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Aberrations in epigenetic processes, such as histone methylation,
can cause cancer. Retinoblastoma binding protein 2 (RBP2; also
called JARID1A or KDM5A) can demethylate tri- and dimethylated
lysine 4 in histone H3, which are epigenetic marks for transcription-
ally active chromatin, whereas the multiple endocrine neoplasia
type 1 (MEN1) tumor suppressor promotes H3K4 methylation.
Previous studies suggested that inhibition of RBP2 contributed to
tumor suppression by the retinoblastoma protein (pRB). Here, we
show that genetic ablation of Rbp2 decreases tumor formation and
prolongs survival in Rb1+/− mice and Men1-defective mice. These
studies link RBP2histonedemethylase activity to tumorigenesis and
nominate RBP2 as a potential target for cancer therapy.

mouse model | histone methyltransferase | chromatin modifier |
neuroendocrine tumor | islet cell tumor

Epigenetic alterations, like genetic alterations, can contribute
to tumor initiation and progression (1, 2). Indeed, a number

of genes that play roles in chromatin modifications and hence,
epigenetic regulation are mutated in human cancers, including
mixed-lineage leukemia (MLL1), multiple endocrine neoplasia type
1 (MEN1), and ubiquitously transcribed tetratricopeptide repeat, X
chromosome (UTX) (3–6).
The retinoblastoma gene (RB1) tumor suppressor gene is fre-

quently inactivated in a wide variety of cancers (7). The retino-
blastoma protein (pRB) inhibits S-phase entry by repressing E2F
(7). In addition, pRB promotes senescence and differentiation (8).
These latter two activities track closely with the ability of pRB to
bind to retinoblastoma binding protein 2 (RBP2; also called JAR-
ID1AorKDM5A) rather than toE2F (9).Moreover, RBP2 siRNA
is sufficient to promote senescence and differentiation in pRB-
defective tumor cells in vitro (9, 10). RBP2 is a histone demethylase
capable of demethylating tri- and dimethylated lysine 4 in histone
H3 (H3K4me3/2) and repressing gene expression (11–14). It is,
therefore, conceivable that deregulation of RBP2 histone deme-
thylase activity contributes to pRB-defective tumor formation.
Epigenetic changes are reversible, suggesting that inhibition of

specific enzymes that regulate epigenetic marks would have an-
titumor effects. In fact, suberoylanilide hydroxamic acid (vor-
inostat), a histone deacetylase (HDAC) inhibitor, was approved
for the treatment of cutaneous T-cell lymphoma (15), and two
DNA methyltransferase inhibitors, 5-azacytidine (azacitidine)
and 5-aza-2′-deoxycytidine (decitabine), were approved for the
treatment of myelodysplastic syndrome (16, 17). RBP2 belongs
to a superfamily of 2-oxoglutarate–dependent dioxygenases (18,

19), which can be inhibited with drug-like small molecules (20,
21). We, therefore, used mice carrying null or conditional Rbp2
alleles to further explore potential roles for RBP2 in pRB-
defective tumorigenesis. In addition, we tested the hypothesis
that loss of RBP2 H3K4 demethylase activity would inhibit
tumors driven by loss of the MEN1 tumor suppressor, which is
part of an H3K4 methyltransferase complex (6, 22, 23).

Results
Loss of RBP2 Inhibits Proliferation and Induces Senescence. Mouse
embryonic fibroblasts (MEFs) derived from Rbp2−/− embryos
on a pure genetic background proliferated more slowly than
MEFs derived from WT littermate controls, especially when ex-
amined at later passages (Fig. 1 A and B). Senescence-associated
β-galactosidase (SABG) staining revealed increased staining of
late-passage Rbp2−/− MEFs compared with WT control MEFs
(Fig. 1 C andD), suggesting that RBP2 loss promotes senescence.
To study the effect of acute RBP2 inactivation, we created

mice that carry a conditional (floxed or f) Rbp2 allele (11) and
a transgene encoding a Cre-ER fusion protein, which can be
activated by tamoxifen (24). Treatment of Rbp2f/f;Cre-ER MEFs
with tamoxifen led to growth arrest, but treatment of Rbp2+/+;
Cre-ER control MEFs did not lead to growth arrest (Fig. 1 E and
F). Similar results were obtained when RBP2 was acutely deleted
in Rbp2f/f MEFs using a retroviral vector encoding Cre recom-
binase (Fig. S1 A and B). Collectively, these results support the
earlier conclusion, obtained with siRNAs, that RBP2 loss impairs
proliferation and promotes senescence.
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Regulation of Proliferation by RBP2 Is Dependent on Its Histone
Demethylase Activity. Inactivation of p53, using either the SV40
Large T antigen (LT) K1 mutant (25) or a dominant-negative C-
terminal fragment of p53 (p53CTF) (26), immortalized Rbp2−/−

MEFs, which was evidenced by their ability to be continually
passaged in culture and absence of SABG staining; however, it
did not correct their proliferation defect relative to similarly im-
mortalized WT MEFs (Fig. S1C and data not shown). The
availability of immortalized Rbp2−/− MEFs allowed us to ask
whether the proliferation defect in Rbp2−/− cells is caused by loss
of RBP2 histone demethylase activity. Reintroduction of WT
RBP2, but not the histone demethylase-defective RBP2 H483A

mutant (11), into LT K1-immortalized Rbp2−/− MEFs using ret-
roviral vectors rescued the proliferation defect caused by RBP2
loss (Fig. 1 G and H).
Notably, the proliferation defect of Rbp2−/− MEFs was also

rescued by inactivation of pRB, achieved with either WT LT (in
contrast to LT K1) (Fig. S1D) or Rb1 nullizygosity (Fig. S1 E
and F). Rbp2−/−;Rb1−/− primary MEFs did, however, eventually
senesce, presumably because of p53 activation. Taken together,
these results suggest that the senescence defect caused by RBP2
loss is p53-dependent, whereas the proliferation defect caused by
RBP2 loss is pRB-dependent. Moreover, these data, together
with earlier studies (9), suggest that RBP2 acts both upstream
and downstream of pRB.

Loss of RBP2 Leads to Loss of Stem Cell Markers.Many developmentally
important promoters contain bivalent chromatin, which consists
of H3K4me3 and H3K27me3 (27). These marks ensure that the
genes are poised for activation or repression on differentiation.
Because RBP2 can erase H3K4me3, we asked whether loss of
RBP2 affects the maintenance of mouse ES cells. We compared
the gene expression profiles of Rbp2f/f and Rbp2−/− ES cells grown
either in the presence of leukemia inhibitory factor (LIF) (Fig. 2A
and B), which suppresses differentiation, or 6 d after LIF with-
drawal (Fig. 2 C and D), which promotes differentiation, using
gene set enrichment analysis (GSEA) (28). GSEA was performed
using two previously defined subsets of genes: an ES genes subset
that included genes that are highly expressed in undifferentiated
ES cells (Fig. 2 A and C) and a differentiation genes subset that
included genes that are bound by H3K27me3 and repressed in
undifferentiated ES cells but activated 6 d after induction of
differentiation (Fig. 2 B and D) (29). These analyses showed that
loss of RBP2 down-regulates many genes that are normally highly
expressed in ES cells (Fig. 2A) and leads to partial activation of
the genes linked to differentiation (Fig. 2B), despite the presence
of LIF, suggesting that RBP2 promotes or maintains a stem cell-
like phenotype. Consistent with this idea, down-regulation of
stem cell markers was more rapid in Rbp2−/− ES cells after LIF
withdrawal compared with WT ES cells (Fig. 2C). Nonetheless,
transcriptional activation of genes that are normally repressed by
LIF was blunted in Rbp2−/− ES cells (Fig. 2D), suggesting that
Rbp2−/− ES cells exit the stem cell compartment more rapidly
than WT ES cells but are impaired in terms of fully executing
a differentiation program.
To further examine this finding, we performed real-time PCR

analysis of selected transcripts from the ES cells treated as above.
In keeping with the GSEA, Rbp2−/− ES cells prematurely down-
regulated the stem cell markers Nanog and Oct4 in response to
LIF withdrawal but failed to fully up-regulate the differentiation
markers Sox17 and Gata6 (Fig. 2E). Similar findings with respect
to Nanog and Oct4 were also observed whenWT and Rbp2−/− ES
cells were induced to form embryoid bodies (EB) and then
treated with retinoic acid (RA) to promote neuronal differenti-
ation (Fig. 2F). In this model, however,Rbp2−/−ES cells displayed
enhanced expression of the neuronal markers Pax3 andMsi1 (Fig.
2F). These findings suggest that Rbp2 deficiency down-regulates
stem cell markers and promotes differentiation. Similar results
were obtained with independently derived ES cell lines.

RBP2 Loss Mitigates Proliferation and Differentiation Abnormalities
in pRB-Defective Cells. Down-regulation of RBP2 using siRNA
inhibits the proliferation of pRB-defective tumor cells (9, 10)
and restores the ability of Rb1−/− MEFs to differentiate (9). The
availability of Rbp2−/− mice allowed us to address the roles of
RBP2 without being confounded by siRNA-mediated off-target
effects. Through appropriate crosses, we generated WT, Rb1−/−,
Rbp2−/−, Rbp2+/−;Rb1−/−, and Rbp2−/−;Rb1−/− embryos. Homo-
zygous loss of Rbp2 impaired the proliferation of Rb1−/− MEFs
derived from these littermate embryos (Fig. 3A).
Next, WT, Rb1−/−, Rbp2−/−, and Rbp2−/−;Rb1−/− early-passage

MEFs were infected with an adenovirus-encoding MyoD and in-
duced to differentiate in differentiation medium. RBP2 status did
not influence adenoviral infection efficiency (data not shown).
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Fig. 1. Loss of RBP2 inhibits proliferation and induces senescence. (A and B)
Proliferation rate of WT and Rbp2−/− (KO) primary MEFs in (A) early and (B)
late passages. (C) Senescence-associated β-galactosidase staining of late-
passage WT and Rbp2−/− MEFs. (D) Quantitation of β-galactosidase–positive
cells of late-passage WT and Rbp2−/− MEFs from three independent experi-
ments; 300 cells of each genotype were counted (*P < 0.02). (E) Proliferation
rate of Rbp2f/f;Cre-ER (f/f Cre-ER) and Rbp2+/+;Cre-ER (WT Cre-ER) primary
MEFs after a 6-h pulse of tamoxifen (+Tam) compared with untreated MEFs.
(F) Real-time RT-PCR analysis of Rbp2 in MEFs in E. Shown are mean values
with SEM. (G) Proliferation rate of Rbp2−/− K1 MEFs infected with retro-
viruses encoding WT RBP2 (WT), RBP2 H483A (MT), or empty vector (EV). (H)
Western blot analysis of the MEFs in G.
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Consistent with previous studies, WT MEFs, but not Rb1−/−

MEFs, started to form elongated myocytes 1 d after being placed
in differentiation media, and they formed multinucleated myo-
tubes shortly thereafter, which were associated with expression
of the late-differentiation marker myosin heavy chain (MYHC).
Loss of Rbp2 partially rescued both MYHC expression and for-
mation of multinucleated cells (Fig. 3 B and C). Differentiation of
Rbp2−/−;Rb1−/− MEFs was also enhanced after reintroduction of
WT pRB or by the pRB variant Δ663, which promotes differen-
tiation despite an inability to bind to E2F or repress E2F-depen-
dent promoters (8) (Fig. S2). This finding suggests that pRB has
non-E2F targets in addition to RBP2 that affect differentiation.

Loss of RBP2 Suppresses Tumorigenesis Caused by Deletion of the Rb1
or Men1 Tumor Suppressor Genes. Although RBP2 regulates pro-
liferation, senescence, and differentiation in vitro, which are
processes deregulated in cancer, its potential relevance in trans-
formation in vivo is unknown. We, therefore, asked whether Rbp2
interacts genetically with Rb1 in vivo, exploiting the fact that
Rbp2−/− mice in a mixed genetic background are viable and have
a normal lifespan (Fig. S3). Rb1−/− embryos die at embryonic day
14.5 (30–32), and Rb1−/− embryos supplied with Rb1+/+ extra-
embryonic tissues die shortly after birth, possibly because of se-
vere skeletal muscle defects (33, 34). No Rbp2−/−;Rb1−/− pups
were born from Rbp2+/−;Rb1+/− intercrosses (Table S1), indi-
cating that Rbp2 loss cannot rescue the embryonic developmental
defects caused by Rb1 loss.
Next, we asked if loss of RBP2 would alter pRB-defective tu-

morigenesis. Rb1+/− mice develop pituitary and thyroid tumors
that are associated with stochastic loss of the second Rb1 allele
(30, 35). We, therefore, examined the Rb1+/− progeny of matings
between Rbp2+/−;Rb1+/− mice. A limited number of timed nec-
ropsies were performed on 28-wk-old mice. As expected, most (3/
4) Rb1+/−mice had early pituitary lesions, including small tumors,
whereas no abnormalities were detected in the pituitaries of all (4/
4) of the Rbp2−/−;Rb1+/− mice (Fig. 4A), suggesting that RBP2

loss suppresses tumor initiation. The remainder of the mice were
monitored and killed when they became distressed or moribund
because of the development of tumors.
Importantly, deletion of Rbp2 dramatically extended the life

span of Rb1+/− mice (Fig. 4B). The median survival time im-
proved from 47 wk forRbp2+/+;Rb1+/−mice to 72 wk forRbp2−/−;
Rb1+/− mice. Indeed, some Rbp2−/−;Rb1+/− mice lived up to 2 y,
the average life span of WT mice. Importantly, loss of one Rbp2
allele also delayed tumorigenesis and partially extended the life
span of Rb1+/−mice (Fig. 4B). Similar results were obtained when
the analysis was restricted strictly to littermates (Fig. S4). Notably,
all of the Rbp2−/−;Rb1+/− and Rbp2+/−;Rb1+/− mice had micro-
scopic pituitary and/or thyroid tumors at necropsy (Table S2).
This finding suggests that RBP2 delays the onset of such tu-
mors or retards their progression rather than preventing tumor
initiation.
Mammals have three RBP2 paralogs called PLU-1, SMCX,

and SMCY. Plu-1 mRNA levels were significantly increased
in pituitary tumors arising in 12-mo-old Rbp2−/−;Rb1+/− mice
compared with tumors arising in 12-mo-old Rbp2+/+;Rb1+/−

mice (Fig. 4C), suggesting that compensation by Rbp2 paralogs
contributes to the eventual formation of pituitary tumors in the
Rbp2−/−;Rb1+/− mice.
Inactivation of the MEN1 tumor suppressor gene, like in-

activation of RB1, leads to formation of neuroendocrine tumors
(4, 36, 37). Menin, the MEN1 gene product, is part of a complex
that promotes H3K4 methylation, and this activity is diminished
by tumor-associated MEN1 mutations (6, 22, 23). We, therefore,
reasoned that inactivation of the RBP2 H3K4 demethylase might
partially rescue Men1 loss. To this end, we exploited the fact that
Men1 inactivation in pancreatic islet cells leads to the develop-
ment of insulinomas (37), which can be monitored based on
changes in circulating insulin levels. Through appropriate mat-
ings, we generatedMen1f/f;Rbp2+/+,Men1f/f;Rbp2−/−, andMen1f/f;
Rbp2f/f mice that also expressed Cre recombinase in their pan-
creatic islet cells (RIP-Cre) (38). Inactivation of the floxed alleles
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Fig. 2. Loss of RBP2 is required for maintenance and
proper differentiation of mouse ES cells. (A and B) GSEA
analysis of Rbp2f/f (WT) and Rbp2−/− (KO) ES cells using the
gene set (A) highly expressed in ES cells (ES genes) or (B)
linked to differentiation (differentiation genes). NES, nor-
malized enrichment score. (C andD) GSEA analysis of Rbp2f/
f (WT) and Rbp2−/− (KO) ES cells after induction of differ-
entiation by 6 d of LIF withdrawal (−LIF 6D) using the gene
set (C) highly expressed in ES cells or (D) linked to differ-
entiation. (E) Real-time RT-PCR analysis of stem cell- and
lineage-specific markers of Rbp2f/f (WT) and Rbp2−/− (KO)
ES cells before and after differentiation induced by LIF
withdrawal (−LIF) as in C and D for 4 (4D) or 6 d (6D; **P <
0.001, ***P < 0.0001). (F) Western blot analysis of stem cell-
and neuronal lineage-specific markers of WT and Rbp2−/−

(KO) ES cells before and after differentiation in neuronal
differentiation assays. RA, retinoic acid; long exp, long ex-
posure; short exp, short exposure.

Lin et al. PNAS | August 16, 2011 | vol. 108 | no. 33 | 13381

G
EN

ET
IC
S

IN
A
U
G
U
RA

L
A
RT

IC
LE

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1110104108/-/DCSupplemental/pnas.201110104SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1110104108/-/DCSupplemental/pnas.201110104SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1110104108/-/DCSupplemental/pnas.201110104SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1110104108/-/DCSupplemental/pnas.201110104SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1110104108/-/DCSupplemental/pnas.201110104SI.pdf?targetid=nameddest=ST2


was confirmed by anti-menin and anti-RBP2 immunohistochem-
istry (Fig. S5).
Rbp2 inactivation, either systemically (Fig. 5A) or specifically

in islet β-cells (Fig. 5B), substantially decreased islet cell tumor
burden, which was measured by circulating insulin levels (Fig.
5C), and enhanced survival (Fig. 5 A and B). The median survival
for Men1f/f;Rbp2+/+;RIP-Cre mice was 45 wk compared with
median survivals of 68 wk forMen1f/f;Rbp2−/−;RIP-Cre mice (Fig.
5A) or 69 wk for Men1f/f;Rbp2f/f;RIP-Cre mice (Fig. 5B), re-
spectively. Inactivation of Rbp2 in islet cells of Men1+/+ mice did
not grossly affect islet histology or function, which was de-
termined by gene expression profiling (Fig. S6), circulating in-
sulin (Fig. 5C), and glucose levels (data not shown).
We also performed timed necropsies on a limited number of

Men1f/f;Rbp2+/+;RIP-Cre and Men1f/f;Rbp2f/f;RIP-Cre mice (Fig.
6A). By 2 mo of age, 50% (5/10) of the former exhibited islet cell
hyperplasia compared with zero of the latter (0/8) (Table S3).
The prevalence of cellular atypia and insulinoma at 4 and 8 mo
was dramatically reduced by loss of Rbp2. By 10 mo of age, all
(15/15) of the Men1f/f;Rbp2+/+;RIP-Cre mice had insulinomas
compared with 2 of 21 Men1f/f;Rbp2f/f;RIP-Cre mice (Table S3).
These findings indicate that Rbp2 loss significantly delays the
onset of hyperplasia, atypia, and insulinoma in this model.

Notably, insulinomas were observed in some (2/5) 12-mo-old
Men1f/f;Rbp2f/f;RIP-Cre mice at necropsy. Comparison of insuli-
nomas from 12-mo-oldMen1f/f;Rbp2f/f;RIP-Cremice withMen1f/f;
RIP-Cremice revealed increased expression of Plu-1 but not Smcx
and Smcy after Rbp2 loss (Fig. 6B). This increase, however, was
not observed in spleens from 12-mo-old Men1f/f;Rbp2f/f;RIP-Cre
mice or pancreatic islets from 2-mo-old Men1f/f;Rbp2f/f;RIP-Cre
mice (data not shown). These observations suggest that the
eventual formation of insulinomas in Men1f/f;Rbp2f/f;RIP-Cre
mice depends on increased levels of PLU-1, perhaps occurring
stochastically over time.
To begin to understand the mechanisms underlying these dif-

ferences, we injected 2-mo-old mice with BrdU and examined
their pancreata 5 h later. As expected, BrdU incorporation was
increased in the islets of Men1f/f;Rbp2+/+;RIP-Cre mice com-
pared with WT controls (Fig. 6 C and D). This increase was not
observed, however, in islets that concurrently lacked Rbp2. We
did not observe differences in bulk H3K4 trimethylation by im-
munohistochemistry (data not shown), possibly reflecting the
activity of additional H3K4 methyltransferases and demethylases.
To begin to assess the molecular basis for the effect of Rbp2

loss in attenuating tumorigenesis, we performed mRNA profiling
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using DNA microarrays on pancreatic islets isolated from 2-mo-
old WT, RIP-Cre, Men1f/f;RIP-Cre, Rbp2f/f;RIP-Cre, and Men1f/f;
Rbp2f/f;RIP-Cre mice. The gene expression changes caused by
deletion of Men1 overlap with those changes reported previously
(39) (Dataset S1).
To determine the effects of Rbp2 inactivation on the gene

expression changes in Men1-deficient islets, we compared the
gene expression changes in Men1f/f;Rbp2f/f;RIP-Cre, Men1f/f;RIP-
Cre, and Rbp2f/f;RIP-Cre islets with WT and RIP-Cre control
islets. The effects of Men1 deletion on pancreatic islet gene ex-
pression were reversed by Rbp2 loss for a number of genes be-
longing to several classes, including genes involved in signaling,
cell cycle, and apoptosis (Fig. 7 A and B). The reversal by Rbp2
deletion of expression changes associated with Men1 deletion in
islets was confirmed by real-time RT-PCR (Fig. 7C).

Discussion
We confirmed that loss of RBP2 impairs proliferation, promotes
senescence, and enhances differentiation in vitro. Notably, de-
letion of Rbp2 was insufficient to rescue the embryonic devel-
opmental defects caused by Rb1 loss but significantly suppressed
pituitary and thyroid tumorigenesis in Rb1+/− mice and islet cell
tumorigenesis after inactivation of Men1 in pancreatic neuro-
endocrine cells.
The canonical pRB targets are members of the E2F transcrip-

tion factor family, and suppression of E2F-responsive promoters
contributes to cell-cycle control and tumor suppression by pRB
(7). pRB also biochemically interacts with a number of chroma-
tin modifiers, including HDACs (40–42), SWI/SNF chroma-
tin remodeling complexes (43, 44), H3K9 methyltransferases
Suv39h1 (45) and RIZ1 (46), H4K20 methyltransferase Suv4-20h
(47), and DNAmethyltransferase 1 (DNMT1) (48). Our findings,
together with earlier biochemical and siRNA-derived data, sug-

gest that another pRB-interacting chromatin modifier, RBP2,
contributes to tumor suppression by pRB. RBP2 loss inhibits cell
proliferation in a pRB-dependent manner, placing RBP2 up-
stream of pRB. However, RBP2 inhibits senescence and differ-
entiation in pRB-defective tumor cells, and loss of RBP2 inhibits
formation of pRB-defective endocrine tumors, suggesting that
RBP2 also acts downstream of pRB. In summary, tumor sup-
pression by pRB might involve coordinated regulation of both
E2F and RBP2. Consistent with this idea, RBP2 is recruited to
E2F target genes during differentiation (49).
It is increasingly clear that alterations in histone methylation

play important roles in cancer in general (50, 51). For example,
MLL1, a subunit of an H3K4 methyltransferase complex, is fre-
quently translocated in leukemia (52, 53), whereas another H3K4
methyltransferase subunit gene, MEN1, is frequently mutated in
endocrine tumors (4, 6, 22, 23). EZH2, the catalytic subunit of an
H3K27 methyltransferase polycomb repressive complex 2, is over-
expressed in aggressive prostate cancers (54). Finally, copy number
changes and intragenic mutations affecting histone methyltran-
sferses and demethylases, such as the UTX H3K27 histone de-
methylase, are increasingly being identified in cancers (5, 55, 56).
RBP2 is one of four proteins [together with PLU-1 (also known

as KDM5B or JARID1B), SMCX (also known as KDM5C or
JARID1C), and SMCY (also known as KDM5D or JARID1D)]
capable of demethylating trimethylated H3K4 (57). This mark
is usually associated with actively transcribed genes and is also
found at bivalent domains in association with trimethylated
H3K27, which is usually linked to transcriptional repression (27).
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The paradoxical co-association of both an activating and repres-
sive methylation mark is thought to poise genes to respond to
either inhibitory or stimulatory signals linked to differentia-
tion and control of cell fate. Consistent with this idea, bivalent
domains seem to be important for both stem cell and can-
cer biology.
Interestingly, RBP2 has been reported to be translocated in

leukemia (58, 59) and overexpressed in gastric cancer (10). A
recent study suggested that increased expression of RBP2 pro-
moted a more stem-like phenotype, consistent with our results,
and enhanced resistance to anticancer agents (60). PLU-1 is
overexpressed in breast (61) and prostate cancers (62), and
shRNA-mediated down-regulation of PLU-1 suppresses breast
cancer growth in a syngeneic mouse cancer model (63). Inter-
estingly, PLU-1 marks a subpopulation of slow-cycling melanoma
cells required for continuous tumor growth (64), and its over-
expression in ES cells suppresses differentiation (65). Therefore,
PLU-1, like RBP2, might maintain a stem-like phenotype and
promote tumorigenesis. Finally, SMCX was recently found to be
mutated in a subset of clear cell renal cell carcinomas (5).
Both RB1 and MEN1 have been linked to neuroendocrine

tumors. The former is linked to pituitary and thyroid tumors in
mice (30, 35) and small cell lung cancer in man (66), whereas the
latter is linked to pituitary, parathyroid, and pancreatic islet cell

tumors in both species (4, 36, 37). Interestingly, inactivation of
Rb1 and Men1 in neuroendocrine tumors arising in Rb1+/−;
Men1+/− compound heterozygous mice is mutually exclusive
(67, 68), suggesting that Rb1 and Men1 share a critical activity or
activities relevant to neuroendocrine tumorigenesis. Our studies
suggest that regulation of H3K4 methylation is one such activity.
Enzymes have historically proven to be tractable drug targets.

RBP2 and its paralogs PLU-1, SMCX, and SMCY are 2-oxo-
glutarate–dependent dioxygenases (18, 19). These enzymes can
be inhibited with drug-like small organic molecules that act
competitively with respect to 2-oxoglutarate, interfere with iron
use, or both (20, 21). Our findings suggest that RBP2-inhibitory
drugs, should they be developed, would have anticancer activity.
Furthermore, elevated expression of PLU-1 in Rbp2 null tumors
(Fig. 4C and 6B) suggests that RBP2 inhibitors that also inhibit
PLU-1, if they were safe, would be more effective than inhibitors
that target RBP2 alone.

Materials and Methods
Mouse Experiments. Rbp2−/− and Rbp2f/f mice were described previously (11)
and backcrossed to C57BL/6 strain for at least five generations. Rbp2+/− mice
were intercrossed to generate Rbp2−/− MEFs and WT littermate control
MEFs. Rbp2f/f mice were crossed with C57BL/6 chicken β-actin Cre-ER mice
(24, 69) to obtain Rbp2+/f;Cre-ERmice. Rbp2+/f;Cre-ER mice were crossed with
Rbp2+/f mice to generate Rbp2f/f;Cre-ER MEFs and Rbp2+/+;Cre-ER littermate
control MEFs. Rb1+/− mice on a C57BL/6 background (30) were obtained from
the National Cancer Institute Mouse Repository. Rb1+/− mice were crossed
with Rbp2−/− mice on a mixed 129/SvEv, FVB/N, and C57BL/6 background to
obtain Rbp2+/−;Rb1+/− mice. These mice were then intercrossed to generate
the experimental cohorts of Rb1+/−, Rbp2+/−;Rb1+/− and Rbp2−/−;Rb1+/− mice.

Men1 conditional KO mice were described previously (6) and maintained
on a mixed 129s6, FVB/N, and C57BL/6 background. To specifically delete the
Men1 gene in pancreatic islet β-cells, Men1f/f mice were crossed with RIP-Cre
transgenic mice (38). The Men1+/f;RIP-Cre mice were crossed with Men1+/f

mice to generate Men1f/f;RIP-Cre mice. Men1f/f;Rbp2−/−;RIP-Cre and Men1f/f;
Rbp2f/f;RIP-Cre mice were generated by introducing Rbp2 null and floxed
alleles into the Men1f/f;RIP-Cre mice through appropriate matings. For
in vitro proliferation and differentiation assays, Rb1+/− mice were crossed
with Rbp2+/− mice on a pure C57BL/6 background to obtain Rbp2+/−;Rb1+/−

mice, which were intercrossed to generate WT, Rbp2−/−, Rb1−/−, Rbp2+/−;
Rb1−/−, and Rbp2−/−;Rb1−/− MEFs. Mice and cells carrying Men1 floxed alleles
were genotyped using primers described in SI Materials and Methods, and
all other mice and cells were genotyped as described (11, 24, 30, 38). All mice
were maintained in the research animal facility of the Dana–Farber Cancer
Institute and Yale Animal Resources Center in accordance with the National
Institutes of Health guidelines. All procedures involving mice were approved
by the Institutional Animal Care and Use Committees of the Dana–Farber
Cancer Institute and Yale University.

ES Cell Culture and Differentiation. In Fig. 2 A–E, Rbp2f/f ES cells were isolated
from mouse blastocysts after intercrossing Rbp2f/f mice on a pure C57BL/6
background and transiently transfected with pBS500/EF1α-GFPCre plasmid.
GFP-positive cells were isolated by FACS and plated at low density. Isolated
colonies were then expanded into ES lines. Successful recombination of the
Rbp2 locus was confirmed by PCR andWestern blot analysis. In Fig. 2F, WT and
Rbp2−/− ES cells were isolated from mouse blastocysts after intercrossing
Rbp2+/− mice. WT, Rbp2f/f, and Rbp2−/− ES cells were maintained on mito-
mycin C-treated MEF feeders in standard ES medium: DMEM containing 15%
heat-inactivated FBS, 0.1 mM 2-mercaptoethanol, 2 mM L-glutamine, 0.1 mM
nonessential amino acid, 1% Embryomax ES cell-qualified nucleosides (100×
stock; Chemicon), 1,000 U/mL recombinant LIF (Chemicon), 50 U/mL penicillin/
streptomycin.

For differentiation assays, ES cells were passaged at least three times
without feeders and maintained on gelatin-coated plates in standard ES
culture medium containing LIF. In Fig. 2 A–E, the ES cells were induced to
differentiate by removing LIF from culture medium and were harvested at 4
or 6 d after differentiation for analysis. In Fig. 2F, ES cells were induced to
differentiate on untreated plates to form EB for 2 d, and were then treated
with 1 μM retinoic acid to induce neuronal differentiation for 3 d. After 2
more days on untreated plates, the cells were plated onto gelatin-coated
plates and grown for an additional 4 d before Western blot analysis.

Gene Expression Profiling. Subconfluent Rbp2f/f and Rbp2−/− ES cells were
harvested for RNA isolation using the RNeasy mini kit with on-column DNase
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digestion (Qiagen). Gene expression profiling was performed using Affy-
metrix GeneChip mouse genome 430 2.0 arrays. Raw gene expression pro-
filing data were analyzed using dChip (70). The two gene sets used for gene
set enrichment analysis were described previously (29). The differentiation
genes include all genes that are marked by both H3K27me3 and EZH1 in WT
ES cells and up-regulated at least threefold 6 d after induction of differen-
tiation by LIF withdrawal. The ES genes are genes highly expressed in plu-
ripotent ES cells compared with differentiated cells.

Pancreatic islets were isolated as described (71). Briefly, 0.25 mg/mL Lib-
erase solution (Roche) in serum-free M199 medium were injected into
pancreata through the common bile duct of anesthetized 2-mo-old male
mice. The inflated pancreata were incubated at 37 °C for 20 min for di-
gestion before filtered through mesh. Then, islets were purified through
histopaque gradient purification and gravity sedimentation. Finally, islets
were hand-picked from dark field dishes under a dissecting microscope for
RNA isolation using the RNeasy mini kit (Qiagen). Islet RNAs were expres-
sion-profiled on Affymetrix GeneChip Mouse Gene 1.0 ST arrays. Raw gene
expression profiling data were analyzed using dChip (70). Transcripts were
defined to be significantly changed based on a t test P < 0.05. The expression
data reported in this paper have been deposited in the National Center for

Biotechnology Information Gene Expression Omnibus database under ac-
cession numbers GSE26446 and GSE26978.
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