded data in the
frequency space (10–13), and the Fourier-transformed data in image space (14–17).

Failing to correct for both field inhomogeneities and concomitant gradient fields may result
in insufficient correction or even in an increase in blurring (4,18,19). A recent study for non-
Cartesian scans demonstrated an effective correction scheme that corrects for both effects
using a Chebyshev approximation on gridded data (18). The correction was performed using
a “semi-automatic” algorithm where the off-resonance errors were reduced by minimizing
the phase of the final image (13, 20, 21).

We propose a non-iterative approach using a simple quadratic approximation. We reduce the
computational complexity to correct for both inhomogeneity and concomitant off-resonance
effects in real-time. We examine solutions for scans with spiral trajectories where the off-
resonance artifacts manifest as blurring (4, 22), or more specifically, as a non-stationary
convolution. One advantageous property is that the spiral trajectory yields smoothly varying
off-resonance kernels that aid us in our post-gridding algorithms. Our proposed approaches
use the special property of the spiral trajectory to simplify the model and to greatly
accelerate the correction process. Two fast and simple field inhomogeneity algorithms are
modified and used to correct the field inhomogeneity and concomitant field distortion: a
multi-frequency interpolation algorithm applied in the frequency domain (10) and a non-
stationary deconvolution algorithm applied in the image domain (15–17).

The area of interest for our study is the heart. The size and position of the heart and vessels
make off-resonance from both concomitant gradient fields and field inhomogeneities
unavoidable. Furthermore, for cardiac applications such as monitoring interventional
procedures or diagnosing the rapid and irregular motion of arrhythmia, being able to image
the anatomy rapidly in real-time is necessary for quality exams. Additionally, a very fast
data acquisition rate is required to reduce artifacts from the constant cardiac motion and
blood flow. To avoid any delay in the imaging for real-time cardiac applications, the speed
of the reconstruction process must keep up with the fast acquisition rate. Thus, we propose
to effectively correct the distortion effects with an emphasis on speed.

The concomitant fields can be calculated directly from the applied readout gradients. This
effect is first examined and modeled in a way to ease our correction schemes. Next, the field
inhomogeneity measured through a low resolution field map is incorporated into the
algorithm to yield a more accurate correction. Lastly, the multi-frequency interpolation
algorithm and the non-stationary deconvolution algorithm are applied and compared in a
real-time cardiac study and a high-resolution cardiac study.
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Theory
The concomitant gradient field effects are first examined. Using special properties of the
spiral trajectory, the distortion problem is simplified and shown as a non-stationary
convolution. Afterward, we incorporate the effects of the field inhomogeneities.

Concomitant Gradient Field
For most MR techniques, only the linear terms of the net magnetic field amplitude B are
used for an elegant Fourier analysis. However, the higher-order concomitant terms become
significant for more demanding scans with low B0 fields, high linear gradient fields, or large
distances from the isocenter. For example, a spiral scan at 5 cm off isocenter starts
exhibiting notable blurring in a 1.5 T scanner.

By examining Maxwell’s equations, the expression for B is derived using Taylor series
expansion (3). From this equation of B, the concomitant gradient field is approximated to the
second order as

[1]

Variable G = (Gx, Gy, Gz) is the time-dependent linear gradient field. Variable X = (X, Y, Z)
is the spatial coordinate in the magnet. The  terms are negligible given a main magnetic
field of B0 ≥ 1.0 T. For spiral scans, the expression for Bc can be simplified further using
approximations specific to the spiral gradients (4):

[2]

where

[3]

[4]

[5]

The value of the through-plane gradient gz is 0 for two-dimensional imaging. Function Fn
depends on the elements in the rotation matrix: a = (a1, a2, …, a9). Equations for Fn, derived
by King et al (4), are presented in more detail in the Appendix as Eq. [A.2]. With Eq. [2],
the gradient dependency is decoupled from the spatial dependency to allow for more
sophisticated correction algorithms. For convenience, the remainder of our discussion will
be in terms of the logical image coordinates x and the respective gradients g rather than the
actual scanner coordinates X and the actual applied gradients G.
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The concomitant gradient field results in an additional phase accrual, Φc, on the acquired
signal:

[6]

The resulting signal equation can be written as

[7]

where

[8]

Using the expression for Bc defined in Eq. [2], Φc can be re-written as

[9]

where

[10]

Function Ca(x) is based on all other parameters of Eq. [2] that are not included in h(t), such
as the scan location and rotation. The actual equation is defined in the Appendix as Eq. [A.
1]. For ease of calculation and implementation, h(t) can be mapped to k-space yielding h(k)
for a generalized function of Φc:

[11]

The change of variable from t to k depends on the assumption that every value of k maps to
a unique value of t. Additionally, since h(k) is smoothly varying in space for spiral
trajectories, the function can be further simplified through polynomial fitting.

The image can be reconstructed by mapping the signal s(t) to k-space as M(k) and taking an
inverse Fourier transform resulting in image I(x). To simplify our analysis, we ignore
discretization effects and perform our calculations in the continuous domain. The
uncorrected image with concomitant distortion Ic (x) can be obtained by manipulating the
signal equation described by Eq. [7]:

[12a]

[12b]
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[12c]

[12d]

[12e]

The resulting expression in Eq. [12e] models the distortion as a non-stationary convolution
kernel f(x′, x). Examples of these kernels are described in Fig. 1. The correction problem can
then be solved using signal processing schemes, such as using wavelets and filter banks, that
were developed for working with a non-stationary kernel.

An important characteristic of the concomitant distortion kernel is that this non-stationary
kernel is relatively narrow and varies slowly in space. Therefore, we can approximate the
problem with a series of stationary convolution kernels, where one kernel is used for a
localized area of interest. This kernel can be applied in either the k-space domain or in the
image-space domain.

Field Inhomogeneity Effects
Concomitant gradient fields are known theoretical effects that can be calculated.
Unfortunately, in practice, other off-resonance effects are present in distorting scans. The
factors that contribute to the additional image degradation include main field
inhomogeneities, subject dependent susceptibility variations, and gradient induced eddy
currents. In off-isocenter scans that induce concomitant gradient field distortion, field
inhomogeneities play a significant role in reducing scan quality. Neglecting concomitant
effects, the off-resonance effects Δω(x) can be described by the following equation:

[13]

Unlike the concomitant gradient effects, the Δω(x) needs to be measured through field map
acquisitions. Many different techniques can be used for the field map acquisition, such as
comparing the phase of images at two different echo times (23, 24) or estimating the map
through “automatic” algorithms applied to the acquired data (13, 20, 25).

Using any of the common approaches to measure the field inhomogeneity, the acquired field
map Δω(x) includes most of the phase distortion contributing to the image degradation. This
includes, to a certain extent, tissue-susceptibility and eddy currents. However, these methods
do not accurately measure the concomitant gradient fields. By comparing the phase of
images at two different echo times, the phase from the concomitant gradient field is
completely removed, because the data acquired at each echo time is affected by the same
concomitant gradient field. For the case of estimating the map through “automatic”
algorithms, the concomitant gradient field is naturally included in the estimate.
Unfortunately, strong concomitant gradient fields will reduce the accuracy of this field map
estimate and will increase the computational complexity for calculating the map (18).
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For our purpose of rapid reconstruction, the two echo time approach is used to measure the
field map Δω(x). The concomitant gradient fields are not included in the map, thus,
emphasizing the need for a combined correction. From examining the signal equations
described by Eqs. [7] and [13], these spatially-dependent phase effects can be easily
combined and corrected simultaneously with the concomitant gradient effects.

Methods
Field-map based off-resonance methods have been developed for fast correction. Two of
these approaches are modified to remove the concomitant distortion effects while
emphasizing speed.

To remove the distortion effects from the image, we apply a conjugate phase correction.
Using the distortion model described in Eq. [12e], the distorted image Ic can be corrected by
deconvolving the off-resonance kernels using localized stationary kernels κ(x′, x):

[14]

In terms of an appropriate selection for κ(x′, x), we choose a kernel that satisfies the
following property for a constant x′:

[15]

The kernel we use is defined as

[16]

A simple proof that Eq. [16] satisfies Eq. [15] is shown in the Appendix.

Frequency Domain
The distortion correction can be performed in the frequency domain. In this approach, a
series of images are generated by deconvolving the entire image by κ(x′, x) for different
values of x′. The final reconstructed image is a linear combination of the demodulated
images. Using κ(x′, x) defined in Eq. [16], this algorithm can be described mathematically as

[17]

The values of xj are chosen such that different areas in the image are corrected. The values
of the weights wj (x) can be determined using a multi-frequency interpolation method (10).

The decomposition of Φc(k, x) into Ca(x) and h(k) in Eq. [11] is used to simplify the
implementation of this approach. A finite set D of values is formed to uniformly cover
possible values of Ca(x). Values are selected to be between the minimum and maximum of
Ca(x) for a particular image. Using the notation that dj is the jth element of D, the multi-
frequency approach can be summarized as
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[18]

Here, the correction kernel κ mentioned in Eq. [16] is approximated by . The
minimum number of elements in set D (or the number of frequency bins b) can be calculated
from the following expression which is modified from Man et al (10):

[19]

A diagram of the multi-frequency interpolation method is shown in Fig. 3.

Image Domain
Another approach in correcting for the phase distortion is to apply the correction in the
image domain. In this scheme, a series of correction kernels can be calculated from the
concomitant field gradient equations. These kernels are convolved with the image in image
space to effectively remove the phase error.

As proposed by Ahunbay and Pipe in a generalized deblurring technique for spiral scans, the
correction time can be reduced with a small sacrifice in accuracy through a separable
quadratic phase model (15). By analyzing the concomitant gradient fields for spiral
trajectories (Fig. 2), we model these effects as

[20]

Here, function Φc of Eq. [11] is simplified by approximating h(k) with a quadratic function:

. In concordance with h(t) in Eq. [10], constants p1 and p2 are based on
the value of ∫ g2(τ)dτ for the corresponding k. These constants can be estimated using least-
squares fitting.

With this separable quadratic phase model, the distorted image can be corrected with a one-
dimensional convolution kernel κx for a given x′ and a:

[21]

For this approach, the correction kernel κ(x′, x) from Eq. [16] is re-defined as κ(x′, x) = κx(x
′, x)κy(x′, y) with κx(x′, x) = κy(x′, y) for a square image. See Fig. 4 for a summary of this
method.

Field Inhomogeneity Effects
The off-resonance effects based on the field map Δω(x) can also be fit to a separable
quadratic phase model. A simple way to do this is by approximating t of Eq. [13] as a

quadratic function of k (15): . The value of constant pt can be estimated
using least-squares fitting. The one-dimensional kernel based on the field map for a given x′
can then be approximated as
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[22]

Combining both effects as seen individually in Eqs. [21] and [22], we arrive at an expression
for the total off-resonance phase:

[23]

and the correction kernel:

[24]

In regard to a practical implementation of the image-domain method, the correction kernels
can be easily precomputed and stored in a look-up table by ignoring the term p1Ca(x′)/2 and
varying the total value of ptΔω(x′) + p2Ca(x′). The value of p1Ca(x′)/2 can be incorporated
later when computing the convolutions in image space. The following set of equations
describe the look-up table Tκ (υ) for non-integer index υ:

[25]

[26]

For an index v, Tκ(v) yields an array of values that describe the one-dimensional kernel.
Because Tκ(v) holds a discrete set of entries, v(x) must be rounded to the nearest discrete v
entry. In short, the correction kernel for location x′ can be found with the following entry
look-up: Tκ(v(x′)) → κx(x′, x).

Additionally, the off-resonance phase measured by the field map can be simultaneously
corrected with the concomitant phase in a multi-frequency interpolation approach. Using the
total off-resonance phase approximated in Eq. [23], we can redefine the general equation of
Φc in Eq. [11] with the following substitutions:

[27]

[28]

Similar to the image-domain convolution method, the extra constant phase factor, p1Ca(x),
can be applied separately to the image. With the described substitutions, the extra phase can
be easily corrected using the multi-frequency interpolation method as described by Eq. [18].
For this algorithm, a different model can be used in place of the separable quadratic h(k). To
still achieve simultaneous correction, both phase-error sources must be represented by a
common model of h(k).
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Experiment
The two algorithms, multi-frequency and image convolution, were implemented in C++ and
incorporated as reconstruction modules in the RTHawk real-time MR system (HeartVista,
Inc., Los Altos, CA). These modules have the capability to independently correct for the off-
resonance measured by a field map, to independently correct for the off-resonance
calculated through the concomitant field equation, and to simultaneously correct for both
off-resonance errors. The speed and flexibility of the developed algorithms were exploited in
the RTHawk real-time environment.

Experiments were performed on an 1.5 GE Signa EXCITE scanner. The off-resonance field
map Δω(x) was measured by acquiring two images with an echo-time difference of 4.60 ms
to ensure a sufficient dynamic range when deriving the map. A single-shot spiral trajectory
was used to acquire the low-resolution (6.5 × 6.5 mm2) field map. Using an 8-channel
cardiac coil, all images were obtained using a TE/TR of 3.84/23.68 ms and a spectral-spatial
excitation with a slice thickness of 5 mm. Real-time images were acquired using a 4-
interleave spiral trajectory with a FOV of 20 cm and a resolution of 1.88 × 1.88 mm2. For
the high-resolution studies, a 16-interleave spiral trajectory was used to acquire two sets of
images: one with a FOV of 20 cm and a resolution of 0.72 × 0.72 mm2, and another with a
FOV of 24 cm and a resolution of 0.86 × 0.86 mm2. In all experiments, data from each coil
was gridded and corrected separately before the final image was composed by a sum-of-
squares. If a more sophisticated coil-combination algorithm is used, it is possible to perform
the correction on a single final image. This can be done if the phase information is preserved
such as in a non-accelerated sensitivity-encoded reconstruction (26,27). Note that the coil-
sensitivity phase does not affect the quality of the correction due to its slowly-varying
nature. The reconstruction was performed on a dual core AMD Opteron 270 4 × 2 GHz
processor with 7 GB RAM. We examine only one of the coils when analyzing the speed of
our algorithms.

For the multi-frequency interpolation algorithm, the images were demodulated at 10
different frequencies before combining using interpolation coefficients wj (x) estimated
using DFT approximations of a non-integer shifted sample (10). The number of frequency
bins b was determined to satisfy Eq. [19]. For some experiments, a smaller value for b could
have been used, but this value was fixed for consistency. For example, if the image was
modulated by a single frequency component, as in the case of the concomitant gradient field
distortion in an axial scan, only one frequency bin was required. This special case can be
confirmed by examining the concomitant gradient field equation described in Eq. [1]. In an
axial scan where Gz = 0, the distortion only depends on the Gx and Gy gradients applied and
the location of the slice in Z. Thus, each image pixel has the same off-resonance phase, and
this effect can be described by one frequency bin. For the image-domain approach, a table
Tκ(v) of 1000 kernels was pre-computed in the range of 0 to 200 Hz of off-resonance
distortion. This phase range was tuned to encompass different degrees of distortion seen in
our experiments, and the size of the table was determined to adequately describe the changes
in the distortion. Each convolution kernel had a total width of 20 pixels.

Results
A high-resolution phantom study was performed to test the correction algorithms. This
experiment was a practical approach in verifying the algorithms without the concern of
motion blurring, chemical shifts, and other unforeseen artifacts from in vivo scans. The
results of the experiment are shown in Fig. 5 where sagittal slices of a resolution phantom
were acquired at X = (−25.1, 8.44, 35.9) mm. The field inhomogeneity correction and the
concomitant gradient field correction demonstrated deblurring at different parts of the
image. The areas of correction can be pinpointed by analyzing the phase error maps of each

Cheng et al. Page 9

Magn Reson Med. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



effect. Consistent with theory, the field inhomogeneity was most prevalent at material
boundaries and the concomitant gradient field was most prevalent furthest from isocenter.
Additionally, the combined correction revealed a cleaner image than with correcting for only
one of the off-resonance effects.

The multi-frequency interpolation method and the image convolution method results were
almost indistinguishable; the same areas of each image were corrected. Because of the trivial
differences between the results, we concluded that either algorithm can be used. Thus, for
other experiments, we used results from only one algorithm - specifically, the image-domain
convolution algorithm.

To show robustness, in vivo studies were performed. In a high-resolution cardiac study
shown in Fig. 6, the atrial wall and the coronary arteries were examined. An axial slice and
an oblique slice were obtained at different locations to emphasize the coronary arteries.
Using the correction algorithm, a recovery of the resolution was seen at the high-frequency
artery walls. In Fig. 6a and Fig. 6c, the image was acquired at a substantial distance from
isocenter (> 10cm), so the issue of gradient non-linearity had to be addressed. Applying the
correction in the presence of gradient non-linearity is described in more detail in the
Discussion.

The high-resolution study confirmed the quality of the correction, and a low-resolution real-
time cardiac study was used to confirm the speed of the algorithms. In Fig. 7, sequential
axial slices from a real-time study are shown. The improved quality of the real-time series
can be seen by taking note of the cardiac walls and the aorta boundaries. A short
computation time was extremely beneficial in maintaining a reasonable frame rate. The
images were acquired at a rate of ~ 10 frames per second (FPS), or 40 FPS when using a
more intelligent reconstruction scheme such as incorporating a sliding window or a Kalman
filter (28). With the unoptimized C++ implementation, each algorithm yielded an average
computation time of ~ 0.1 s for a 106 × 106 size image, manifesting as a small delay in the
system. For frame rates higher than 10 FPS, the implementation must be better optimized for
speed. Strategies to reduce delay can be incorporated, including increasing the computing
resources to parallelize the processing of each frame, correcting only the region of interest,
or applying the correction when the desired anatomy is found.

Discussion
As seen in the results, the spatial resolution lost due to the concomitant gradient fields can
be recovered through the proposed correction algorithms. Some of the residual phase errors
can be corrected by incorporating the field inhomogeneity information. However, the
proposed methods require a fairly accurate field map when incorporating the field
inhomogeneity correction. Therefore, care must be taken when using the acquired field map.
Some approaches to minimize field map error include thresholding for noise, fitting the field
map to a polynomial model, or correcting the field map iteratively. Overall, there is a trade-
off between accuracy and speed. In our approaches, we focus on speed while maintaining
reasonable accuracy.

Gradient Non-linearity
In the discussion of off-resonance, gradient non-linearity becomes an issue in affecting the
scan quality through image shading and spatial distortion (29,30). These image artifacts can
be observed in Fig. 5. For most cases, the gradient non-linearity does not affect the proposed
algorithms noticeable due to the trivial amount of gradient distortion. However, for
substantial gradient non-linearity, as exhibited by spatial warping reportedly measured up to
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25 mm in pixel translation for a FOV of 24 cm (31), the demodulation kernel becomes
significantly altered.

The gradient non-linearity can be defined with the following expression:

[29]

Here, gxa is the actual non-linear x-gradient, gx is the ideal linear x-gradient, and Δgx(x) is
the spatially-dependent non-linearity. To correct for Δgx(x), the most common scheme is to
model the problem in terms of spatial warping. In the MR signal equation, the gradient is
multiplied by the spatial coordinate as gxx. Using Eq. [29] for a more accurate x-gradient
expression, we rewrite this product in terms of a spatially-warped image space:

[30a]

[30b]

The gradient non-linearity is corrected by simply correcting for the spatial warping
described by xw. Unfortunately, for the concomitant gradient field terms that include higher-
order terms and cross-terms, the gradient non-linearity cannot be simply mapped to a
warped image-space.

To incorporate gradient non-linearity distortion, extra steps are applied to the correction
schemes. First, a portion of the non-linearity is corrected by spatially unwarping the
distorted image. This step shapes the image such that the image coordinate x at each pixel is
readily determined and accurate. Next, the off-resonance correction is performed with a
phase-scaled kernel. We approximate the gradients as linear across the image-space width of
the demodulation kernel. This estimate is fairly reasonable since the gradient non-linearity is
smoothly and slowly varying across normal scan field of views. Assuming uniform gradient
non-linearity in the image plane axes (Δgx(x) ≈ Δgy (x)), the non-linearity effect is
incorporated by scaling the phase Φc by a factor of (1 + Δgx(x))2. The scaling factor is
derived from Eqs. [2], [6], and [29]. These modifications are added to our correction
schemes, and the result is shown in Fig. 8. In this experiment, the phantom was positioned
far from isocenter to accentuate the gradient non-linearity. We see that the concomitant
gradient field correction fails when the gradient non-linearity is not taken into account. For
most of the results given, the scans exhibited a trivial amount of gradient non-linearity. In
these cases, addressing the non-linearity did not noticeably improve the correction.
However, for Figs. 6a and 6c, the gradient non-linearity had to be incorporated to ensure
quality corrections.

Unfortunately, the assumption that Δgx(x) ≈ Δgy(x) does not hold for non-axial scans,
because the Z-gradient coil has different properties compared to the X-gradient and Y-
gradient coils. As a result, the correction kernel may no longer be radially symmetric. The
gradient non-linearity becomes difficult to incorporate in the multi-frequency interpolation
algorithm. The efficiency of this algorithm depends on the assumption that multiple areas of
the image can be corrected using one demodulation kernel. In non-axial scans, a unique
demodulation kernel at each pixel location may be required due to the location-based
gradient non-linearity. In these situations, the algorithm becomes impractical to implement.
Fortunately, this problem can be easily mitigated in the image-domain convolution
algorithm by applying two different kernels for each x location: a x-direction kernel phase-
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scaled by (1 + Δgx(x))2 and a y-direction kernel phase-scaled by (1 + Δgy(x))2. In certain
oblique scans, the kernel may no longer be readily separable. However, we approximate the
gradient non-linearity to have separate x-direction and separate y-direction effects. With this
simplification, residual blurring remains, but it does not greatly affect quality of the
correction.

Further investigation can be done to improve the image convolution correction scheme in
the presence of gradient non-linearity. Additionally, further work can be done to
simultaneously correct for the phase distortion along with the gradient non-linearity.

Method Comparison
Assuming that the off-resonance maps are already obtained, the total computation
complexity for the multi-frequency interpolation algorithm can be roughly summarized as

[31a]

[31b]

The first term, tmn2, is the number of multiplications required to apply the demodulation
phase of one frequency bin to the gridded k-space data. The second term, tFFT, is the time
needed to compute the Fourier transform of the demodulated image of size n × n. The last
term, (tm+ta)n2, is the number of operations required to add the derived images as a linear
combination. Variables tm and ta correspond to the time to compute complex multiplication
and complex addition. Assuming that the look-up tables have no computation cost, the total
computation complexity for the image-domain convolution algorithm can be roughly
summarized as

[32a]

[32b]

The first term, tFFT, is the time used to transform the gridded data to the image domain. The
last term, 2l(tm + ta) × n2, is the total time to apply the one-dimensional convolution kernels
(in both x and y) at each pixel. These kernels have a total pixel width of l.

From Eq. [31b], we see that the computation time for the multi-frequency interpolation
algorithm is dominated by the computation of the Fourier transforms. The number of bins b
can be reduced to decrease the computation time. From Eq. [32b], we see that the
computation time for the image convolution algorithm is dominated by the convolution
operation. The computation time can be reduced by narrowing the width l of the kernel. As
mentioned previously, the computation time for both algorithms were very similar with l =
20 and b = 10. A more in depth analysis of the trade-offs of modifying these variables can be
performed, but given the results and the emphasis of speed, the values used were sufficient.

In terms of accuracy, the two different approaches cannot be fairly compared, because each
makes different approximations. The multi-frequency interpolation approximates the
problem by interpolating through different off-resonance frequencies; whereas the image
convolution correction approximates the phase error through a separable kernel model.
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Using the same demodulation kernel for both approaches, it is hypothesized that the image
convolution approach results in a more accurate image because of its ability to use a more
accurate kernel at each location. However, given the nature of the slowly-varying off-
resonance phase, the difference in the correction approaches are difficult to observe.

In terms of practical implementation, the image convolution correction is recommended
over the frequency-domain approach for the following two reasons. First, for high-varying
phase errors, the multi-frequency interpolation requires more and more frequency bins (Eq.
[19]). This increases the computation time of the multi-frequency interpolation method. For
the image-domain approach, the number of kernels can be increased to account for a wide
range of phase variation, and the computation time will not be affected. Secondly, the image
convolution method can better cater its correction to localized effects without any significant
penalty. For example, different x and y image-domain kernels could be used to incorporate
the gradient non-linearity effects in the correction. In the frequency-domain method, the
calculations may become too unwieldy when considering gradient non-linearity. However,
the multi-frequency interpolation method does have an advantage over the image
convolution method in that it has better efficiency for cases with slowly-varying phase
errors. An example of this case is when the phase error can be corrected by only one
frequency bin.

Gradient Alterations and Other Scan Sequences
As mentioned in the analysis, the concomitant gradient field depends on the gradient
waveforms applied. Therefore, any alterations in the gradient waveform, such as a gradient
amplitude alterations or scan geometry modifications, change the prescribed correction
kernel. This is also an issue if the main field inhomogeneity map is used to alter the
sequence during the scan, such as adding a center frequency off-set or adding an additional
gradient component. For minor alterations, the correction scheme is not affected noticeably.
Because incorporating this correction using the field map comes at little extra cost, it is
recommended to not alter the sequence significantly, and correct the field inhomogeneity
simultaneously using the proposed algorithms.

The algorithms can potentially be extended to other non-Cartesian trajectories as long as the
gradient dependency of the concomitant gradient field can be decoupled from its spatial
dependency. This decoupling for the spiral trajectory can be seen in Eq. [2], and the
decoupling is modeled in Eq. [11] as h(k) and Ca(x). Additionally, if h(t) cannot be
successfully mapped to h(k), more work must be done to allow the image convolution
method to be a reasonable method in terms of computational complexity. From the results of
our correction scheme, this area of research is worthwhile to pursue in improving non-
Cartesian scan quality.

In all our experiments, a traditional gradient-echo sequence was used to acquire the images.
Because the algorithms correct for the errors caused by the gradients applied and the scan
location, they can be directly applied to other common cardiac sequences such as steady-
state free precession (SSFP) imaging. For SSFP imaging, the readout length is innately short
resulting in smaller phase accrual from the concomitant gradient fields and the field
inhomogeneities. In this case, blurring may be insignificant and correction could all together
be avoided.

As noted, the algorithms can correct images using more sophisticated parallel imaging
techniques. Some of these multi-coil techniques, such as the iterative self-consistent parallel
imaging reconstruction method (32), can correct for off-resonance effects. Using our
formulation, the concomitant gradient field distortion can be easily incorporated into such
methods for a more accurate correction. However, for cardiac applications where speed is
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emphasized, the computation intensity of these techniques do not allow for true real-time
imaging. Our approach is favored for these cases.

Conclusion
Correction for both field inhomogeneities and concomitant gradient fields results in
significant improvement in image quality. The concomitant gradient field information can
be easily added to existing off-resonance algorithms with little extra cost. The two
approaches presented here, multi-frequency interpolation and non-stationary image-domain
convolution, are fast enough for real-time applications and accurate enough for high-
resolution scans. Results from phantom and cardiac studies are reported with noticeable
improvements.
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A Appendix

A.1 Concomitant gradient field equation
To simplify our notations, we combine the rotation and location dependency of the
concomitant gradient field into one equation. This equation is denoted as Ca(x) and is
defined as

[A.1]

Eq. [A.1] greatly simplifies the concomitant gradient field effects by decoupling the gradient
and location dependency as seen in the function Φc in Eq. [9]. The values of F1, F2, … F6
were defined by King et al (4). The equations are reproduced here for convenience:

[A.2a]

[A.2b]

[A.2c]

[A.2d]

[A.2e]
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[A.2f]

[A.2g]

A.2 Non-stationary kernel
Based on Eq. [12e], a formula for f(x′, x) is derived as

[A.3a]

[A.3b]

Since Φc is symmetrical about the origin, we can remove the minus sign in the transform
and rewrite the equation as

[A.4]

Using the following equation for κ(x′, x):

[A.5]

we can show that this equation is sufficient to remove the blurring effects for a fixed
location x′:

[A.6a]

[A.6b]

[A.6c]

The convolution kernel κ can accurately remove the phase distortion effects given an
accurate measurement of the phase error. To reiterate, we are also relying on the assumption
that f(x′, x) changes very slowly with respect to x′.
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FIG. 1.
Magnitude plots of example off-resonance convolution kernels in the image domain for a
resolution of 1.88 × 1.88 mm2. a,e: At 1 Hz. b,f: At 50 Hz. c,g: At 100 Hz. d,h: At 200 Hz.
Plots in (a), (b), (c), and (d) have y = 0.
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FIG. 2.
Concomitant gradient field phase at X = (−18.0, 15.0, 40.0) mm plotted in normalized k-
space for a sagittal scan. The k-space trajectory is normalized to extend from −0.5 to 0.5.
The phase is plotted with respect to kr, the magnitude of k.
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FIG. 3.
Diagram for the multi-frequency interpolation method. The box in light gray can be
precomputed before scanning. If the scan parameters are not changed, the values for exp
[−djh(k)] and wj(x) can also be precomputed. Eq. [18] corresponds to the operations in this
figure.
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FIG. 4.
Diagram for the image convolution method. The boxes in light gray can be precomputed
before scanning. The non-stationary convolution (*) is a one dimensional operation.

Cheng et al. Page 21

Magn Reson Med. Author manuscript; available in PMC 2012 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 5.
Phantom study comparing the off-resonance effects and the algorithms used. Sagittal slices
of a resolution phantom were acquired at X = (−25.1, 8.44, 35.9) mm with a FOV of 20 cm
and a resolution of 0.72 × 0.72 mm2. a: Original image. b–d: Corrected using the multi-
frequency interpolation algorithm. e–g: Corrected using the image-domain convolution
algorithm. h–j: Phase error modelled by off-resonance maps with the same window/level.
Images in (b), (e), and (h) correspond to correcting with only the field map. Images in (c),
(f), and (i) correspond to correcting only the concomitant gradient field. Images in (d), (g),
and (j) correspond to correcting both effects.
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FIG. 6.
Triggered high resolution study using the image convolution method. The original images
are shown in the middle, and the corrected images are shown in the right column. a: Axial
slice at X = (22.2,−26.8, 105.5) mm imaging the left coronary artery. b: Oblique slice at X =
(9.7,−33.2, 73.7) mm imaging the left anterior descending artery. c: Oblique slice at X =
(−12.5,−37.4, 99.3) mm imaging the right coronary artery. The images in (a) and (b) are
acquired with a FOV of 24 cm and a resolution of 0.86 × 0.86 mm2. The image in (c) is
acquired with a FOV of 20 cm and a resolution of 0.72 × 0.72 mm2. Note the sharpness in
the atrial walls and coronary arteries.
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FIG. 7.
Sequential axial slices from a real-time cardiac study corrected using the image convolution
method. The deblurring is noticeable in the aorta and atrial walls with some residual blurring
partially due to motion. The 5 mm slices were obtained at X = (17.2,−0.8,−50.0) mm. The
top row is the original image series, and the bottom row is the corrected image series using
both the field map and the concomitant gradient fields.
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FIG. 8.
Effect of gradient non-linearity on the off-resonance correction. a: Original image. b:
Corrected image without using gradient non-linearity information. c: Corrected image with
gradient non-linearity information. The axial slice was acquired at X = (5.3,−1.1, 120.0) mm
with a FOV of 24 cm and a resolution of 0.86 × 0.86 mm2. The image was cropped to
magnify the region of interest. The concomitant gradient field and the field map phase was
corrected in (b) and (c) using the image convolution method.
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