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Abstract

Background: The ER chaperone GRP78/BiP is a homolog of the Hsp70 family of heat shock proteins, yet GRP78/BiP is not
induced by heat shock but instead by ER stress. However, previous studies had not considered more physiologically relevant
temperature elevation associated with febrile hyperthermia. In this report we examine the response of GRP78/BiP and other
components of the ER stress pathway in cells exposed to 40uC.

Methodology: AD293 cells were exposed to 43uC heat shock to confirm inhibition of the ER stress response genes. Five
mammalian cell types, including AD293 cells, were then exposed to 40uC hyperthermia for various time periods and
induction of the ER stress pathway was assessed.

Principal Findings: The inhibition of the ER stress pathway by heat shock (43uC) was confirmed. In contrast cells subjected
to more mild temperature elevation (40uC) showed either a partial or full ER stress pathway induction as determined by
downstream targets of the three arms of the ER stress pathway as well as a heat shock response. Cells deficient for Perk or
Gcn2 exhibit great sensitivity to ER stress induction by hyperthermia.

Conclusions: The ER stress pathway is induced partially or fully as a consequence of hyperthermia in parallel with induction
of Hsp70. These findings suggest that the ER and cytoplasm of cells contain parallel pathways to coordinately regulate
adaptation to febrile hyperthermia associated with disease or infection.
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Introduction

The induction of GRP78/BiP by pharmacological reagents that

perturb homeostasis in the endoplasmic reticulum led to the

discovery of the ER stress response. Although, GRP78/BiP is a

homolog of the hsp70 heat shock proteins, it is not induced by

severe heat shock [1,2,3]. The functions of the rough ER,

including protein folding, protein quality control, and trafficking of

client proteins to the Golgi, are sensitive to changes in calcium and

the redox state, which in turn are influenced by physiological

changes in the rest of the cell and extracellular environment [4,5].

Severe perturbations in calcium levels, redox state, or the amount

or nature of client proteins can activate a cascade of events for the

purpose of restoring ER homeostasis [6,7]. Three ER resident

proteins, PERK, ATF6, and IRE1, act as sensors of ER

perturbations and act to mobilize the ER stress response. ATF6

and IRE1 are largely responsible for inducing the transcription of

ER chaperone and folding genes (e.g. Bip, Dnajc3, and Erp72),

while PERK has a dual role in temporarily repressing global

protein synthesis and inducing the translation of proteins that help

to coordinate the ER stress response [4,5]. PERK and IRE1 also

have important functions in regulating normal physiology and

development that are unrelated to the ER stress response and

involve other regulatory pathways [8,9,10,11]. In contrast the heat

shock response is initiated by the activation of the heat shock

transcription factor (HSF) that stimulates the rapid induction of

the classic heat shock genes [12,13,14,15]. The heat shock genes

encode chaperone proteins that help to protect cytoplasmic

proteins from denaturation and assist with refolding of proteins.

Hence their functions are similar to the ER chaperones that are

increased in expression in lumen of the ER during ER stress.

Global protein synthesis is inhibited by both heat shock and ER

stress, and the mechanism of inhibition is largely mediated by

phosphorylation of eIF2a which results in the inhibition of

recycling of eIF2-GDP necessary for new rounds of translation

initiation [16,17,18,19,20,21]. In the case of ER stress the recovery

of protein synthesis is regulated by Gadd34 [19,20,21], a regulatory

subunit of protein phosphatase-1, which targets the dephosphor-

ylation of eIF2a. Gadd34 is likely to play an important role in

regulating the recovery from heat shock as well but this has not

been demonstrated.

We speculated that the ER does experience stress during heat

shock, but this stress had previously gone undetected because the

very high temperatures typically used in heat shock experiments

resulted a global repression of transcription and translation

[17,18,22,23]. In particular, we surmised that the response to a

milder heat shock that corresponds to the normal febrile-range

hyperthermia over several hours might reveal an ER stress response.
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Results

To confirm earlier studies that the key ER stress genes are not

induced by a severe heat shock, AD293 transformed kidney cells

were subjected to 43uC heat shock for 1–12 hours. As expected,

HSP70 mRNA was potently induced, peaking at 3 hours (120,000

fold), whereas Bip, Chop, and Dnajc3 mRNA expression were

repressed by approximately 50% at 3 hrs (Fig. 1A–D). Gadd34

exhibited a very small induction before being repressed at the later

time points (Fig. 1E). Xbp1 splicing, a downstream target of IRE1,

was not observed in heat shocked cells in contrast to a robust

induction of seen in control cells treated with ER stress inducers

DTT or thapsigargin (Fig. 1F). To determine if heat shock would

repress the ER stress response, AD293 were treated with the

potent ER stress inducer DTT at 43uC and compared to cell

treated with DTT at 37uC. DTT treatment elicited the normal

induction of BiP, Dnajc3, Erp72, and Chop in cells incubated at

37uC but this response to DTT was completely or partially ablated

in cells incubated at 43uC (Fig. 1G). Gadd34, which is known to be

induced by both ER stress and heat shock, was strongly induced in

cells treated with DTT at 43uC for one hour. The meteoric

induction of Hsp70 mRNA by heat shock, however, was unfazed

by treatment with DTT (Fig. 1H).

AD293 cells subjected to 40uC, a temperature corresponding to

febrile hyperthermia, also exhibited a strong induction in

HSP70 mRNA levels (Fig. 2A). However, in contrast to severe

heat shock, Bip mRNA was induced 6–7 fold by 5 hours at 40uC
(Fig. 2B). BIP protein level (Fig. 2G) closely followed the induction

of Bip mRNA. The expression of other ER stress genes was

examined including Erp72, Dnajc3, Chop, and Gadd34 (Fig. 2C–F).

Erp72, Dnajc3, and Chop mRNA levels exhibited a similar pattern

of delayed induction as seen for Bip. However, Gadd34 exhibited a

more rapid response to 40uC hyperthermia, typically peaking at

one hour and then declining thereafter. Xbp1 splicing was also

strongly induced although not to the extent seen by treatment with

DTT (Fig. 2H). Induction of GADD34, a regulatory subunit of

Figure 1. The ER stress response pathway is repressed by a 43uC heat shock in AD293 cells. Relative levels of Hsp70 (A), Bip (B), Gadd34
(C), Chop (D), Dnajc3 (E) mRNAs in AD293 cells incubated at 43uC for 1, 3, 6, 12 hours and normalized to mRNAs levels in control cells incubated at
37uC (mean6SEM, n = 3). (F) Xbp1 splicing in AD293 cells at 1, 4, 6, 12 hours after 43uC incubation and control cells incubated at 37uC. Positive
controls of Xbp1 splicing were included as DTT (D) and thapsigargin (T) treatments. Actin mRNA levels were used as an internal control. Relative
mRNA levels of ER stress related genes (G) and Hsp70 (H) in AD293 cells treated with DTT at 37uC or 43uC for 1 or 5 hours and compared to control
cells at 37uC (mean6SEM, n = 3).
doi:10.1371/journal.pone.0023740.g001
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protein phosphatase -1 (PP1), is dependent upon phosphorylation

of eIF2a in the ER stress response, and therefore we examined the

phosphorylated state of eIF2a during the 40uC heat shock

response of AD293 cells. As expected eIF2a phosphorylation

was rapidly stimulated by 40 minutes and continued at a high level

for 12 hours (Fig. 2I). A similar induction of these markers of the

ER stress response was also seen at 39uC (data not shown).

The response of three other cell types to 40uC hyperthermia was

determined to assess the generality of these findings. The mRNA

expression of the ER stress inducible ER chaperones Bip, Erp72,

and Dnajc3 were either not induced or substantially declined in

human HepG2 and mouse Hepa-1 hepatocyte cell lines (Fig. 3A–

D). However, Gadd34 was strongly induced whereas Chop was not.

Xbp-1 RNA splicing was assessed in HepG2 cells and found to be

induced to a high level (Fig. 3E) and eIF2a phosphorylation was

also induced (data not shown). The pancreatic insulin secreting

beta cell line, INS1-832/13 exhibited a strong induction of Gadd34

and Chop but the three ER chaperone genes, Bip, Erp72, and

Dnajc3 all showed a modest decline in mRNA expression over

12 hours treatment at 40uC (Fig. 3F).

PERK eIF2a kinase is required for the induction of GADD34

and CHOP in the ER stress response induced pharmacologically

by DTT, thapsigargin, or tunicamycin. To determine if induction

of Gadd34 and/or Chop by hyperthermia was PERK-dependent,

Perk KO mouse embryonic fibroblasts (MEFs) were incubated

40uC for 0–16 hours. In wildtype MEF control cells Bip mRNA

exhibited a modest induction whereas Erp72 and Dnajc3, and Chop

failed to be induced or were moderately repressed (Fig. 4A).

Curiously Bip mRNA was even more strongly induced in Perk KO

MEFs. Erp72 and Dnajc3 both exhibited higher basal expression

and were repressed by hyperthermia. Gadd34 was strongly induced

in both WT and Perk KO MEFs, demonstrating that PERK is not

required for the induction of Gadd34. Xbp1 RNA splicing was

stimulated in both Perk KO and WT cells (not shown). GCN2

Figure 2. The ER stress response pathway is induced by 40uC hyperthermia in AD293 cells. Relative levels of Hsp70 (A), Bip (B), Erp72 (C),
Dnajc3 (D), Gadd34 (E) and Chop (F) mRNAs in AD293 cells incubated at 40uC for 1, 2, 3, 4, 5 hours and normalized to expression levels of cells
incubated at 37uC (mean6SEM, n = 3). (G) BiP/GRP78 protein levels in AD293 cells incubated at 40uC for 0–16 hours with tubulin expression as the
loading control. (H) Xbp1 mRNA splicing in AD293 cells incubated at 37uC or 40uC for 6 hours. Positive controls were included as Xbp1 mRNA splicing
induced by DTT treatment. Actin mRNA levels were used as an internal control. (I) Phosphorylated eIF2a induced by 40uC from 0–12 hours with
tubulin protein levels as loading controls.
doi:10.1371/journal.pone.0023740.g002
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eIF2a kinase, which is widely expressed in mammalian tissues, was

also examined as a candidate for regulating Gadd34 and Chop

during hyperthermia. Gcn2 KO MEFs exhibit higher basal levels

of Gadd34 mRNA and show a 6-fold induction by hyperthermia,

whereas Gcn2 WT MEFs exhibited a more modest 3-fold induction

(Fig. 4B). Similarly basal levels of Chop are considerably higher in

Gcn2 KO MEFs, but Chop is not induced by hyperthermia in either

genotype.

Discussion

Heat shock and ER stress were previously thought to be

stimulated under different circumstances, largely because GRP78/

BiP was shown at the time of its discovery not to be induced by

severe heat shock. We found that a more modest elevation of

temperature to 40uC, which corresponds to physiological hyper-

thermia, elicits an ER stress response in the human AD293 kidney

cell line along with a robust induction of Hsp70 in the absence of a

chemical ER stress inducer. The downstream ER stress targets of

ATF6 including Bip, Erp72, and Dnajc3, the downstream targets of

eIF2a phosphorylation including Chop and Gadd34, and Xbp1

mRNA splicing, the downstream target of IRE1 were all induced

in AD293 incubated at 40uC. Raising the temperature only 3uC,

however, repressed the ER stress response seen at 40uC or in the

presence of a chemical inducer of ER stress. These findings are

consistent with earlier studies that showed that severe heat shock

strongly represses general transcription and translation, and only

the heat shock genes are transcribed [23,24]. Therefore failure to

see transcriptional induction of the ER stress genes under severe

heat shock, even in the presence of a chemical inducer of ER

stress, was expected. However, under more physiologically

relevant conditions of febrile hyperthermia, general transcription

and translation are not repressed or at least not to the extent seen

in at 43uC. Thus under conditions similar to febrile hyperthermia,

a heat shock response and ER stress response can occur

simultaneously. Induction of both pathways simultaneously may

have synergistic effects in reducing cytoplasmic and ER stress as

has been suggested in studies in yeast where the heat shock

response can relieve ER stress [25].

Although downstream targets of the ATF6 arm of the ER stress

pathway were induced in AD293 at 40uC, generally they were not

induced in the other wild-type cell types tested including two

Figure 3. Hepatic and pancreatic beta cell lines display partial induction of ER stress genes in response to hyperthermia. Relative
mRNA levels of ER stress related genes (A & C) and Hsp70 (B & D) in Hepa1 and HepG2 cells, respectively, incubated at 40uC for 1, 4, 6, 12 hours and
normalized to mRNA levels of cells incubated at 37uC (mean6SEM, n = 3). (E) Xbp1 splicing in HepG2 cells at 0, 1, 4, 6, 12 hours incubated at 40uC. (F)
Relative mRNA levels of ER stress related genes in INS1 832/13 pancreatic beta cells incubated at 40uC for 1, 4, 6, 12 hours and normalized to mRNA
levels of cells incubated at 37uC (mean6SEM, n = 3).
doi:10.1371/journal.pone.0023740.g003
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hepatocyte cell lines, a pancreatic beta cell line, and mouse

embryonic fibroblasts. Targets of the PERK and IRE1 arms of the

ER stress pathway, however, were generally induced in these other

cell types. Bip mRNA was modestly induced in Perk and Gcn2

wildtype MEFs and strongly induced in Perk KO MEFs. Chop

mRNA also exhibited considerable variation among cell lines–

strongly induced in pancreatic beta cells, repressed in Hepa-1 and

unchanged in HepG2 cells. Gadd34 was consistently induced in all

cell lines and typically during the first hour. Although the ER stress

pathway has been characterized as an integrated response that

requires the activation of all three regulatory arms (IRE1, PERK,

and ATF6), there are a number of examples of induction of only

one or two of these regulators [26,27,28]. Moreover, IRE1 and

PERK are known to be activated by physiological stimuli that are

unrelated to ER stress or other cellular stresses [8,11,29,30,31,32].

We have previously proposed that the normal, non-stress,

functions of these regulators are co-opted during ER stress to

regulate different pathways to alleviate stress [9].

Gadd34 expression was shown previously to be induced during

ER stress or amino acid deprivation, as mediated by PERK and

GCN2, respectively [19,20,21]. Curiously, Gadd34 mRNA was still

strongly induced in mouse embryonic fibroblasts deficient for

either Perk or Gcn2. Perhaps one or both of the other two eIF2a
kinases, namely PKR and HRI, may be responsible for the

induction of Gadd34 during hyperthermia [33,34]. Basal or

induced levels of some of the ER stress genes were elevated in

either Perk or Gcn2 KO MEFs, suggesting that basal expression of

PERK and GCN2 provides protection against hyperthermia.

In summary the ER stress response pathway can be fully

activated as consequence of hyperthermia in AD293 kidney cells

or partially activated in other cell lines. Because the endoplasmic

reticulum faces the same challenges of protein folding and quality

control during hyperthermia as does the cytoplasm we postulate

that the activation of the ER stress pathway in parallel with the

heat shock response orchestrate adaptation to febrile hyperthermia

that occurs as consequence of disease and infection.

Materials and Methods

Cell lines and treatments
AD293 [35] cells and HepG2 [36] cells were cultured in high-

glucose DMEM (GIBCO) supplemented with 10% FBS and 1X

antibiotic/antimycotic solution (Sigma, Inc.). Hepa1 [37] cells

were cultured in high-glucose DMEM with 8% FBS and 1X

antibiotic/antimycotic solution. The INS1-832/13 [38] cells were

cultured in RPMI-1640 (Mediatech Cellgro) supplemented with

11 mM glucose, 10% FBS, 10 mM HEPES, 1 mM sodium

pyruvate, 50 mM b-mercaptoethanol and antibiotic/ antimycotic

solution. Perk+/+, Perk-/-, Gcn2+/+ and Gcn2-/- Mouse Embryo

Fibroblasts (MEFs) [39,40] were cultured in high-glucose DMEM

(GIBCO) supplemented with 10% FBS, 0.1 mM mercaptoetha-

nol, 10 mM MEM nonessential amino acids (GIBCO) and

antibiotic/antimycotic solution. All cell lines were maintained at

37uC in 5% CO2 and then switched to a 40uC or 43uC incubator

in 5% CO2 during hyperthermia experiments.

RNA extraction and quantitative RT-PCR
RNA was extracted with Qiagen RNAeasyH Micro Kit (Qiagen)

from all cell lines. RNA was quantitated by Quant-It TM

RiboGreenH RNA Assay Kit (Invitrogen). 1 mg RNA was used

for reverse transcription with qScriptTM cDNA supermix (Quanta)

to generate cDNA in a 20 ul reaction volume. Quantitative RT-

PCR was performed with qPCR core kit for SYBRH Green I

(Eurogentec/AnaSpec) by 7000 Sequence detection system

(Applied Biosystems). GAPDH was coamplified with genes of

interest as a normalization control. The cycle differences with

GAPDH are used to determine the relative intensity of genes of

interests. Primers used for real-time PCR are listed in Fig. S1.

XBP-1 splicing
Human Xbp1 mRNA from AD293 cells was reverse transcribed

to cDNA and amplified by PCR at an annealing temperature at

55uC and cycle number of 40 as previously described [8]. PCR

products were run on 2–3% agarose gel to separate spliced Xbp1

(398 base pairs) and unspliced Xbp1 (434 base pairs).

Western blotting
Whole cell lysates were extracted with RIPA buffer containing

protease inhibitor cocktail (Sigma), phosphatase inhibitor cocktails

1 and 2 (Sigma) and subjected to Western blot analysis. Primary

antibodies for BiP/GRP78 (Santa Cruz), phospho-eIF2a (Cell

Signaling) and a tubulin (Sigma) were used.

Data Analysis
All data are expressed as mean6SEM (n = 3) in arbitrary units

normalized to control group as indicated (%). The two-tailed

Student’s test was used to evaluate statistical differences between

the control group and experimental groups.

Figure 4. Deficiency of Perk or Gcn2 predisposes mouse
embryonic fibroblasts to increased ER stress response induced
by hyperthermia. (A) Relative mRNA levels of ER stress related genes
in Perk wildtype (WT) and knockout (KO) MEFs incubated at 40uC for 6,
9, 12, 16 hours and normalized to mRNA levels of cells incubated at
37uC (mean6SEM, n = 3). (B) Relative mRNA levels of Gadd34 and Chop
in Gcn2 wildtype (WT) and knockout (KO) MEFs incubated at 40uC for
0.5, 1, 3, 6 hours and normalized to mRNA levels of cells incubated at
37uC (mean6SEM, n = 3).
doi:10.1371/journal.pone.0023740.g004
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Figure S1 Primers used for quantitative real-time PCR
with ABI 7000 RT PCR System.
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