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How do we make decisions when confronted with several alter-
natives (e.g., on a supermarket shelf)? Previous work has shown
that accumulator models, such as the drift-diffusion model, can
provide accurate descriptions of the psychometric data for binary
value-based choices, and that the choice process is guided by visual
attention. However, the computational processes used to make
choices in more complicated situations involving three or more
options are unknown. We propose a model of trinary value-based
choice that generalizeswhat is knownabout binary choice, and test
it using an eye-tracking experiment. We find that the model
provides a quantitatively accurate description of the relationship
between choice, reaction time, and visual fixation data using the
same parameters that were estimated in previous work on binary
choice. Our findings suggest that the brain uses similar computa-
tional processes to make binary and trinary choices.

Abasic goal of decision neuroscience is to characterize the
computational processes used by individuals tomake different

types of decisions, as well as the neurobiological substrates of such
computations (1–5). A significant amount of effort has been de-
voted to characterizing these processes in the realm of perceptual
decision making involving two-alternative forced choices (2, 6–8).
However, many important decisions do not fit this framework: they
involve choices amongmultiple alternatives (n> 2) associated with
different reward values (e.g., which food to select from a buffet
table). Here we investigate these types of decisions.
The standard drift-diffusion model (DDM), as well as closely

related versions, such as the leaky competitive accumulator (LCA)
model (3, 4, 9), have been highly successful in providing quantita-
tive explanations of the psychometrics, chronometrics, and neu-
rometrics of binary perceptual choice (2, 10–16), andmore recently
in binary value-based choice (17–20). These models assume that
decisions are made by accumulating stochastic information over
time until the net evidence in favor of one option exceeds a pre-
specified threshold. The size of the threshold can be chosen to
optimally balance the benefit of accumulating more information
with the cost of takingmore time to reach a decision (21). Consider,
for example, the canonical dot-motion task that has been widely
used to study perceptual decision making. Here the stimulus itself
is stochastic and each instant is thought to provide noisy but in-
formative evidence for the net direction of movement in the dis-
play. Thus, as the individual accumulates more evidence, his
knowledge about the true net direction of movement increases (2).
The DDM has also been shown to provide highly accurate

descriptions of accuracy and response times in domains such as
memory retrieval and decision-making, where the stimuli are not
explicitly stochastic (17, 19, 20, 22–28); this suggests that these
decisions might be made using a similar process of random in-
formation accumulation and integration. To see why, consider the
case of binary value-based choice. Here the individual needs to
compare the value of the two items and select the one with the
highest value. If the value signals at any particular instant are in-
dependent stochastic draws from a common distribution (e.g.,
a Gaussian distribution with amean equal to the item’s true value),
then it is beneficial to integrate the signals over time to identify the
best option. In fact, it is easily shown that in the binary versions of
these tasks, the DDM implements an optimal sequential proba-

bility ratio test (SPRT) (2, 3, 21, 29). Unfortunately, despite the
success of the basic binary DDM, it has two important limitations.
First, there is an ongoing debate about the right way to gen-

eralize the model to multialternative choice (n > 2). The question
is difficult because a large number of possible extensions with
significantly different behavioral and neurobiological properties
are possible (5, 27, 30–34). Furthermore, the optimal statistical
test associated with the case of multiple alternatives is unknown,
and only approximations have been proposed (32, 33). Out of the
alternatives that have been proposed, the multihypothesis se-
quential probability ratio test (MSPRT) is a particularly appealing
one, because it reduces to the SPRT in the case of two options,
and is asymptotically optimal in the sense that for sufficiently low
error rates it minimizes expected decision time (5, 25, 33, 35).
Second, the classic DDM and leaky integrator models have

ignored the role that visual attention plays in the choice process.
This gap is an important limitation because both casual obser-
vation and previous research suggest that visual fixations play
a role in the decision-making process (18, 36, 37).
In a previous study we investigated the role of visual fixations

on binary value-based choice (18). In that study, we found that
a simple extension of DDM (6, 14, 15, 22–25, 38–41), in which
fixations modulate the value integration process, provides a re-
markably good quantitative account of the relationship between
fixations, reaction times, and choices. The key idea of that model
is that the slope of integration in the DDM is biased in favor of
the item being fixated on at any particular time. Interestingly,
although this leads to sizable choice biases in favor of options that
are looked at more, we also found that the fixation process was
only slightly influenced by relative value.
Here we propose a computational model of trinary value-based

choice that addresses the two shortcomings listed above. The
model is a natural generalization of our previous work. The key
difference is that now we assume that there are three competing
relative value signals, one for each option, with a rate of in-
tegration that depends on the fixation location. The model makes
stark predictions about the relationship between the fixation pat-
terns, reaction times, and choices. We test these predictions using
an eye-tracking experiment in which subjects are shown high-
resolution pictures of three food items and, after looking at them
freely, indicate their choice through a button press (Fig. 1A).
The theory and experiments allow us to address two important

questions about how the choice process changes when we go from
the binary to the multialternative case. First, are the same com-
putational processes at work in making binary and trinary choices?
Second, are subjects able to identify and rule out especially bad
alternatives early in the choice process by not looking at them?This
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second question is important because, given that fixations bias
choices, a fixation process that directs relatively more attention to
the best alternatives can significantly improve the quality of choices.

Results
Computational Model. To better understand the model for the tri-
nary case it is useful to briefly review the case of binary choice
developed in our previous study (18). That model assumed that the
brain computes a relative decision value (RDV) signal that evolves
over time as a Markov Gaussian process until a choice is made.
The RDV starts each trial at zero, and every 1-ms step it exhibits
a mean change that is proportional to the difference in value be-
tween the fixated and unfixated items, with a bias toward the fix-
ated one. A left choice is made when the RDV crosses the barrier
at +1; a right choice is made when it crosses –1. The model also
assumed that fixations were exogenous to the integration process.
A useful observation to see the link with the trinary case is that

the binary model described above can also be written as consisting
of two competing parallel processes: one that computes the RDV
in favor of the left option, and one that computes the RDV in
favor of the right option. To be equivalent, the two must be co-
dependent in the sense that at all times the two RDVs add up to
zero, and a choice is made as soon as one crosses a +1 threshold.
The model for trinary choice that we propose here is a

straightforward extension of the two parallel processes version of
the binary choice model. Evidence in favor of each item is ac-
cumulated at different rates depending on the item’s value and
whether it is being fixated on. For example, when the subject is
looking at the left item, the rates of evidence accumulation for
the three items are given by

Eleft
t ¼ Eleft

t− 1 þ d�rleft þ εleftt ;

Ecenter
t ¼ Ecenter

t− 1 þ θ�d�rcenter þ εcentert ;

Eright
t ¼ Eright

t− 1 þ θ�d�rright þ εrightt ;

where Et denotes the evidence accumulated in favor of the op-
tion as of time t, r denotes the underlying value of each item
(measured independently in the experiment), d is a constant
controlling the speed of integration (in units of ms−1), θ between
0 and 1 is a parameter reflecting the bias against the unfixated

options, and ε is white Gaussian noise with variance σ2 (sampled
independently every ms). The RDV signals for each option can
then be defined as follows:

Vleft
t ¼ Eleft

t −maxðEcenter
t ;Eright

t Þ;

Vcenter
t ¼ Ecenter

t −maxðEleft
t ;Eright

t Þ;

Vright
t ¼ Eright

t −maxðEleft
t ;Ecenter

t Þ:
Just as before, a choice is made as soon as one of these RDVs
crosses a barrier with a constant value of +1. The model has
three free parameters: d, θ, and σ2; these are the same free
parameters as in the binary case.
Fig. 1B describes a simulated run of one decision trial for il-

lustration. The RDV generally increases for the fixated item and
decreases for the unfixated items, but the rate of change depends
on the values of the three items. In the model there is only ever
one positive RDV at a time, which represents the difference in
evidence between the items with the most and next-most evi-
dence. Therefore, the model falls into the class of “best vs. next”
models that are known to implement the asymptotically optimal
MSPRT in the absence of attention biases (5, 33, 35). We em-
phasize, however, that once visual attention biases are present,
neither the two-item version of the DDM, nor the multi-item
version presented here, is optimal. We chose the MSPRT frame-
work to model the multi-item case because it is the most natural
way to generalize DDM, and because, as we will see, it provides
a remarkably accurate description of the data.
The model assumes that fixations are produced by a stochastic

process that is exogenous to the path of the RDV. This does not
rule out the possibility that the fixation process might be affected
by the latent value of the stimuli. In fact, as is described in detail in
Methods and SI Methods, in all of our data analyses we assume that
fixation locations and lengths are drawn from the correct empirical
distribution (as measured in the experiment), and that the in-
tegration process proceeds until the end of the fixation, in which
case another fixation is drawn, or until a barrier is crossed, in which
case the trial ends. By using this approach, our model and exper-
imental tests focus on understanding the comparator process,
while taking the fixation process as given (SI Methods and Fig. S1).

Fig. 1. (A) Task. Subjects were forced to fixate at the center of the screen for 2 s before the trial commenced, and were then presented with images of three
food items and given as much time as needed to make a choice. After a selection was made, a yellow box highlighted the chosen item for 1 s. Fixations were
recorded at 50 Hz. (B) Model. An RDV is computed for each item based on the evidence accumulated for that item compared with the highest accumulated
evidence for the other items. The average rate of evidence accumulation is higher for an item when it is fixated on than when it is not. In addition to the
average accumulation rate, there is also noise drawn from a Gaussian distribution. When one of the RDVs hits its barrier at +1, then that item is chosen. In this
particular simulation of the model we assumed rleft = 3, rcenter = 5, and rright = 7, and it was simulated with an exaggerated signal-to-noise ratio (larger d and
smaller σ) for illustrative purposes.
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However, future work must explore the basis of the fixation pro-
cess in more detail.

Hypotheses, Simulation, and Estimation. We hypothesized that our
generalized model would be able to provide an accurate quan-
titative description of the fixation and choice data using the same
parameters estimated in our previous binary experiment, which
provides a stringent test of the hypothesis that similar compu-
tational processes are at work in binary and trinary value-based
choice. These parameters are θ = 0.3, d = 0.0002 ms−1, and σ =
0.014 (SI Results).
To see whether these parameters of the model were able to

predict the data quantitatively, we simulated the model 50 times
for each possible configuration of liking ratings (which provide
independent measures of the value of each stimulus). The results
of these simulations are described below, and are depicted in red
in the appropriate figures.
Unless otherwise noted, throughout the following results,

goodness-of-fit P values are based on two-sided t tests of the
regression parameters against zero (SI Methods), and P values
for trends in the subject data are based on two-sided t tests of the
mixed-effects regression parameters against zero (SI Methods).

Basic Psychometrics. The simulated model accounted for the
choice and reaction time curves well. The data show that choices
were a logistic function of the difference between an item’s value
and the average value of the two other items (χ2 goodness of fit,
P = 0.74; Fig. 2A). Here and below, the items’ values are mea-
sured using the independent liking ratings. Fig. 2B also shows
that choice probabilities are affected by the value of the lowest-
rated item, which indicates that all items, even the worst one, are
taken into consideration during the choice process (χ2 goodness
of fit, P = 0.64; Fig. 2B). Fig. 2C shows that the mean reaction
times, as a function of difficulty, were also accurately predicted
by the model (goodness-of-fit slope: P = 0.31, intercept: P =
0.13) and that they increased with difficulty, as measured by the

difference in ratings between the best item and the average of
the other two (−145 ms per rating, P < 0.001).
We also looked at the match between the predicted and actual

number of fixations as a function of difficulty (Fig. 2D). Although
the slope of the fixation curve was not significantly different from
the mixed-effects estimates from the data (goodness-of-fit slope:
P= 0.17, intercept: P= 10−8), the model systematically predicted
0.6 excess fixations. This mismatch is an unavoidable consequence
of the procedures used to carry out our simulations, and does not
reflect an inherent limitation of the model (SI Results).

Core Model Predictions and Choice Biases. The model with θ < 1
makes several strong predictions about the relationship between
fixations, choices, and reaction times that we tested using the
eye-tracking data.
First, the model qualitatively predicts that final fixations will

be biased toward the chosen item, unless the final fixated item is
much worse than the others (Fig. 3A; χ2 goodness of fit, P =
0.02). The intuition for the effect is that the evidence for the
fixated item accumulates faster than the evidence for unfixated
items, unless rfixated is smaller than θ�runfixated:
Second, the model correctly predicts that the duration of the

final fixation should be correlated with the excess amount of time
that has been spent looking at the nonchosen items before that
fixation (Fig. 3B; −0.26 ms/ms, P = 0.0012, goodness-of-fit slope:
P = 0.06, intercept: P = 0.04). The intuition for this effect comes
from the fact that, due to the attention bias, more time spent
looking at the other items generally means more accumulated
evidence in favor of those items, and thus a bigger gap in evidence
against the chosen item must be overcome during the last fixation.
Third, the model correctly predicts that the probability of

choosing an item should increase with the total excess time spent
looking at that item (Fig. 3C; χ2 goodness of fit, P = 0.56; mixed-
effects logit, P < 10−14). Here we define excess time as the total
amount of time spent looking at the left item minus the sum total
time spent looking at the other two items. One possible concern is
that this effect could be a direct result of the fixation process if
subjects tend to lookmore at higher-valued items, because higher-
valued items are usually chosen; in our previous work (18) we
showed that this was not the case in binary choice. To address this
concern here, in Fig. 3D we replicate Fig. 3C, but using simu-
lations of the model with θ = 1, where the fixation location does
not affect the drift rates of the relative value integrators. Because
the model is simulated using the empirical fixation pattern, this
figure tells us how much of the effect is due to a general tendency
for subjects to look more at higher-valued items. In fact, only
a small fraction of the effect can be explained by the influence of
value on fixations, which suggests that most of the excess fixation
time effect is due to the bias in the drift.
Fourth, the model predicts that, other things being equal,

longer fixations to a particular item should be associated with
a higher probability of choosing that item. Fig. 3E shows that this
pattern also matches the data well using the first fixations (χ2
goodness of fit, P = 0.56; mixed-effects logit, P < 10−5).
Fifth, the model predicts that final fixations should be shorter

than other nonfinal “middle” fixations, because crossing a barrier
interrupts final fixations. Fig. 3F shows that this was the case
(mean difference = 59 ms, P = 0.032).

Fixation Process.As in the case of binary choice, we found that the
location of first fixations was random with respect to value (P =
0.23 based on a mixed-effects logit of item rating on first fixation
probability), and that first and second fixations were shorter than
later ones (mean difference = 161 ms, P = 10−7 and mean dif-
ference = 122 ms, P = 10−8, respectively; Fig. 3F). We found no
effect of item value or choice difficulty (as measured by the
difference in value between the best item and the average of the
other two items) on middle fixation duration (−6.6 ms/rating,
P = 0.35 and −7.5 ms/rating, P = 0.21, respectively). If instead
we define choice difficulty as the difference in value between the
best and middle item then we do see a significant but small effect
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on middle fixation duration (−13.8 ms/rating, P = 0.018). We
also found that middle fixation duration depended on the dif-
ference in ratings between the fixated item and the average of
the other two items (18.5 ms/rating, P = 0.0005).
Fig. 4 A and B provides evidence that the underlying item

values, as measured by the liking ratings, affected the fixation
process late in the trial. The figure panels show the distribution of
fixations to the best, middle, and worst items as a function of
fixation number from the beginning of the trial and the end of the
trial, respectively. The fixation location was mostly independent
of value for the first three fixations but favored the best item later
on. Also, the last fixation was usually to the best item, which is
a natural consequence of the DDMwith a visual fixation bias (Fig.
3A; see SI Results for an alternative explanation).
Fig. 4 C and D provides further insight into how the process of

visual search changes during the course of a trial. The figure
panels show the distribution of fixations to the left, center, and
right items as a function of fixation number from the beginning
of the trial and the end of the trial, respectively. The transitions
were clearly dominated by location early in the trial but not at
the end of the process. Specifically, 46% of first fixations were to
the center item, suggesting that diagonal eye-movements from the
central fixation cross may be less natural than horizontal or vertical
movements. This is further supported by the fact that only 16% of
second fixations are to the center item, because those fixations
must be the result of diagonal fixation transitions.
Finally, Fig. 4E shows a histogram of the number of fixations

that subjects made within a trial. Overall, on 83% of the trials,
subjects made their decisions only after fixating on all three items
at least once.

Discussion
The results presented here suggest that the same computational
processes are at work in simple binary and trinary value-based
choices. In both cases, a simple extension of the DDM in which
fixations bias the slope of the value integration process provides

good quantitative accounts of the relationship between choice,
reaction times, and fixation data. Remarkably, we were able to
predict the data for the trinary case with high quantitative ac-
curacy using parameters estimated from the binary case, dem-
onstrating that the model is robust.
Our results also show that subjects tend to take all items into

consideration when making a choice. In a vast majority of the
trials, the subjects looked at all three items before making
a choice, and though subjects weremore likely to fixate on the best
item as the trial progressed, they still continued to look at the
worst item at a rate no less than 20%. These patterns are in-
teresting for several reasons. First, they show that the fixation
process is not fully independent from the valuation process, and
contains an element of choice that needs to be explained in fur-
ther work. Second, because items that are fixated on more are
more likely to be chosen, this contributes to the quality of the
choice process, although the effect is minor given the results in
Fig. S1 in which the fixations were treated as fully random (as
opposed to being described by the actual observed process; SI
Discussion). However, subjects typically do not rule out the worst
alternative, which degrades the quality of the choice process and
leads to an overall worse percentage of choosing the best option
(72% in the trinary case compared with 78% in the binary case)
and a 6% chance of choosing the worst option.
The influence of value on the fixation process was taken into

account in our numerical simulations, although the results do not
change if we instead assume that fixations are random and in-
dependent of value or location after the first fixation (SI Dis-
cussion and Fig. S1). Thus, this aspect of the fixation process did
not interfere with our ability to test the model of the value
comparison process. Nevertheless, a critical goal for future re-
search is to understand how the fixation process takes value into
account, and how, if at all, it interacts with the integration pro-
cess. However, in our previous binary choice work (18) we in-
vestigated an alternative class of models where there is no
fixation bias in the DDM, but the RDV drives the termination of
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fixations. Though we could not rule out this entire class of
models, we did show that a simple version failed to accurately
account for basic properties of the last fixations, or the re-
lationship between time exposure and choice probability. Fur-
thermore, this class of models cannot explain the cross-subject
correlation between first fixation location and the probability of
choosing the first seen item. Therefore, it seems that this class of
models is difficult, if not impossible, to fit to our data. Further-
more, another previous study by our group (36) manipulated
fixation times exogenously and found that the manipulation af-
fected choice probabilities. This evidence is consistent with our
model, where fixations drive the drift process, and not vice versa.
One prominent alternative generalization of the DDM is the

SPRT model, where the RDV compares the item with the most
evidence with the average evidence for the other two items (5, 30,
33). Though this “best vs. average” model is not asymptotically
optimal like the “best vs. next” MSPRT used here, it has been
shown to do as well as the MSPRT in some perceptual decision-
making datasets. We carried out a comparison of the two
frameworks by also simulating the “best vs. average” extension of
the model with the same parameters and fixation process used
here (SI Discussion). As shown in Fig. S2, we found similar
qualitative trends, but a worse overall fit than the “best vs. next”
model. Of course, this analysis does not rule out the possibility
that a different set of parameters might improve the fit of this
model, but that would ignore one important feature of the model
proposed here, which is that the same set of parameters fit the
binary and trinary datasets with high quantitative accuracy.
Even in the binary choice case, there are many variations to

the DDM that have been proposed in the literature (9, 17, 27,
42). This gives rise to a large number of possible model per-
mutations, and thus to a difficult problem of model comparison
(5, 27). From this viewpoint, it is remarkable that a simple ex-
tension of the binary case without the additional mechanisms was
able to account for the experimental data with good quantitative
accuracy using the previously identified parameters. Further-

more, in Krajbich et al. (18) we ran explicit model comparisons
between some of these variations and our model, and found that
they did not perform as well.
Finally, a remarkable aspect of our results is that the same

computational processes, with the same parameters, seem to be
at work in binary and trinary value-based choice. A basic ques-
tion for future work is whether there is a size of the choice set at
which these processes break down, because it seems unlikely that
the brain would be able to track large numbers of alternatives.
We hypothesize that the fixation-biased MSPRT process will
hold up to a handful of items, but that it will eventually break
down, to be substituted by a more complicated and yet-to-be-
discovered algorithm.

Methods
Subjects. Thirty California Institute of Technology students participated in the
experiment. Only subjects who self-reported regularly eating the snacks
foods (e.g., potato chips and candy bars) used in the experiment and not on
a diet were allowed to participate. Subjects were paid a $20 show-up fee, in
addition to receiving one food item. California Institute of Technology’s
Human Subjects Internal Review Board approved the experiment.

Task. Subjects were asked to refrain from eating for 3 h before the start of the
experiment. After the experiment, they were required to stay in the room
with the experimenter for 30 min while eating the food item that they chose
in a randomly selected trial (see below). Subjects were not allowed to eat
anything else during this time.

In the initial rating phase, subjects entered liking ratings for 70 different
foods using an on-screen slider bar (“How much would you like to eat this at
the end of the experiment?”; scale −10 to 10). The initial location of the
slider was randomized to reduce anchoring effects. This rating screen had
a free response time. The food was kept in the room with the subjects
during the experimental session to assure them that all of the items were
available. Furthermore, subjects briefly saw all of the items at this point so
that they could effectively use the rating scale.

In the choice phase, subjects made their choices using the keyboard. The
choice screen had a free response time. Food items that received a negative
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Fig. 4. Fixation properties. (A) Fraction of fixations to items with the maximum, middle, and minimum ratings as a function of fixation number from the
beginning of the trial, and (B) from the end of the trial (0 indicates the final fixation). (C) Fraction of fixations to the left, center, and right items as a function
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and minimum, or left and right). *P = 0.05; **P = 0.0042 (Bonferroni corrected for the 12 tests in each panel), and ***P = 0.001 (Bonferroni corrected for all 48
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rating were excluded from the choice phase. We did not tell subjects about
this feature of the experiment because doing so could have changed their
incentives during the rating phase.

The items shown in each trial were randomly chosen. In all trials the three
items were displayed in a triangular formationwith the left and right items at
the same vertical position, and the center item at the opposite vertical po-
sition. In half of the trials the center item was on the top half of the screen,
and in the other half it was on the bottom half of the screen. We do not
distinguish between these two types of trials in the paper.

Subjects indicated their choice by pressing the left, down, or right arrow
keys for the left, center, and right items, respectively. After subjects indicated
their choice, a yellow box was drawn around the chosen item (with the other
item still on the screen) and displayed for 1 s, followed by a fixation screen,
before the beginning of the next trial.

Eye Tracking. Subjects’ fixation patterns were recorded at 50 Hz using a Tobii
desktop-mounted eye tracker. Before each choice trial, subjects were re-
quired to maintain a fixation at the center of the screen for 2 s before the
items would appear, ensuring that subjects began every choice fixating on
the same location.

Data Analysis. The eye-tracking data were processed using the same proce-
dures used in our binary choice work (18), and is detailed in SI Methods.

Choice trials with missing fixations for more than 500 ms at the beginning or
end of the trial were excluded from analysis. The mean number of trials
dropped per subject was 1.1.

Model Simulations. Fixation times were randomly sampled directly from the
vector of measured nonfinal fixations, conditional on the value of the fixated
item, and whether it was a first, second, or other fixation. First and second
fixations were sampled separately from the rest because they tended to
be shorter than the other fixations. Finally, the simulations assume in-
stantaneous transitions between fixations and no latencies at the beginning
of the choice trials. To compensate, we calculated the distribution of total
amount of nondecision time within trials for the entire group, and then
randomly sampled one of those nondecision times (with replacement) to add
to each simulated trial’s reaction time. As mentioned in SI Methods, these
nondecision times were defined as the sum of the nonitem and missing
fixation time before the first fixation, plus any nonitem and missing fixation
time between different item fixations.

Fixation location patterns were determined according to Figs. S3–S5 and
were estimated directly from the subject data (SI Methods).
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