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General expressions relating the effects of pressure, temperature, and composition on solute asso-
ciation and conformational equilibria using the fluctuation theory of solutions are provided. The
expressions are exact and can be used to interpret experimental or computer simulation data for
any multicomponent mixture involving molecules of any size and character at any composition. The
relationships involve particle-particle, particle-energy, and energy-energy correlations within local
regions in the vicinity of each species involved in the equilibrium. In particular, it is demonstrated
that the results can be used to study peptide and protein association or aggregation, protein denatu-
ration, and protein-ligand binding. Exactly how the relevant fluctuating properties may be obtained
from experimental or computer simulation data are also outlined. It is shown that the enthalpy, heat
capacity, and compressibility differences associated with the equilibrium process can, in principle,
be obtained from a single simulation. Fluctuation based expressions for partial molar heat capacities,
thermal expansions, and isothermal compressibilities are also provided. © 2011 American Institute
of Physics. [doi:10.1063/1.3601342]

I. INTRODUCTION

Studies of protein denaturation play a central role in
our efforts to understand the forces that stabilize protein
structures and assemblies.1 Proteins can be denatured by
changes in temperature, pressure, and solution composition
(cosolvents and pH) in closed systems2–4 and by osmotic
pressure or stress in open systems.5 Experimentally, the ther-
modynamics of protein denaturation are well established and
a large volume of data on protein denaturation is available.
More recently, a growing amount of thermodynamic data
concerning the factors that influence peptide and protein
aggregation has also been determined.6–9 Unfortunately, it
is extremely difficult to relate this thermodynamic data to
specific interactions with, or effects on, either the native or
denatured forms. Consequently, the application of computer
simulations for the study of protein denaturation has become
increasingly more common. In principle, an atomic level pic-
ture of interactions and structural changes can be elucidated
from these computer simulations. However, in practice this
has proven difficult for two main reasons. First, one cannot
typically follow the denaturation equilibrium with current
computational resources, with the possible exception of a few
extreme examples,10, 11 and thereby evaluate the equilibrium
constant (K). Second, it is not clear exactly how to extract
from a simulation the relevant properties of a protein that
relate to thermal or pressure denaturation—unless one has
already solved the first problem.

For example, simulations of a protein folding/unfolding
equilibrium to a degree where a precise equilibrium constant
can be determined are extremely rare. Hence, obtaining a re-
liable equilibrium constant for protein denaturation over a
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range of pressure, temperature, or cosolvent concentrations
is essentially impossible at present. The temperature denatu-
ration or folding of small proteins or peptides can be studied
more easily. In particular, peptide simulations using replica
exchange techniques,10 essentially provide the enthalpy (first
derivative of K) and heat capacity (second derivative of K)
changes via an analysis of the equilibrium constant as a func-
tion of temperature. However, these simulations remain com-
putationally expensive for larger proteins in explicit solvent
and it is still not clear, for instance, exactly how one should
decompose or interpret the resulting enthalpy changes.12, 13

In addition, the heat capacity changes associated with ther-
mal denaturation are also typically difficult to quantify by
simulation.14–16

Pressure denaturation simulations are also problematic.
Thermodynamics relates the effect of pressure on the equilib-
rium constant to a difference in volume between the native
and denatured forms.3, 17 The determination of protein vol-
umes from a simulation are either numerically challenging
(direct evaluation of the volume change on addition of the pro-
tein), or require somewhat subjective definitions of the protein
volume which may or may not be correct.18–20 Furthermore,
the second derivative of K with respect to pressure is usually
interpreted in terms of a difference in compressibility between
the two protein forms.6 This is often estimated using a protein
volume fluctuation formula which is technically only valid for
the total volume of a macroscopic closed system at constant
pressure and temperature.21, 22 Clearly, a more rigorous and
computationally efficient approach is desirable.

The simulation of protein denaturation by the addition
of cosolvents such as urea has also received attention.23–26 In
fact, the effects of cosolvents and, in particular, how these ef-
fects may be determined from simulation in a way that can
be compared with experimental data are essentially solved.27

In our opinion, the most rigorous analysis of computer
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simulation data involves the Kirkwood-Buff (KB) theory of
solution mixtures to relate changes in the equilibrium constant
to the relative distribution of cosolvent and solvent molecules
in the vicinity of both protein forms.28–33 A similar type of ap-
proach would be useful for the interpretation of pressure and
thermal denaturation simulations. This is a major goal of the
present study.

The KB theory is a general theory of solution mix-
tures which relates molecular distributions in solution to
the thermodynamic properties of that solution.34–36 We were
initially drawn to this type of approach as the resulting ex-
pressions are exact and involved quantities that can be easily
obtained from computer simulations. The KB theory quan-
tifies the molecular distributions in terms of Kirkwood-Buff
integrals (KBIs), involving integrals over the correspond-
ing intermolecular radial distribution functions, or as parti-
cle number fluctuations corresponding to local regions of the
solution. Hence, it is also referred to as the fluctuation the-
ory (FT) of solutions. The application of KB or FT to un-
derstand solution mixtures has provided valuable insight into
their behavior.37 Recently, we have extended the analysis of
solution mixtures, building on the work of Buff and Brout,38

and also Debenedetti,39–42 by determining particle-energy
and energy-energy fluctuations obtained from experimental
enthalpy of mixing, thermal expansion, and heat capacity
data.43

The KB theory has also been applied to understand
chemical equilibria. Several studies have used expressions
derived for thermodynamically independent infinitely dilute
solutes to study the equilibrium between two infinitely di-
lute forms.28, 29, 44, 45 More rigorous work by O’Connell and
co-workers has provided general expressions for reactive sys-
tems, including sequential reactions, in terms of both to-
tal and direct correlation functions after explicitly including
the material balance constraint resulting in a modified grand
canonical distribution function.46, 47 Ben-Naim derived ex-
pressions for the effect of a cosolvent on association equilibria
in a primary solvent using an alternative approach where the
chemical equilibrium conditions were imposed on the usual
multicomponent KB expressions.48 More recently, we derived
general expressions which could be applied to interpret real
experimental data for complex systems in a variety of en-
sembles using a slightly different approach, from which the
original Ben-Naim result for the effect of a cosolvent could
be obtained.49 The cosolvent effects were related to particle-
particle fluctuations in the vicinity of each form present in
the equilibrium. Here, we wish to extend this type of ap-
proach to provide general fluctuation based expressions which
can be used to interpret the effects of temperature and pres-
sure on association equilibria in solution, with a specific em-
phasis on protein denaturation. All the expressions provided
are exact and can be used to interpret either experimental or
simulation data concerning pressure, temperature, or cosol-
vent denaturation. In particular, first and second derivatives
of the equilibrium constant with respect to pressure, temper-
ature, and cosolvent concentration are developed which can
(in principle) be determined from a single simulation, thereby
eliminating the need for computationally intensive multiple
simulations.

II. THEORY

Here, we develop relationships describing an equilibrium
process in a system, which may be under a variety of differ-
ent thermodynamic constraints, in terms of particle-particle,
particle-energy, and energy-energy fluctuations. All ensem-
ble averages—signified in this study by angular brackets—
correspond to that of the Grand Canonical Ensemble. They
can be used to describe properties of other ensembles which
possess the same average thermodynamic quantities, chem-
ical potential, pressure, etc., and then represent fluctuations
observed for local regions within these systems.

In the Grand Canonical Ensemble the independent vari-
ables are the volume (V), the temperature (β = 1/RT), and the
set of chemical potentials ({βμ}). Hence, a differential for the
number density of i particles (ρ i = 〈Ni〉/V) in a solution mix-
ture can be written as a function of the independent variables,
such that

dln ρi =
(

∂ ln ρi

∂β

)
{βμ}

dβ +
∑

j

(
∂ ln ρi

∂ βμ j

)
β,{βμ}′

d βμ j ,

(1)
where the summation is over all j components of the mixture,
and the prime indicates that all chemical potentials except for
the one of interest are held constant. Using the statistical me-
chanical equations associated with the grand canonical (μVT)
ensemble one can show that the above derivatives are given by
the following ensemble averages38:(

∂ ln ρi

∂ βμ j

)
β,{β μ}′

= 〈δNiδN j 〉
〈Ni 〉 = δi j + Ni j ,

(
∂ ln ρi

∂β

)
{β μ}

= −〈δNiδE〉
〈Ni 〉 = −Fμ, i , (2)

where δij is the Kroenecker delta function, δX = X – 〈X〉 is the
deviation in X from the ensemble average X for each member
of the ensemble, and E is the total internal energy of each
member of the ensemble.

The Nij values represent particle-particle number fluctu-
ations within a local volume of the solution of interest and
are the focus of the KB theory of solutions. They are related
to the traditional KBIs between species i and j which can be
expressed in terms of the corresponding radial probability dis-
tribution (gij),34

Ni j = ρ j Gi j = 4πρ j

∫ ∞

0
[gi j (r ) − 1]r2dr (3)

or as particle-particle number fluctuation densities

Bi j = ρi (δi j + Ni j ) = 〈δNiδN j 〉
V

. (4)

The use of radial probability distributions imparts a useful
physical picture to the Nij’s. Namely, the change in the num-
ber of j particles resulting from the introducing an i particle to
the reference volume, from the number of j particles observed
in the same volume of the bulk solution.50 The Fμ’s corre-
spond to particle number-energy correlations within the same
local region of interest, and can be used to characterize solu-
tion mixtures in an analogous fashion to the KB theory.38, 43
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Previously, we used a more convenient property for
the analysis of experimental data on solution mixtures that
provided useful relationships for particle-energy and energy-
energy fluctuations in terms of experimentally accessible
excess thermodynamic properties.43 This was achieved by
defining an excess energy (ε), such that

ε = E −
∑

j

N j E0
j , Fi = 〈δNiδε〉

〈Ni 〉 , (5)

where Ej
0 is the average internal energy per particle (molar

energy) in the pure liquid j, or for any reference state, at the
temperature and average pressure of interest. Unfortunately,
when studying systems at constant pressure and temperature
the above approach leads to rather cumbersome expressions.
Much simpler, and totally equivalent, results can be obtained
by defining an alternative fluctuating quantity, such that

εP = E −
∑

j

N j h̄ j , FP,i = 〈δNiδεP〉
〈Ni 〉 , (6)

where h̄ j is the partial molar enthalpy of species j at the
particular composition of interest. The value of εP measures
the difference between the instantaneous energy E of a
local region containing {N} molecules and the average total
enthalpy of the same set of molecules in the bulk solution.
While it seems somewhat unusual to subtract an enthalpy
term from an energy term, the following analysis is aided
greatly by this substitution, especially for closed systems
at constant pressure. Furthermore, while the use of partial
molar enthalpies is unfortunate as they cannot be obtained
from experiment, they can be easily extracted from computer
simulation data, and the corresponding FP’s can be obtained
from experimental data as we illustrate below. Combining
Eqs. (1), (2), and (6) one finds

d ln ρi = −FP,i dβ +
∑

j

(δi j + Ni j )(dβμ j − h̄ j dβ) (7)

for any species i in a mixture of j components at any com-
position. If T (β) is constant the above equations reduce to
a series of differentials corresponding to the traditional KB
theory of solution mixtures.51, 52 Using the above substitution,
one finds that the isothermal compressibility (κT), isobaric
thermal expansion coefficient (αP), and constant pressure
heat capacity (CP) of any multicomponent solution mixture
are then given by

RT κT = −RT

(
∂ ln V

∂ P

)
T,{N }

=
∑

j

(δi j + Ni j )V̄ j ,

RT 2αp = RT 2

(
∂ ln V

∂T

)
P,{N }

= −FP,i = −
∑

i

xi FP,i

= −
∑

i

φi FP,i ,

RT 2CP = RT 2

(
∂〈H〉
∂T

)
P,{N }

= 〈δεP δεP〉, (8)

where V̄i and φi = ρi V̄i are the partial molar volume and
volume fraction of i, respectively. The above expressions

are much simpler than the equivalent expressions provided
previously for the thermal expansion and heat capacity.38, 43, 53

It should be noted that, using this formulism, the same value
of FP is obtained for each thermodynamically independent
species. However, different values will be obtained for
the thermodynamically dependent solute forms (see later
discussion).

In the following analysis, we shall also use the pseudo
chemical potential (μ∗

i ) concept, and its associated enthalpy
(h∗

i ) and volume (V ∗
i ), to indicate how one can extract rele-

vant quantities from available experimental data. The pseudo
chemical potential approach centers on the statistical mechan-
ical definition of chemical potential and thereby eliminates
the need for standard states.36 The pseudo chemical potential
is similar to the excess chemical potential used in computer
simulations with the only difference being a term related to
the internal partition function of the species. Using Eqs. (1)
and (2) and rearranging one finds

d βμ∗
i ≡ d βμi − d ln �3

i ρi = −3d ln �i + Fμ,i dβ

−
∑

j

Ni j d βμ j , (9)

where �i is the thermal de Broglie wavelength and is propor-
tional to T−1/2. From the above equation one obtains

V ∗
i = V̄i − RT κT = −

∑
j

Ni j V̄ j ,

h∗
i = h̄i − RT 2αp − 3

2
RT = −3

2
RT + Fμ, i −

∑
j

Ni j h̄ j ,

dμ∗
i = dμi − RT d ln ρi = −

∑
j

Ni j dμ j T constant,

(10)

where the last equation can be used for changes in composi-
tion of the system. The volume term (V ∗

i ) can be determined
experimentally, while only changes in the enthalpy and chem-
ical potentials for various processes can be evaluated experi-
mentally (see later discussion). In principle, all three proper-
ties can be obtained directly from computer simulations.

Equation (7) represents a series of source equations
which can be used to obtain expressions for various proper-
ties of solution mixtures in terms of number-number, number-
energy, and (later) energy-energy correlations characterizing
local microscopic regions within the solution. Our primary
focus here is that of chemical equilibria involving an associ-
ating solute, or a solute which can undergo a change in con-
formation. We examine a system with a solute (2) in a primary
solvent (1) which may contain any number of additional co-
solvents (3,4, . . . ). The solute is in equilibrium between two
forms. One form being a monomer (M) and the other an ag-
gregate (A) containing n monomers. This equilibrium is de-
scribed by an equilibrium constant (K), such that

nM → A, K = ρA

ρn
M

, d ln K = d ln ρA − nd ln ρM .

(11)
We note that the equilibrium constant involves the actual num-
ber densities (molar concentrations) present at the equilibrium
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composition of interest, and not the activities approximated
by concentrations—as is often the case in biological prob-
lems. The relationships between the number of solutes, num-
ber of monomers, and number of aggregates are given by

NM + nNA = N2, fM = NM

N2
, f A = nNA

N2
. (12)

Furthermore, the equilibrium conditions dictate that the fol-
lowing relationships:

μA = nμM = nμ2, dμA = ndμM = ndμ2, (13)

must be obeyed. Using Eq. (7), the above relationships, and
the approach outlined previously,49 it is relatively easy to
show that

d ln K = −(FP,A − nFP,M )dβ

+
∑

i

(NAi − nNMi )(d βμi − h̄i dβ), (14)

where the summation is over all thermodynamically indepen-
dent i components including component 2. The exact meaning
of the NA2 and NM2 values has been discussed previously.49

This equation, in combination with the Gibbs-Duhem (GD)
expression,

SdT − V d P +
∑

i

Ni dμi = 0, (15)

enables one to develop a complete picture of how pressure,
temperature, and solution composition affect the above equi-
librium in terms of particle and energy fluctuations within lo-
cal regions of the solution under the conditions of interest.

III. RESULTS

In the following subsections we provide expressions (first
and second derivatives) describing the effect of pressure, tem-
perature, and composition on a general equilibrium process in
solution. The equilibrium can involve molecules of any size
and character at any composition in a variety of ensembles.
In addition, we provide expressions for the simplest case—a
two state conformational equilibrium in a single solvent at in-
finite dilution of the solute—such as often used to understand
protein folding or denaturation.

A. The effect of hydrostatic pressure on chemical
equilibria

Taking derivatives of Eq. (14) with respect to pressure
while keeping temperature and composition constant imme-
diately provides(

∂ ln K

∂ P

)
β,{N }

= β
∑

i

(NAi − nNMi )V̄i . (16)

The partial molar volumes can also be expressed in terms of
KBIs if desired. Hence, in the absence of specific affinities
between the two forms and any i species, then if A is “smaller”
than n monomers there will be an excess of each i molecule
in the vicinity of A compared to the vicinity of n monomers.
Therefore, each term on the right hand side will be positive
and an increase in P will increase K and thus favor the A form.

In many cases, one is also interested in the “compressibil-
ity” of the process as manifested in the second derivative of
the equilibrium constant with respect to pressure. To develop
expressions for this derivative we first note that(

∂ ln K

∂ P

)
β,{N }

= β
∑

i

V̄i

(
∂ ln K

∂ βμi

)
β,{βμ}′

. (17)

Consequently, taking pressure derivatives of the above expres-
sion, then interchanging the order of differentiation on the
right hand side, one finds the second pressure derivative can
be written as(

∂2 ln K

∂ P2

)
β,{N }

=−β
∑

i

(NAi − nNMi )V̄i κ̄T,i + β2
∑
i, j

V̄i V̄ j

×
(

∂(NAj − nNM j )

∂ βμi

)
β,{βμ}′

, (18)

where κ̄T,i = −(∂ ln V̄i/∂ P)T,{N } is the partial molar isother-
mal compressibility of species i, and (∂ V̄ j/∂ βμi )β,{β μ}′ = 0.
Fluctuation based expressions for the partial molar compress-
ibilities are provided in Appendix B. The required derivative
can be obtained from the equations of the grand canonical en-
semble in the same manner as before to provide(

∂ NAj

∂ βμi

)
β,{β μ}′

= 〈δNAδNiδN j 〉
〈NA〉 − NAi NAj

= NAi j − NAi NAj . (19)

Hence, the above derivative provides information on triplet
particle number fluctuations (NAij) in the region of interest.
Similar expressions are obtained for the corresponding deriva-
tives of NMj. The final expression for the second derivative of
the equilibrium with respect to pressure for a solution con-
taining any number of components is therefore(

∂2lnK

∂ P2

)
β,{N }

= −β
∑

i

(NAi − nNMi )V̄i κ̄T,i

+β2
∑
i, j

V̄i V̄ j [NAi j − NAi NAj

− n(NMi j − NMi NM j )]. (20)

In principle, all the terms present in Eqs. (16) and (20)
can be determined reasonably easily from a single computer
simulation.

In order to extract the specific terms associated with each
form (A or M), one requires knowledge of the solute volume
and how it varies with pressure. From Eq. (10) we have

V ∗
2 = −

∑
j

N2 j V̄ j = −
∑

j

( f A NAj + fM NM j )V̄ j , (21)

which provides the net sum over all j terms. To extract each
NAj term would require knowledge of all the partial molar vol-
umes in the mixture. The pressure derivative of the solute vol-
ume can then be expressed as(

∂V ∗
i

∂ P

)
β,{N }

= −
∑

j

[(
∂ Ni j

∂ P

)
β,{N }

V̄ j − Ni j V̄ j κ̄T, j

]
,

(22)
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where the required derivative is given by(
∂ Ni j

∂ P

)
β,{N }

= −Ni jκT + β
∑

k

〈δNiδN jδNk〉
〈Ni 〉 V̄k (23)

and was evaluated by treating 〈δNi δNj〉 as a function of {βμ},
β, and V, in a similar manner to Eq. (1) (see Appendix A). The
final expression for the change in solute volume with pressure
is then(

∂V ∗
2

∂ P

)
β,{N }

= RT (κT )2 +
∑

i

N2i V̄i κ̄T,i

−β
∑
i, j

V̄i V̄ j [ f A NAi j + fM NMi j ]. (24)

We note that Eqs. (16), (20), and (21) could be simplified by
using the notation V ∗

A = −∑
j NAj V̄ j , as suggested by Eq.

(10), although this requires some care (see later discussion).
A situation of common interest is that of an infinitely di-

lute solute in a single solvent. For instance, experimental data
concerning the pressure denaturation (N → D) of proteins is
often interpreted in terms of a Taylor expansion of the stan-
dard free energy change for unfolding,6

− β ��G0,∞ = ln

(
K

K0

)∞
≈

(
∂ ln K

∂ P

)∞

T,m2

�P

+ 1

2!

(
∂2 ln K

∂ P2

)∞

T,m2

(�P)2 + O[(�P)3],

(25)

where the subscript 0 refers to the reference pressure, �P
= P – P0, and all derivatives are for an infinitely dilute protein
evaluated at P0 (usually 1 bar). In this case the first derivative
is expressed in terms of fluctuating quantities by(

∂ ln K

∂ P

)∞

T,m2

= β(G∞
D1 − G∞

N1) = βV 0
1 (〈N1〉D − 〈N1〉N )

= −β �V 0,∞, (26)

where m2 = ρ2/ρ1, is a dimensionless molality, and the last
equality arises from standard thermodynamics under condi-
tions that activity and concentration are equivalent. The above
expression has been presented before,28 although it is sel-
dom used for the analysis of simulation data on pressure
denaturation.54 The subscript D (or N) indicates an ensemble
average within the same fixed volume of solution surrounding
a single D (or N) molecule. Hence, the KBIs essentially quan-
tify the volume of each solute form in terms of the number
of solvent molecules that can be accommodated in the same
fixed volume of solution.

The second derivative for pressure denaturation is given
by(

∂2 ln K

∂ P2

)∞

T,m2

= −β(G∞
D1 − G∞

N1)κ0
T + (βV 0

1 )2
[〈δN1δN1〉D

−〈δN1δN1〉N − [
(N∞

D1)2 − (N∞
N1)2

]]
. (27)

It is comforting to note the similarity of several terms in
the above expression to the compressibility equation for a
pure solvent, involving fluctuations in the number of solvent

particles.36 The above expressions indicate that the volume
and “compressibility” associated with the equilibrium, and
thereby the proteins themselves, are actually properties solely
related to the water distribution in the vicinity of each form.
In the present fluctuation based approach the protein vol-
ume does not enter directly into the expressions, and hence
one does not have to be concerned as to exactly how this is
defined or represented when analyzing computer simulation
data. However, clearly the number of waters and their fluctu-
ations will mimic the protein volume and fluctuations in the
protein volume (see later discussion).

In order to extract specific fluctuations associated with
each form, one requires information concerning the protein
solute volume and how the volume changes with pressure.
Namely,

V ∗,∞
2 = −G∞

21 = − fDG∞
D1 − fN G∞

N1 (28)

and (
∂V ∗

2

∂ P

)∞

T,m2

= RT
(
κ0

T

)2 + G∞
21κ

0
T − β

(
V 0

1

)2
[ fD〈δN1δN1〉D

+ fN 〈δN1δN1〉N − 〈δN1δN1〉0]. (29)

The zero subscript indicating an ensemble average obtained
for the same volume of pure solvent. Hence, if one knows
K and the compressibility of the pure solvent, together with
V ∗,∞

2 for a series of pressures of interest, then the individual
KBIs and fluctuations can be extracted from experimental
data.

B. The effect of temperature on chemical equilibria at
constant pressure

One of the most common ways to affect a chemical equi-
librium involves changes in temperature at constant pressure.
To our knowledge there are no fluctuation based expressions
currently available for describing the associated enthalpy and
heat capacity changes for chemical equilibria. Taking deriva-
tives of Eq. (14) with respect to β while keeping pressure and
composition constant one immediately obtains(

∂ ln K

∂β

)
P,{N }

= −(FP,A − nFP,M ). (30)

The above expression is valid for any number of components
at any concentration. In order to develop second derivatives
of the equilibrium constant with respect to β we first note that(

∂ ln K

∂β

)
P,{N }

=
(

∂ ln K

∂β

)
{β μ}

+
∑

i

h̄i

(
∂ ln K

∂ βμi

)
β,{β μ}′

.

(31)
The second derivative is then obtained from the derivative of
Eq. (31) after a change in the order of differentiation,(
∂2 ln K

∂β2

)
P,{N }

= −RT 2
∑

i

(NAi − nNMi )c̄P,i

−
(

∂(FP,A−nFP,M )

∂β

)
{β μ}

−
∑

i

h̄i

(
∂(FP,A−nFP,M )

∂ βμi

)
β,{β μ}′

,

(32)
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where c̄P,i is the partial molar constant pressure heat ca-
pacity of species i (see Appendix B for the relevant expres-
sions). All the derivatives in the above expression can be eval-
uated in terms of local fluctuations using the equations of
the grand canonical ensemble. Noting that (∂ h̄ j/∂ βμi )β,{β μ}′
= (∂ h̄ j/∂β){β μ} = 0, the required results are given by the
following derivatives:

(
∂ FP,A

∂ β

)
{β μ}

= −〈δNAδ εPδE〉
〈NA〉 + FP,A Fμ,A (33)

and(
∂ FP,A

∂ βμi

)
β{β μ}′

= 〈δNAδNiδ εP〉
〈NA〉 − FP,A NAi , (34)

which together provide

(
∂ FP,A

∂β

)
{β μ}

+
∑

i

h̄i

(
∂ FP,A

∂ βμi

)
β,{β μ}′

= −〈δNAδ εPδ εP〉
〈NA〉 + F2

P,A. (35)

Similar expressions are found for the monomer form. Hence,
the final result for a solution containing any number of com-
ponents is given by

(
∂2 ln K

∂β2

)
P,{N }

= −RT 2
∑

i

(NAi − nNMi )c̄P,i

+ 〈δNAδ εpδ εp〉
〈NA〉 − (FP,A)2

− n

[ 〈δNMδ εPδ εP〉
〈NM 〉 − (FP,M )2

]
.

(36)

Again, it is satisfying that the above expression involves local
energy fluctuations in the vicinity of both forms of the solute,
which are typically characteristic of heat capacities.36

In order to extract the specific terms relating to each form,
one requires knowledge of the thermal expansion and how the
pseudo enthalpy varies with temperature. From Eq. (8) one
has

RT 2αP = −FP,2 = − f A FP,A − fM FP,M (37)

and from Eq. (10),

(
∂h∗

i

∂β

)
P,{N }

= 3

2
(RT )2 +

(
∂ Fμ,i

∂β

)
P,{N }

−
∑

j

[
h̄ j

(
∂ Ni j

∂β

)
P,{N }

− RT 2 Ni j c̄P, j

]
.

(38)

The two constant pressure derivatives can be evaluated using
the same approach as used for Eq. (23) (see Appendix A) to

provide(
∂h∗

2

∂β

)
p,{N }

= −RT 2c∗
P,2

= 3

2
(RT )2 + (RT 2αP )2 − f A

〈δNAδ εPδ εP〉
〈NA〉

− fM
〈δNMδ εPδ εP〉

〈NM 〉 + RT 2
∑

j

N2 j c̄P, j (39)

Analogous expressions can be obtained for the other solution
components if required.

Focusing again on an infinitely dilute protein solute in a
single solvent, one finds a Taylor expansion of the equilib-
rium constant for a simple two state denaturation around a
reference temperature provides the usual relationship,

ln

(
K

K0

)∞
≈

(
∂ ln K

∂T

)∞

P,m2

�T + 1

2!

(
∂2 ln K

∂T 2

)∞

P,m2

(�T )2

+ O[(�T )3], (40)

where the first derivative is given by(
∂ ln K

∂T

)∞

P,m2

= (RT 2)−1
(
F∞

P,D − F∞
P,N

) = (RT 2)−1�H 0,∞

(41)
and provides an expression for the standard enthalpy change
in terms of fluctuations in the local solution properties. This
could be particularly useful for the analysis of computer sim-
ulation data. The value of FP,D at infinite dilution represents
the relative enthalpy of the denatured form and for pairwise
additive potentials is given by

F∞
P,D = 〈εP〉D − 〈εP〉0 = 〈

EDD + ED1 + E11 − N1 E0
1

〉
D

+ PV ∗,∞
D − E0

2 , (42)

which contains terms one would expect, namely, the intra and
intermolecular energies Eij, together with a less obvious addi-
tional term N1 E0

1 , which is non-negligible. The last term will
cancel for differences between the F’s even when n 
= 1. The
above result can be written in a slightly more noticeable form
using an alternative energy fluctuation term,(

∂ ln K

∂β

)∞

P,m2

= − (
F∞

D − F∞
N

) + P
(
G∞

D1 − G∞
N1

)
= −�E0,∞ − P�V 0,∞, (43)

where we have used the definition of ε presented in Eq. (5).
The volume term is the same as that derived for pressure de-
naturation (Eq. (26)), while the energy term provides a fluc-
tuation expression for the energy contribution to the enthalpy
change. The second derivative of the equilibrium constant is
given by(

∂2 ln K

∂T 2

)∞

P,m2

= (RT 2)−1�C0
p

= − (RT 2)−1C0
p,m

(
N∞

D1 − N∞
N1

)
+ (RT 2)−2

[ 〈δ εPδ εP〉D − 〈δ εPδ εP〉N

− [(
F∞

P,D

)2 − (
F∞

P,N

)2]]
(44)
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and provides a route to heat capacity changes associated with
the chemical equilibrium in terms of local fluctuations. In
the majority of cases, the volume changes associated with the
equilibrium will be negligible in solution, compared to the
corresponding energy changes, and it is often safe to ig-
nore the PVi terms (≈2 J/mol for water) and use εP = ε in
Eqs. (41)–(44).

Given an expression for the pseudo enthalpy of an in-
finitely dilute solute in a single solvent provided by Eq. (10)
we have

h∗,∞
2 = −3

2
RT + F∞

μ,2 − N∞
21 H 0

1 = −3

2
RT + F∞

P,2

= −3

2
RT + f A F∞

P,D + fM F∞
P,N (45)

and from Eq. (39),(
∂h∗

2

∂β

)∞

P,m2

= −RT 2c∗,∞
p,2

= 3

2
(RT )2 + (

RT 2α0
p

)2 + RT 2 N∞
21 C0

P,m

− [ fD 〈δ εPδ εP〉D + fN 〈δ εPδ εP〉N

− 〈δ εPδ εP〉0]. (46)

Hence, if one knows K, the thermal expansion and heat ca-
pacity of the pure solvent, together with h∗,∞

2 for a relevant
process over a series of temperatures of interest, then the in-
dividual FP’s and fluctuations in εP can be extracted from ex-
perimental data.

Before leaving this section, we note that occasionally the
pressure-temperature cross derivative may be useful and can
be obtained from Eq. (16) to give(

∂

∂β

(
∂ ln K

P

)
β,m2

)∞

P,m2

= (
G∞

D1 − G∞
N1

) (
1 − T α0

P

)

−βV 0
1

[ 〈δ N1δ εP〉D − 〈δN1 δ εP〉N

− [
F∞

P,D N∞
D1 − F∞

P,N N∞
N1

] ]
(47)

for protein denaturation at infinite dilution.

C. The effect of temperature on chemical equilibria at
constant volume

Alternatively, the change in temperature could be
performed for an equilibrium process under conditions of
constant volume. While this is not a common situation, it
is included here for completeness. In this case the general
expression becomes(

∂ ln K

∂β

)
V,{N }

= −(FP,A − nFP,M )

− T αP

κT

∑
i

(NAi − nNMi ) V̄i , (48)

where we have used the following standard thermodynamic
relationship: (

∂ βμi

∂β

)
V,{N }

= h̄i − V̄i
T αP

κT
. (49)

All the terms in the above equation represent average prop-
erties of the solution mixture and not fluctuating quantities.
The change in equilibrium constant can be expressed in a
far simpler form if one defines an alternative fluctuating
property. We choose(

∂ ln K

∂β

)
V,{N }

= −(FV,A − nFV,M ), (50)

where

FV,i = 〈δNiδ εV 〉
〈Ni 〉 , εV = E −

∑
j

N j

(
h̄ j − V̄ j

T αP

κT

)
.

(51)
If required, the thermal expansion and compressibility can be
expressed in terms of fluctuating quantities. It should also be
noted that using this definition, one can show that

RT 2CV = RT 2

(
∂〈E〉
∂T

)
V,{N }

= 〈δ εV δ εV 〉 , (52)

which is much simpler than previous expressions for CV.38, 53

Second derivatives of the equilibrium constant will even-
tually lead to an expression for the constant volume heat ca-
pacity change associated with the equilibrium. First, we note
that(

∂ ln K

∂β

)
V,{N }

=
(

∂ ln K

∂β

)
{β μ}

+
∑

i

(
h̄i − V̄i

T αP

κT

)

×
(

∂ ln K

∂ βμi

)
β,{β μ}′

(53)

and hence,(
∂2 ln K

∂β2

)
V,{N }

= −RT 2
∑

i

(NAi − nNMi ) c̄V,i

−
(

∂(FV,A − nFV,M )

∂β

)
{β μ}

−
∑

i

(
h̄i − V̄i

T αP

κT

)

×
(

∂(FV,A − nFV,M )

∂ βμi

)
β,{β μ}′

(54)

using the same approach as before. Fluctuation based expres-
sions for c̄V,i can be found in Appendix B. The derivatives in
the above expression are analogous to Eqs. (33)–(35) and lead
to the final result(

∂2lnK

∂β2

)
V,{N }

= −RT 2
∑

i

(NAi − nNMi ) c̄V,i

+ 〈δNAδεV δεV 〉
〈NA〉 − (FV,A)2

− n

[ 〈δNMδεV δεV 〉
〈NM 〉 − (FV,M )2

]
, (55)

which takes the same form as the constant P expression, al-
though the fluctuating quantities are clearly different.
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D. The effect of cosolvents on chemical equilibria

The effect of cosolvents on chemical equilibria has been
the subject of many KB related studies.27 Recently, we pro-
vided a general multicomponent expression in terms of chem-
ical potential derivatives.49 A similar expression, but using
molarities instead of molalities, can be obtained from Eq. (14)
after taking derivatives with respect to the (molar) concentra-
tion of species j keeping pressure, temperature, and the num-
ber of all other species constant,(

∂lnK

∂lnρ j

)
P,T,{m}′

=
∑

i

(NAi − nNMi )μi j

=
∑
i 
=1

(Ai − nMi )μi j , (56)

where μi j = (∂μi/∂lnρ j )P,T,{m}′ and the last summation ex-
cludes the primary solvent after elimination of dμ1 using the
GD expression at constant T and P. The s are defined by

Aj = ρ j (G Aj − G A1) = NAj − m j NA1 (57)

and can be considered as preferential binding parameters
which quantify the excess binding of species j relative to that
of the primary solvent in the vicinity of each solute form. The
chemical potential derivatives can also be expressed in terms
of KBIs if desired.34, 51 For an infinitely dilute solute in a pri-
mary solvent the addition of a single cosolvent (3) results in a
change to the equilibrium provided by29, 45(

∂lnK

∂lnρ3

)∞

P,T,m2

= (
∞

A3 − n∞
M3

)
μ33 (58)

with

μ33 = β

(
∂μ3

∂lnρ3

)∞

P,T,m2

= 1

1 + N33 − N13
. (59)

Note that the above derivative is different (molarity versus
molality) than used in the traditional notation. Derivatives us-
ing other concentration scales can be found using the relation-
ships provided by standard thermodynamics and KB theory(

∂lnρ3

∂lnm3

)∞

P,T,m2

= φ1 = 1 + N33 − N13

1 + N+
33

,

(
∂lnx3

∂lnm3

)∞

P,T,m2

= x1 (60)

with N+
i j = Ni j + m j (1 + N11 − Ni1 − N j1). The above re-

sult (Eq. (58)) was also obtained by Ben-Naim using a dif-
ferent approach and alternative definitions of the equilibrium
constant and cosolvent concentration.48

In order to isolate the binding to either form, one can take
one of two approaches. First, rearranging Eq. (10), then elim-
inating dμ1 using the GD equation at constant T and P, pro-
vides an expression valid only for systems at constant temper-
ature and pressure,

− dμ∗
i = −RT dlnyi =

∑
j 
=1

i j dμ j , (61)

where yi is the molar activity coefficient and μi* is the pseudo
chemical potential of species i ( 
= 1). Derivatives of this

expression then provide the following:

−
(

∂μ∗
2

∂μ3

)∞

P,T,m2

= −
(

∂lny2

∂lna3

)∞

P,T,m2

= ∞
23 = f A∞

A3

+ fM∞
M3. (62)

Therefore, experimental data concerning the behavior of the
solute activity coefficient at low concentrations can be used to
extract values for 23, etc. Alternatively, equilibrium dialysis
studies that measure density changes in osmotic systems on
the introduction of a non-diffusible solute (such as a protein)
provide55

(
∂m3

∂m2

)∞

T,μ1,μ3

= ∞
23 = f A∞

A3 + fM∞
M3 (63)

and also enable the isolation of the various  values. Finally,
before leaving this section we note that typical cosolvent de-
naturation studies monitor the change in equilibrium constant
as a function of cosolvent molarity,(

∂lnK

∂ρ3

)∞

P,T,m2

= 1

ρ3

∞
D3 − ∞

N3

1 + N33 − N13
= m (64)

from which a fluctuation based expression for the protein m-
value is obtained.56

It is possible to determine second derivatives of the equi-
librium constant with respect to cosolvent concentration. In-
deed, nonlinear cosolvent effects are observed.57 The general
expression is

ρ2
j

(
∂2lnK

∂ρ2
j

)
P,T,{m}′

=
∑

i

(NAi − nNMi )μi j j

+
∑
i,k

μi jμk j [NAik − NAi NAk

− n(NMik − NMi NMk)], (65)

where μi j j = (∂μi j/∂ ln ρ j )P,T,{m}′ . Some of the above terms
can be eliminated using the GD equation and Eq. (10). The
most useful relationship is obtained for the denaturation of an
infinitely dilute protein solute in a mixture of solvent (1) and
a single cosolvent (3). Here, one finds

ρ2
3

(
∂2lnK

∂ρ2
3

)∞

P,T,m2

=
∑
i=1,3

(NAi − nNMi )μi33

+μ2
33

[〈
δ∞

D3δ
∞
D3

〉
D

− 〈
δ∞

N3δ
∞
N3

〉
N

− [(
∞

D3

)2 − (
∞

N3

)2]]
, (66)

where ∞
D3 = 〈N3〉D − m3〈N1〉D and δ∞

D3 = δN3 − m3δN1,
which corresponds to a fluctuation in the binding parameter,
i.e., cosolvent and water distributions, in the vicinity of a sin-
gle denatured form. To our knowledge, general fluctuation ex-
pressions for the μi j j derivatives are not available. However,
based on calculations described in Sec. IV, we suspect the
contribution from the first term on the right hand side will be
negligible under ambient conditions.
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E. Osmotic systems

Many equilibria of biological importance occur un-
der osmotic (or cellular) conditions. In addition, the study
of osmotic pressures in protein solutions is interesting
in that it provides information concerning protein-protein
interactions.58 An expression for the change in osmotic pres-
sure (�) on the addition of a biomolecule can be obtained
from Eqs. (7) and (15),(

∂�

∂ρ2

)
β,{βμ}′

= RT

1 + N22
(67)

and was noted in the original KB study.34 This expression is
valid for systems containing any number of additional cosol-
vents as long as their chemical potentials are held constant.
Higher derivatives of the osmotic pressure provide informa-
tion on higher order correlations between solute molecules.
For instance, the second derivative of the osmotic pressure is
given by(

∂2�

∂ρ2
2

)
β,{βμ}′

= RT

ρ2(1 + N22)

[
1 − 〈δN2δN2δN2〉

〈N2〉 (1 + N22)2

]
(68)

and includes information concerning triplet solute correla-
tions. Kirkwood and Buff showed that these higher order
terms can form part of a series expansion which reduces to
the McMillan-Mayer theory of solutions when the deriva-
tives are obtained at infinite dilution of the solute.34 However,
the above expressions are valid for any solution composition.
For chemical equilibria in an osmotic system one finds from
Eq. (14) that(

∂lnK

∂β

)∞

ρ2,{βμ}′
= − (

F∞
P,A − nF∞

P,M

) − (
N∞

A1 − nN∞
M1

)
H 0

1

= − (
F∞

μ,A − nF∞
μ,M

)
(69)

for an infinitely dilute solute in an osmotic solution. This re-
sult is to be expected as the conditions are essentially those of
the grand canonical ensemble. Second derivatives can be ob-
tained and provide the same expression as found in Eq. (44),
but where εP is replaced by E and FP is replaced by Fμ, and
there is no term involving the heat capacity.

IV. DISCUSSION

The expressions provided here can be used to interpret
data concerning chemical equilibria. In particular, the individ-
ual terms can be extracted under favorable conditions where
the relevant experimental data are available. Alternatively,
they can be used to analyze computer simulation data. In the
latter case fluctuations of the form 〈δX δY δZ〉 need to be eval-
uated from the trajectory. In principle, these can be expressed
in terms of correlation functions in a similar way to the usual
KBIs.34 However, in practice, this is actually more cumber-
some than evaluating the fluctuations within the local regions
directly. The expressions are all exact. We are currently using
computer simulations and applying Eqs. (26), (41), and (58)
to study the effects of temperature, pressure, and composition
on a simple conformational equilibrium in pure water.59 The
numerical results support the validity of the expressions pre-

sented here. We also note that, while primarily developed for
the description of solution mixtures, the expressions are also
valid for gaseous systems.

One of the more interesting results obtained in this study
is the expression given in Eq. (41) which provides a route to
the standard enthalpy change for association or denaturation
of a solute at infinite dilution. Simulated enthalpy changes
are difficult to determine and generally require multiple sim-
ulations of the equilibrium constant at different temperatures.
The ability to calculate enthalpy changes for these processes
from a single computer simulation is therefore particularly at-
tractive. It is also clear from Eq. (7) that this is a general result
for any equilibrium and can also be applied to study protein
(P) + ligand (L) to protein-ligand (PL) complex equilibria. In
this case one finds that

dlnK = −(FP,P L − FP,P − FP,L )dβ

+
∑

i

(NP Li − NPi − NLi ) (dβμi − h̄i dβ), (70)

where K = ρPL/ρPρL, and we have used the fact that dμPL

= dμP + dμL to eliminate dμPL. The summations in the εP

term and above expression only involve thermodynamically
independent species (solvent, protein, ligand, etc.).

The expressions provided in Eqs. (41) and (42) also
have significant consequences for pairwise additive poten-
tials. First, the enthalpy change can be decomposed into a
series of terms related to the average intra and intermolecu-
lar energies and solvent distribution around each solute form.
Further decomposition into van der Waals and electrostatic
contributions is also possible without additional approxima-
tion. Second, the decomposition is exact and different from
typical ad hoc approaches.12, 13 Third, one can rewrite Eq. (42)
to give

F∞
P,D = 〈EDD〉 + 〈ED1〉 + 〈N1〉D

( 〈E11〉D

〈N1〉D
− E0

1

)

+ PV ∗,∞
D − E0

2 , (71)

which indicates that the true measure of the local solvent con-
tribution involves both the number of solvent molecules in
the local region, and how their average energy differs from
the molar enthalpy of the pure solvent. The neglect of the E1

0

contribution in the calculation of simulated enthalpy changes
would lead to a significant error, even when the difference in
the number of solvent molecules between both forms is small
(typically 2–5 for most proteins),17 as the average potential
energy for common water models is large; −46.5 kJ/mol for
SPC/E water,60 for example. Hence, one cannot just deter-
mine the change in the solvent-solvent energy when attempt-
ing to determine simulated enthalpy changes. Furthermore, it
is unclear to what degree implicit solvent or coarse grained
models include or approximate terms involving the number
of solvent molecules.

Many of the expressions provided here involve differ-
ences between extensive quantities that are then intensive in
nature. A prime example is Eq. (71) as used in Eq. (41).
The last two terms are both extensive (dependent on the ref-
erence volume), but their difference is independent of this
volume. Furthermore, manipulation of the terms in Eq. (71)
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has to be performed specifically recognizing that these are
grand canonical ensemble averages. For instance, as the lo-
cal reference volume increases one might be tempted to write
〈E11〉D/〈N1〉D as E1

0, implying that the last two terms cancel
for large volumes. This is incorrect and it is the additional
change in the last two terms with increasing volume that will
cancel leaving the same constant value independent of the ref-
erence volume (as long as it is large enough to include all the
perturbing effects of the solute). In addition, when decompos-
ing the terms found in Eq. (44), for example, one can only iso-
late the intensive term 〈δεPδεP〉D − 〈δεPδεP〉0, and not the
extensive term 〈δεPδεP〉D itself, even though the latter (pure
solvent) term cancels in Eq. (44).

The energy and enthalpy terms used in the definition
of the various ε’s involve the total internal energy. The ki-
netic energy contributions can be removed or ignored in some
cases. For example, the kinetic energy contributions to the ex-
pression for αP in Eq. (8), and the expressions provided in
Eqs. (30), (37), (41), (42), (43), and (50) all cancel and there-
fore one could replace E with just the potential energy and
ignore the kinetic energy contribution to the partial molar en-
thalpies. However, this is not the case for the CP expression
provided in Eq. (8) or the expressions provided in Eqs. (36),
(44), and (55), where the ideal terms do not cancel, although
the contribution (1/2 R per classical degree of freedom) is of-
ten small compared to the heat capacity change associated
with the equilibrium itself, or will cancel in the case of protein
denaturation (n = 1).

When studying protein denaturation it is clear that one
is dealing with a transition where the protein changes from
a set of relatively few nativelike conformations to a (poten-
tially) very large number of denatured or unfolded conforma-
tions. However, this does not significantly affect the results
presented here. If we consider a collection of denatured forms
it can be shown that

dlnρD = ρ−1
D

∑
i

ρD,i dlnρD,i =
∑

i

xD,i dlnρD,i , (72)

where xD,i is the number fraction of denatured form i. There-
fore, the F’s and Nij’s used in Eqs. (26) and (41) simply be-
come averages over the individual denatured forms weighted
by their fractional populations, or a simple time average in a
simulation.

In Sections II and III, we attempted to outline how one
could obtain specific contributions to, or correlations with,
each form present in the equilibrium. This required additional
experimental information. The experimental data can come
in a variety of forms and therefore in our previous discus-
sion we just provided expressions for changes in h∗

2 with
temperature—without invoking a specific process. One pro-
cess relevant to the present discussion is the process of sol-
vation. In this case the enthalpy change (�h∗

2) corresponds
to the process of transferring a molecule of i from a fixed
position in an ideal gas phase to a fixed position in the so-
lution at the T, P, and composition of interest. In principle,
this information should be amenable to experiment. How-
ever, this might not always be true in practice. For instance,
the (gas to solution) solvation enthalpy may be available for
small volatile solutes, but not for proteins. In this case, a

more practical application would involve the study of changes
in enthalpy between pure water and mixed solvent systems,
where the change in enthalpy would then involve the en-
thalpies of transfer between solvent systems. Derivatives of
the protein pseudo enthalpy could be replaced by experi-
mentally available protein heat capacities noting that c∗

p,2 =
c̄p,2 − (∂ RT 2αP/∂T )P,{N } − 3R/2, as indicated by Eq. (10).

In an effort to establish the relative importance of each
term in Eqs. (26), (27), (41), and (44) one can examine exist-
ing data concerning protein denaturation. Experimental data
for the pressure and thermal denaturation of Ribonuclease A
at 295 K and pH 2 in D2O is available.61, 62 The observed dif-
ference in volume of −21 cm3/mol obtained from pressure
denaturation is small, especially compared to the native state
volume of 9500 cm3/mol, and corresponds to slightly more
than one water molecule (V1

0 = 18 cm3/mol). The second
derivative of the equilibrium constant with respect to pressure
is observed to be 6.1 × 10−6 bar−2. Using the above data,
one finds the κT

0 term in Eq. (27) to contribute a negligible
−2 × 10−9 bar−2, while the last contribution (difference in
the squared terms) equals 2 × 10−6 bar−2. Therefore, the last
contribution and the difference between the 〈δN1δN1〉 terms
are similar in magnitude. Thermal denaturation data provide
a standard enthalpy change and heat capacity of 200 kJ/mol
and 4800 J/mol/K, respectively. Hence, the CP,m

0 term in Eq.
(44) is negligible, while the other two terms would appear to
be significant. While this data only represent one system, we
expect similar results for other proteins.

It is tempting to simplify some of the expressions pro-
vided previously. However, this should be performed with
care. For instance, the pressure effect can be written by ref-
erence to Eq. (10) as(

∂lnK

∂ P

)
β,{N }

= β
∑

i

(NAi − nNMi ) V̄i = −β(V ∗
A − nV ∗

M ),

(73)
which seems logical. It might then be tempting to write

(
∂2lnK

∂ P2

)
β,{N }

= −β

[(
∂V ∗

A

∂ P

)
β,{N }

− n

(
∂V ∗

M

∂ P

)
β,{N }

]

(74)

and to use the expression provided by Eq. (24) for the two
derivatives. This is incorrect and differs from the correct re-
sult provided in Eq. (20). The reason is that Eq. (24) was
developed for a system of thermodynamically independent
composition variables and therefore requires that all N (in-
cluding NA and NM) are held constant. This is clearly not the
case according to Eq. (16). In contrast, the development of
Eq. (20) correctly captures the inherent dependence of NA

(and NM) on pressure and only assumes that their sum (N2)
is constant. Similar arguments also explain why one cannot
simply replace the FP’s in Eq. (30), for instance, with their
values suggested by Eq. (8). Furthermore, computer simula-
tions or experiments which determine how the volume of a
single protein form varies with pressure will provide informa-
tion concerning the compressibility of that form. However, the
difference in compressibility between two independent forms
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is not simply the compressibility associated with the chemical
equilibrium itself.

The fluctuation based results for the effect of pressure
on protein denaturation involve differences between the water
distributions surrounding each protein form. This is clearly
related to the protein volume. For an infinitely dilute solute
(2) in a single solvent (1) the pseudo volume is given by
−N∞

21 V 0
1 and can be considered as the ensemble average of

a series of protein volumes provided by V − N1V 0
1 , where

N1 is the number of solvent molecules surrounding a single
protein in the same fixed volume V for each member of the
ensemble. In this case the fluctuations in the protein volume
are then given by 〈δN1δN1〉2(V 0

1 )2, which is one of the terms
that appears in Eqs. (27) and (29). Therefore, fluctuations in
the water distribution and fluctuations in the protein volume
are intimately related. However, this relationship is only exact
when one measures the protein volume using the local num-
ber of water molecules in the solution and, unfortunately, this
is not the only term that appears in Eqs. (27) and (29).

Experimental information concerning the compressibil-
ity of proteins can also be obtained from sound velocity
studies.63–65 This approach has the advantage of probing the
compressibility of proteins under normal pressures and tem-
peratures. The resulting isentropic protein compressibilities
(κS) are, however, much more difficult to interpret both exper-
imentally and theoretically. For instance, the isentropic com-
pressibility of a solution mixture is given by the thermody-
namic relationship

RT κS = RT κT − RT αP

(
∂T

∂ P

)
S,{N }

= RT κT − (RT 2αP )2Vm

RT 2CP,m
, (75)

which can be expressed in terms of fluctuating quantities
using Eq. (8). Experiments provide partial molar or ap-
parent molar isentropic protein compressibilities. These in-
volve derivatives of the above expression and thereby con-
tain a variety of fluctuating quantities. The analysis is
greatly simplified by transforming to partial molar isothermal
compressibilities,65 which can then be analyzed in a more tra-
ditional manner (see Appendix B). Hence, we have not pro-
vided the expressions for partial molar isentropic compress-
ibilities here.

Finally, it is important to recognize that changes to the
equilibrium constant also involve contributions from the inter-
nal partition function—specifically changes to the vibrational
modes— which are especially important when the tempera-
ture is varied. To illustrate this one can write (from Eqs. (9)
and (14)) for protein denaturation(

∂lnK

∂β

)∞

P,{N }
= −

(
∂ β

(
μ

∗,∞
D − μ

∗,∞
N

)
∂β

)
P,{N }

= − (
h∗,∞

D − h∗,∞
N

) = − (
F∞

P,D − F∞
P,N

)
.

(76)

The pseudo chemical potential terms contain the internal par-
tition function whose dependence on temperature can be sig-

nificant. Hence, analysis of experimental data on protein de-
naturation will explicitly include the vibration contributions
in the extracted FP’s through the energy terms. However, sim-
ulations of classical systems performed with bond constraints
will not include such contributions, or they will only be in-
cluded to the degree that the force field has implicitly ac-
counted for such effects during the parameter development.

V. CONCLUSIONS

Expressions describing how a chemical equilibrium re-
sponds to changes in pressure, temperature, and composi-
tion have been provided in terms of local fluctuations around
the relevant chemical forms in solution. The expressions can
be used to analyze experimental data regarding any chemi-
cal equilibrium which follows Eq. (11) in any multicompo-
nent mixture at any composition, or they can be used to an-
alyze or predict such effects using computer simulation. In
particular, we provide exact expressions for determining en-
thalpy, heat capacity, and compressibility changes associated
with a chemical equilibrium from a single simulation. The
resulting expressions contain terms, which involve particle-
energy, energy-energy, and particle-particle correlations for
the enthalpy, heat capacity, and compressibility, respectively,
for processes at infinite dilution in a single solvent. However,
additional terms are also present which render the expressions
non-trivial and different from other intuitive, but more ap-
proximate, approaches.
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APPENDIX A: DERIVATIVES OF FLUCTUATING
QUANTITIES IN THE GRAND CANONICAL ENSEMBLE

Here, we outline the general approach for obtaining fluc-
tuating quantities, which can be used to help develop deriva-
tives of KBIs with respect to pressure, temperature, and com-
position. The differential for a general fluctuating quantity in
the grand canonical ensemble can be written

d〈δXδY 〉 = −〈δXδY δE〉dβ + 〈δXδY 〉dlnV

+
∑

k

〈δXδY δNk〉dβμk, (A1)

where we have used the fact that d〈δX δY〉 = 〈δXδY〉/V dV
when 〈δX δY〉/V is intensive and therefore independent of
V. Taking derivatives of this equation with the appropri-
ate values of X and Y provides the expressions required
for Eqs. (23), (38), and (65). This approach can also be
used for other partial molar quantities as illustrated below
(Appendix B). When X and Y are both particle numbers, this
provides a route to derivatives of the KBIs or other fluc-
tuating quantities (thermal expansion, compressibility, heat
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capacity) with respect to pressure, temperature, and compo-
sition, which could be used to further analyze the properties
of solution mixtures. The simplest results are those provided
for the Bij’s,(

∂ Bi j

∂ P

)
T,{N }

= βV −1
∑

k

〈δNiδN jδNk〉V̄k,

(
∂ Bi j

∂β

)
P,{N }

= −V −1〈δNiδN jδεP〉,
(

∂ Bi j

∂〈Nl〉
)

P,T,{N }′
= V −1

∑
k

〈δNiδN jδNk〉μkl , (A2)

where μ′
kl = β(∂μk/∂〈Nl〉)P,T,{N }′ .

APPENDIX B: PARTIAL MOLAR HEAT CAPACITIES,
THERMAL EXPANSIONS, AND COMPRESSIBILITIES

In this section, we derive expressions for several partial
molar quantities used in the previous discussion, but not avail-
able in the literature. The partial molar constant pressure heat
capacity can be obtained starting from the definition

RT 2c̄p,i = RT 2

(
∂ h̄i

∂T

)
P,{N }

=
(

∂ RT 2CP

∂ 〈Ni 〉
)

T,P,{N }′
(B1)

Therefore, using the expression in Eq. (8) for CP and then
Eq. (A1) with X = Y = εP one finds

RT 2c̄P,i = ρV̄i RT 2CP.m +
∑

j

〈δεPδεPδN j 〉μ′
j i , (B2)

where ρ is the total number density. As the chemical potential
derivatives and partial molar volume can also be expressed in
terms of fluctuations (KBIs) this is the desired result, although
including these additional fluctuations here is not particularly
informative. We note that CP,m = ∑

i xi c̄P,i and hence the
double summation over the last term in Eq. (B2) must be zero.
The same approach can be used for the corresponding con-
stant volume quantities. First, we note that the quantities used
in Eq. (54) are given by

RT 2c̄V,i ≡ RT 2

(
∂ ūi

∂T

)
V,{N }

=
(

∂ RT 2CV

∂ 〈Ni 〉
)

T,P,{N }′
(B3)

in terms of the partial molar energies (ūi ). Using the expres-
sion for CV provided in Eq. (51) leads to

RT 2c̄V,i = ρV̄i RT 2CV .m +
∑

j

〈δεV δεV δN j 〉μ′
j i (B4)

as a final result.
Expressions for the partial molar thermal expansions are

slightly more complicated. First, we note that from our defi-
nition one has

RT 2ᾱp,i ≡ RT 2

(
∂ ln V̄i

∂T

)
P,{N }

= RT 2αP + V

V̄i

(
∂ RT 2αP

∂ 〈Ni 〉
)

T,P,{N }′
. (B5)

From Eq. (8) the general expression for the thermal ex-
pansion can be written RT 2αP = −V −1 ∑

j 〈δN jδεP〉V̄ j and
therefore,(

∂ RT 2αP

∂ 〈Ni 〉
)

T,P,{N }′
= − V̄i

V
RT 2αP

− 1

V

∑
j

(
∂(〈δN jδεP〉V̄ j )

∂ 〈Ni 〉
)

T,P,{N }′
,

(B6)

which, after using Eq. (A1) with X = N j V̄ j and Y = εP, pro-
vides the final result

RT 2ᾱp,i = RT 2αP − 1

V̄i

∑
j,k

V̄ j 〈δN jδNkδεp〉μ′
ki . (B7)

We note that αP = ∑
i φi ᾱP,i and hence the triple summation

over the last term in Eq. (B7) must be zero.
Finally, the partial molar isothermal compressibilities can

be obtained from our initial definition

RT κ̄T,i ≡ RT

(
∂ ln V̄i

∂ P

)
T,{N }

= RT κT + V

V̄i

(
∂ RT κT

∂〈Ni 〉
)

T,P,{N }′
. (B8)

From Eq. (8) the general expression for the compressibility
can be written RT κT = V −1 ∑

j,k〈δN jδNk〉V̄ j V̄k and there-
fore,(
∂ RT κT

∂ 〈Ni 〉
)

T,P,{N }′
= − V̄i

V
RT κT

+ 1

V

∑
j,k

(
∂(〈δN jδNk〉V̄ j V̄k)

∂ 〈Ni 〉
)

T,P,{N }′
,

(B9)

which, after using Eq. (A1) with X = N j V̄ j and Y = Nk V̄k ,
provides the final expression

RT κ̄T,i = RT κT + 1

V̄i

∑
j,k,l

V̄ j V̄k〈δN jδNkδNl〉μ′
li . (B10)

We note that κT = ∑
i φi κ̄T,i and hence the quadruple sum-

mation over the last term in Eq. (B10) must be zero.
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