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Abstract

Steroid receptor coactivator-3 (SRC-3/AIB1) is an oncogene that is amplified and overexpressed 

in many human cancers. However, the molecular mechanisms that regulate ‘activated SRC-3 

oncoprotein’ turnover during tumorigenesis remain to be elucidated. Here we report thatspeckle-

type POZ protein (SPOP), a cullin 3 (CUL3)-based ubiquitin ligase, is responsible for SRC-3 

ubiquitination and proteolysis. SPOP interacts directly with an SRC-3 phospho-degron in a 

phosphorylation dependent manner. Casein kinase Iε phosphorylates the S102 in this degron and 

promotes SPOP-dependent turnover of SRC-3. shRNA knockdown and overexpression 

experiments substantiated that the SPOP/CUL3/Rbx1 ubiquitin ligase complex promotes SRC-3 

turnover. A systematic analysis of the SPOP genomic locus revealed that a high percentage of 

genomic loss or LOH occurs at this locus in breast cancers. Furthermore, we demonstrate that 

restoration of SPOP expression inhibited SRC-3-mediated oncogenic signaling and tumorigenesis, 

thus positioning SPOP as a tumor suppressor.
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Introduction

Control of differential gene expressions in response to developmental and environmental 

signals is a central theme in cell biology. Nuclear receptors (NRs) and coregulators play key 

roles in these processes. Dysregulation of NR and coregulator signaling circuitry can disrupt 

cell homeostasis and contribute to pathological states, including cancer (Glass and 

Rosenfeld, 2000; Kumar and O’Malley, 2008; McKenna et al., 1999).

SRC-3/AIB1, also known as ACTR/pCIP/TRAM-1/RAC3, was initially discovered to 

mediate estrogen receptor (ER) signaling and is frequently amplified or overexpressed in 

breast cancer (Anzick et al., 1997; Chen et al., 1997; Glass and Rosenfeld, 2000; Halachmi 

et al., 1994; Li et al., 1997; McKenna et al., 1999; McKenna and O’Malley, 2002; Takeshita 

et al., 1997; Torchia et al., 1997). Further studies indicated that SRC-3 also is vital to many 

other signaling pathways containing either androgen receptor, progesterone receptor, or 

transcription factors such as AP-1, E2F1, NF-κB, STAT, TEF-4 and ER81 (Belandia and 

Parker, 2000; Goel and Janknecht, 2004; Lee et al., 1998; Louie et al., 2004; Werbajh et al., 

2000). Overexpression of SRC-3 elevates oncogenic signaling and promotes tumorigenesis 

and metastasis in many tissues (Kumar and O’Malley, 2008; O’Malley and Kumar, 2009).

SRC-3 is a member of the SRC family that also includes SRC-1 (Onate et al., 1995) and 

SRC-2/TIF2/GRIP1 (Hong et al., 1996; Voegel et al., 1996). Studies using mouse models 

further substantiated SRC-3 as an important oncogene (Kuang et al., 2004); Torres-Arzayus, 

et al. 2004) and a key regulator of diverse signaling systems (Zhou et al., 2005); (Yu et al., 

2007) ; Wu et al. 2002; Louie et al. 2004; Zhou et al. 2005; Yan et al. 2006; Yu et al. 2007). 

SRC-3 was found to upregulate insulin-like growth factor-1 (IGF-1) and cyclin D1 (Planas-

Silva et al., 2001; Torres-Arzayus et al., 2004; Wang et al., 2000; Xu et al., 2000; Yan et al., 

2006). Recent studies demonstrated that SRC-3 enhances matrix metalloproteinase (MMP) 

expression and plays critical roles in cancer cell migration and invasion, a key event during 

cancer metastasis (Kajiro et al., 2009; Li et al., 2008a; Li et al., 2008b; Qin et al., 2008; Yan 

et al., 2008). SRC-3 also elevates Smad2 and Twist and promotes tumor metastasis, which 

can be prevented through targeting SRC-3 for degradation by CHIP (Kajiro et al., 2009). 

Importantly, overexpression of SRC-3/AIB1 and HER-2/neu together contribute to 

tamoxifen early therapeutic resistance in breast cancer patients (Osborne et al., 2003).

It is known that SRC-3 protein stability can be controlled by the proteasome pathway 

through both ubiquitin-independent and -dependent mechanisms (Li et al., 2008a; Li et al., 

2007a; Li et al., 2007b; Wu et al., 2007; Yi et al., 2008). For instance, GSK3 and Fbw7 

promote phosphorylation-dependent SRC-3 ubiquitination of the SRC-3 protein on the 

promoter in a transcription-linked manner (Wu et al., 2007). Recently we identified an 

essential SRC-3 phospho-degron which plays a key role in the ubiquitination-mediated 

degradation of SRC-3 by the 26S proteasome (Li et al., 2008a). However, the molecular 

mechanism for how this phospho-degron contributes to protein degradation, such as what 

ubiquitin ligase (complex) recognizes and binds to this phospho-degron has not been 

identified until now.
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Ubiquitin-dependent proteolysis of proteins by the proteasome is responsible for the 

degradation of most regulatory proteins in the cell. Before being recognized and destroyed 

by the 26S proteasome, substrates destined for degradation by this pathway are covalently 

marked with ubiquitins. This process involves the sequential activation of three classes of 

enzymes: E1 (an ubiquitin-activating enzyme), E2 (ubiquitin-conjugating enzymes) and E3 

(ubiquitin ligases). The specificity of protein ubiquitination rests in the E3 ubiquitin ligases 

that physically interact with their target substrates (Hershko and Ciechanover, 1998; Pickart, 

2001). Ubiquitin ligases can be classified into two-major groups: the single-subunit forms 

including RING-finger and HECT-domain E3s, and the multi-subunit ubiquitin ligases that 

are assembled on a cullin scaffold; the SCF complex (Skp1, Cul1, F-box) is an example of 

the latter. In the SCF ubiquitin ligase complex, Cul1 serves as a scaffold protein to assemble 

Skp1/F-box proteins with the small ring finger Rbx1. F-box proteins directly contact their 

substrates and determine the specificity of the SCF complex (Jin et al., 2004). In addition to 

Cul1, the human genome encodes six other cullins (2, 3, 4A, 4B, 5, and 7) (Bennett et al.; 

Petroski and Deshaies, 2005) that also form ubiquitin ligase complexes. Notably, Cul3 

interacts with Rbx1 and the BTB/POZ (Bric a brac, Tramtrack and broad Complex/Pox 

virus and Zinc finger) family of proteins, which merge the functions of the Skp1 and the F-

box domains into a single polypeptide (Furukawa et al., 2003; Geyer et al., 2003; Pintard et 

al., 2003; Xu et al., 2003).

In a search for a SRC-3 phospho-degron interacting ubiquitin ligase we discovered that 

SPOP, a BTB/POZ protein, directly binds to the SRC-3 degron and promotes its 

degradation. SRC-3 polyubiquitination and degradation by the SPOP/Cul3/Rbx1 ubiquitin 

ligase complex occurs in a phospho-degron-dependent manner. Consequently, SPOP inhibits 

SRC-3-mediated oncogenic signaling and tumorigenesis. Importantly, loss of genomic copy 

number or LOH at the SPOP locus is significant in human breast cancers. In light of this 

data, we suggest that SPOP functions as a breast cancer tumor suppressor at least in part by 

reducing the cellular concentration of SRC-3 protein that is poised for, but not actively 

engaged in DNA transcription.

Results

The SPOP/Cul3/Rbx1 Ubiquitin Ligase Complex Regulates SRC-3 Oncoprotein Stability

We used the previously identified SRC-3 degron (Li et al., 2008a) to search for proteins that 

interact with this domain that might promote SRC-3 protein degradation. By yeast two-

hybrid screening, using the SRC-3 degron and its flanking PAS region together (96aa) as a 

bait, we identified a number of interacting proteins. One of these is speckle-type POZ 

protein (SPOP), an E3 ubiquitin ligase adaptor that contains a Skp1-like domain functioning 

as both Skp-1 and F-box and is part of a Cul3 ubiquitin ligase complex (Furukawa et al., 

2003; Geyer et al., 2003; Jin et al., 2004; Petroski and Deshaies, 2005; Pintard et al., 2003; 

Xu et al., 2003). In contrast, when we used the same SRC-3 region with the phosphorylation 

site mutations (S101A/S102A) as a bait in our yeast two-hybrid screening, SPOP was not 

found in the interacting proteins, suggesting that SRC-3 degron phosphorylation is likely 

required for its interaction with SPOP.
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To test the hypothesis that the SPOP-containing E3 ubiquitin ligase complex promotes 

SRC-3 protein degradation, FLAG-tagged SRC-3 was expressed in 293T cells with SPOP. 

In the absence of the proteasome inhibitor MG132, SRC-3 protein abundance was 

remarkably reduced when SPOP was expressed; in the presence of MG132 there was 

virtually no change in SRC-3 protein abundance (Fig 1A). In contrast, a number of other 

proteins identified in the two-hybrid screen including CDKN3, IQCK, BRE, and DCTN6 

had no significant effect on SRC-3 protein levels when overexpressed in the cell. These data 

suggested that SPOP promotes proteasome-dependent degradation of the SRC-3 protein.

Simultaneously, we studied ubiquitin/proteasome-dependent turnover of the SRC-3 

oncoprotein by examining the Cullin-based E3 ubiquitin ligases, the largest known class of 

ubiquitin ligases. Cullin 1 to 5 are well-characterized and dominant-negative form mutants 

(DN-Cul1 to 5) have been studied for their ability to stabilize their respective substrates; 

DN-Culs are truncated versions of Cullins containing the N-terminal regions and therefore 

still are able to interact with a substrate adaptor such as an F-box protein, but they fail to 

interact with Rbx1 ubiquitin ligase and are unable to bring ubiquitins onto a substrate (Jin et 

al., 2005). As shown in Fig 1B, when we transiently expressed each DN-Cul with SRC-3 in 

293T cells, we found that DN-Cul3 strongly stabilized the SRC-3 protein; DN-Cul1 showed 

a relatively weak stabilizing effect, which is consistent with a previous publication 

indicating a role for the Cul1-associated F-box protein, Fbw7α in SRC-3 turnover during 

transcription (Wu et al., 2007). Estradiol did not appear to have a significant effect on 

SRC-3 protein stability. These data indicate that a Cul3-based ubiquitin ligase complex 

likely is involved in controlling SRC-3 protein degradation.

It has been reported that the SPOP/Cul3/Rbx1 ubiquitin ligase complex targets several 

proteins for degradation in different cellular contexts (Bunce et al., 2008; Hernandez-Munoz 

et al., 2005; Kwon et al., 2006). Therefore, we tested the functional requirement for the Cul3 

and Rbx1 components in this ubiquitin ligase complex during SRC-3 protein degradation by 

SPOP. Consistent with the above results, overexpression of HA-tagged SPOP resulted in a 

marked reduction in the FLAG-tagged SRC-3 protein level; this reduction was not observed 

when Cul3 or Rbx1 were knocked down by siRNA (Fig 1C), indicating that Cul3 and Rbx1 

are indeed required for SPOP’s function in SRC-3 protein turnover.

To directly examine the effect of SPOP on SRC-3 protein stability, we performed 

cycloheximide protein degradation rate experiments. Treatment of cells for up to six hours 

resulted in a remarkable reduction in the steady-state levels of the SRC-3 protein, whereas 

knockdown of SPOP by siRNA resulted in an elevation in SRC-3 protein abundance and 

there was virtually no change in protein levels compared to controls (Fig 1D, E). These data 

substantiated that SPOP reduces SRC-3 protein stability and as a consequence reduces the 

steady-state levels of the SRC-3 protein. Overexpression of a dominant negative mutant 

Cul3 (DN-Cul3) exhibited a similar effect on SRC-3 protein stability as seen for siRNA 

knockdown of SPOP (Fig 1D, E). This was consistent with the other reports that DN-Culs 

stabilize substrates targeted by a Cul-based ubiquitin ligase complex (Jin et al., 2005).
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The SPOP/Cul3/Rbx1 Ubiquitin Ligase Interacts with the S101/S102 SRC-3 Phosphodegron

To validate the physical association between SRC-3 and SPOP, we performed a Co-IP 

experiment, revealing that the SPOP protein binds SRC-3 in MCF-7 breast cancer cells (Fig 

2A). We then tested whether SRC-3 directly interacts with SPOP. GST-pulldown 

experiments were performed using purified recombinant FLAG-SRC-3 protein, indicating 

that SRC-3 indeed binds to GST-SPOP (Fig 2B). Likewise, HA-SRC-3 was observed to 

bind to GST-SPOP in vitro (Fig S1A). In a reciprocal experiment, we found that HA-SPOP 

binds to the GST-SRC-3 N-terminus (N390) (Fig 2C). To further determine which 

subdomain of SRC-3 interacts with SPOP, a series of SRC-3 deletion mutants were 

constructed for GST-pulldown experiments. Because the GST-fusion with the full-length 

SRC-3 protein was not soluble and HA-tagged small SRC-3 fragments including N390, 

N180 and N84 were difficult to express, we used a combination of different GST-SPOP and 

GST-SRC-3 mutants for this assay. In agreement with our yeast two-hybrid screen data 

above, our results indicate that the SRC-3 phosphodegron region (containing S101 and 

S102) is required for the interaction between SRC-3 and SPOP (Fig 2D, 2E).

SPOP contains one MATH (meprin and TRAF-homology) and one BTB (Broad complex, 

Tramtrack, Bric-a-brac) domain as essential parts of the SPOP/Cul3/Rbx1 ubiquitin ligase 

complex (Bunce et al., 2008; Hernandez-Munoz et al., 2005; Kwon et al., 2006; Petroski and 

Deshaies, 2005). We used GST-pulldown assays to examine how these three proteins 

associate with each other. As shown in Fig 2F and Fig 2G, the SPOP N-terminal MATH-

containing domain directly bound to SRC-3 while the SPOP C-terminal BTB-containing 

domain directly bound to Cul3. This result substantiates the finding that SPOP acts as an 

adaptor for this Cul3-based ubiquitin ligase complex and targets the SRC-3 protein for 

degradation.

SPOP Promotes SRC-3 Polyubiquitination

We next determined whether the SPOP/Cul3/Rbx1 complex is capable of polyubiquitinating 

SRC-3. We co-expressed HA-tagged SPOP/Cul3/Rbx1 with FLAG-tagged SRC-3 in 293T 

cells. Western analysis of lysates from these cells revealed that SPOP/Cul3/Rbx1 promotes 

polyubiquitination of SRC-3 in the presence of MG132 (Fig 3A). This result was further 

substantiated by co-expressing HA-Ub with untagged SPOP/Cul3/Rbx1 and FLAG-SRC-3 

followed by immunoprecipitation using FLAG antibodies (Fig 3B).

We performed cell-free ubiquitination assays to further study SRC-3 polyubiquitination by 

SPOP/Cul3/Rbx1. As shown in Fig 3C, purified E1, E2 (UbcH5a) and ubiquitin proteins 

were added into biochemical ubiquitination reactions containing SPOP, Cul3, Rbx1 and 

SRC-3 proteins which were transcribed/translated in cell-free TNT reticulocyte systems. 

Only in the presence of all ingredients (SPOP/Cul3/Rbx1, E1, E2 and ubiquitin), was the 

formation of polyubiquitinated SRC-3 detected (Fig 3C). These in vitro results demonstrated 

that SPOP/Cul3/Rbx1 directly promotes SRC-3 polyubiquitination formation.

SPOP Promotes Phosphorylation-Dependent Degradation of SRC-3

Since the SRC-3 degron is phosphorylation-dependent and includes two Ser phosphorylation 

sites, S101 and S102 (Li et al., 2008a), we explored the role that phosphorylation of these 
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precise amino acids had in substrate recognition by SPOP. We first tested whether SPOP is 

able to promote degradation of a phosphorylation-defective SRC-3 mutant at these 

phosphorylation sites (S101A/S102A). As shown in Fig 4A, overexpression of SPOP in 

293T cells resulted in a marked decrease in the protein level of SRC-3; in contrast, it had no 

effect on the S102A or S101A/S102A mutants. As controls, SPOP deletion mutants with 

either only the N-terminal MATH or the C-terminal BTB domain did not affect SRC-3 

protein levels (Fig 4A). We then asked whether this is due to a defect in the interaction 

between SPOP and SRC-3 S102A or S101A/S102A. A co-immunoprecipitation experiment 

was performed and revealed that SPOP binds to SRC-3 wt (FLAG-SRC-3) but not to the 

S102A or S101A/S102A mutants (Fig 4B). This result was confirmed in vitro by GST 

pulldown experiments (Fig S1B). Our results indicate that phosphorylations at the S101/

S102 sites in SRC-3 are necessary for both recognition and degradation by SPOP.

We next examined the function of SPOP in two breast cancer cell lines: MCF-7 and MDA-

MB-231. Ectopic expression of SPOP by a lentivirus vector resulted in a significant 

decrease in the level of the endogenous SRC-3 protein in MCF-7 cells, but there was no 

change in SRC-1 and SRC-2 levels, suggesting that SPOP specifically targets SRC-3 protein 

among the SRC/p160 family members (Fig 4C). To study the loss-of-function effect, we 

used shRNA knockdown of SPOP in both MCF-7 and MDA-MB-231 cells. Consistent with 

the results above, decreases in SPOP in these breast cancer cells resulted in increases in 

SRC-3 protein levels (Fig 4D, S1C); whereas the mRNA levels of SRC-3 in these 

experiments were not changed (Fig 4E, S1D).

CKIε Phosphorylates the S102 Site in the SRC-3 Degron and Destabilizes SRC-3

Although we demonstrated previously that the SRC-3 S101/S102 phospho-degron promotes 

degradation of SRC-3, the kinases targeting these two sites were unknown (Li et al., 2008a). 

Using a bioinformatic approach (Luo et al., 2007; Sakanaka, 2002), the candidate kinase, 

casein kinase I ε (CKIε), was identified as a potential kinase. To test whether CKIε 

phosphorylates SRC-3 at the S101 or S102 sites, we performed in vitro kinase assays. First, 

by using purified recombinant SRC-3 (Fig 2B) and CKI proteins, we found that CKI is able 

to phosphorylate SRC-3 (Fig 5A). Second, we tested whether CKI targets S101 or S102 in 

SRC-3 by peptide kinase assays. We synthesized four different peptides spanning the SRC-3 

phospho-degron with either no phosphorylation (SS), phosphorylation at S101 (pSS), 

phosphorylation at S102 (SpS), or phosphorylations at both S101 and S102 (pSpS). Kinase 

assays revealed that the peptides with no phosphorylation or phosphorylation at S101 were 

phosphorylated by CKI; in contrast, all the others were not (Fig 5B), indicating that SRC-3 

S102 is the primary phosphorylation site targeted by CKIε. As a positive control in this 

experiment, CKI phosphorylated its known substrate peptide. These SRC-3 peptides were 

not sufficiently long to bind SPOP in vitro (Fig S1E).

Since the S101/S102 SRC-3 degron phosphorylation is crucial for its protein stability, we 

examined whether the CKIε enzyme itself destabilizes the SRC-3 protein. Overexpression of 

CKIε decreased the SRC-3 protein level in the presence of SPOP, but this effect was not 

seen for SRC-3 S102A or S101A/S102A phospho-mutants (Fig 5C). CKI inhibitors IC261 

and D4476 increased SRC-3 protein levels (Fig 5D), supporting that CKIε indeed 
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destabilizes the SRC-3 protein. Since both SPOP and CKIε promoted phospho-degron-

dependent turnover of SRC-3, we wished to understand the underlying mechanism linking 

these two events. To address this question, we studied the effect of CKIε on the interaction 

between SPOP and SRC-3. After FLAG-SRC-3, HA-SPOP, and HA-CKIε were expressed 

in 293T cells, co-immunoprecipitation experiments were performed which showed that 

binding of SPOP to SRC-3 was increased when CKIε was present (Fig 5E). This result 

suggests that destabilization of SRC-3 protein by CKIε is at least in part due to increased 

association between SPOP and SRC-3 in the presence of CKIε. To substantiate the effect of 

CKIε on SRC-3 stability, CHX degradation rate experiments were performed. In the 

presence of CKIε, SRC-3 protein was more unstable and its half life was reduced more than 

in the absence of CKIε, whereas the CKIε kinase deficient (partial) mutant K35R was less 

effective in promoting the rate of SRC-3 degradation (Fig 5F).

SPOP Inhibits SRC-3-Mediated Oncogenic Signaling

In human cancers, SRC-3 is frequently overexpressed and activates multiple oncogenic 

signaling pathways and promotes tumorigenesis (Kumar and O’Malley, 2008; O’Malley and 

Kumar, 2009). Since SPOP is able to reduce SRC-3 protein levels, we examined the 

potential role for SPOP in suppressing SRC-3-mediated signaling. Since SRC-3 is a 

coactivator for ER and AR, we used ERE-luciferase and MMTV-luciferase as reporters for 

ER and AR signaling, respectively. Overexpression of SRC-3 enhanced estrogen- and 

androgen-dependent activation of each reporter gene and these gene activations were 

markedly reduced upon overexpression of SPOP; SPOP alone had little effect on reporter 

gene activities (Fig. 6A and B). Likewise, SRC-3-enhanced TNFα-stimulated NF-κB-

luciferase activity was dramatically decreased by SPOP overexpression (Fig. 6C). These 

results indicate that SPOP inhibits SRC-3 activities in multiple signaling pathways.

Next, we examined SRC-3 target genes in breast cancer cells. Using shRNAs to knockdown 

SRC-3, SPOP, or both SRC-3 and SPOP in MCF-7 cells, we determined the effects on 

IGF-1 and MMP-2 gene expression, two SRC-3 responsive genes (Qin et al., 2008; Wang et 

al., 2000; Xu et al., 2000; Yan et al., 2008). Both IGF-1 and MMP-2 mRNA levels were 

significantly reduced when SRC-3 expression was knocked down; in contrast, their mRNA 

levels were increased when SPOP was knocked down (Fig 6D, E). With shRNA knockdown 

of both SRC-3 and SPOP, IGF-1 and MMP-2 mRNA levels were similar to the control 

(shGFP), suggesting that the increases in IGF-1 and MMP-2 mRNAs by shRNA against 

SPOP were largely due to increases in SRC-3 protein levels (Fig 6D, E, F).

Genomic Loss of the SPOP Locus Occurs Frequently in Human Cancers

Using cancer genomic approaches, we further investigated whether the SPOP-CUL3-RBX1-

SRC-3 axis is dysregulated in human breast and other cancers, which generally show 

overexpression of SRC-3. It has been demonstrated that the CUL3 and RBX1 genomic loci 

exhibit a high percentage of genome loss in human cancers (Lee et al., 2009). The human 

SPOP gene is located in Chromosome 17q21.33. In an evaluation of 42 breast cancer cell 

lines using single-nucleotide polymorphism (SNP) arrays, the copy numbers at the SPOP 

locus (between rs1320283 and rs1406012) revealed that recurrent copy number losses are 

observed (60-70%) involving both the upstream and downstream regions of SPOP (Fig 7A). 
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Moreover, in 24 different cancer types, copy number analyses of amplification, LOH, 

deletion and mutation revealed LOH at high percentages in the SPOP locus (Fig 7B). 

Specifically, in 45 breast cancer samples, SPOP represented one of the highest loci for LOH 

(57.8%). These data suggest that genome loss of the E3 ubiquitin ligase complex at the 

SPOP, CUL3 and RBX1 loci could lead to overexpression of SRC-3 and contribute to 

several types of cancer development, particularly in a subset of breast cancers.

SPOP Functions as a Tumor Suppressor

We next asked whether SPOP directly influences cancer cell growth and invasion. shRNA 

knockdown of SPOP increased MCF7 cell growth, while ectopic overexpression of SPOP 

resulted in a slower proliferation rate compared to the control cells; this inhibitory effect was 

substantially rescued by additional expression of the SRC-3 S101A/S102A mutant, 

suggesting that inhibition of MCF7 cell growth by SPOP is largely due to a reduction in 

SRC-3 levels (Fig. 7C). To examine whether the invasive potential of the cancer cells is 

affected by SPOP, we performed in vitro cell invasion assays. Using shRNA to reduce 

SRC-3 expression decreased the number of cells that penetrated a Matrigel-coated 

membrane as reported previously (Li et al., 2008b; Yan et al., 2008). In contrast, shSPOP-

treated MDA231 cells revealed a marked increase in invasiveness; this effect was 

compromised when both SRC-3 and SPOP were knocked down (Fig. 7D). In addition, we 

also observed that shSPOP increased MCF-7 cell colony formation in soft agar assays (Fig. 

S2) and increased cell size (Fig.S3). Finally, using a tumor xenograft mouse model, we 

found that tumor growth occurred at a faster rate in shSPOP cells, while it was slower in 

shSRC-3 cells, compared to a control cell line; in contrast under both shSPOP and shSRC-3 

conditions, tumor growth was similar to the control. These results again substantiated that 

the SPOP tumor suppressive function is largely mediated through its ability to reduce the 

cellular concentration of the SRC-3 oncoprotein (Fig 7E). Taken together, these data 

indicate that SPOP can function as a tumor suppressor in breast, and potentially other 

cancers.

Discussion

A Specific Tumor Suppressor Role for SPOP

The SPOP gene is located in the 17q21 locus where a number of reports about allelic 

imbalance, and particularly, LOH of the chromosome 17q21 region have been described in 

up to 30% of primary human breast cancers (De Marchis et al., 2004; Orsetti et al., 1999). It 

also has been reported that LOH in the 17q21 region is frequently associated with 

inflammatory breast cancer (Lerebours et al., 2002). In preinvasive breast ductal carcinoma 

in situ (DCIS), 17q LOH has an incidence of 15.9%, which is among the highest percentages 

(Radford et al., 1995). Although the well known tumor suppressor BRCA-1 is located in this 

relative large chromosomal region and is involved in breast and ovarian cancers, additional 

genes in this tumor suppressor locus also may be involved (Durocher et al., 1996). 

Consistent with these previous publications, using currently available SNP microarray 

genotype data in a cancer genome dataset (Lee et al., 2009), we were able to more precisely 

define that there is significant copy number loss at the SPOP genomic locus in 42 breast 
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cancer cell lines (Fig 7A). We also found that LOH at the SPOP locus is remarkably high in 

multiple cancers, particularly in breast cancers (Fig 7B).

The SPOP/Cul3/Rbx1 complex is one of the major Cullin-based E3 ubiquitin ligases. 

Genetic allelic loss of the CUL3 and RBX1 loci occurs frequently in both breast cancer cell 

lines and tissue specimens (Lee et al., 2009). Moreover, our experimental results from breast 

cancer cell proliferation, invasion, anchorage-independent growth, and tumor growth in 

nude mice indicate that SPOP inhibits cancer cell functions (Fig 7C, D, E, S2). We also 

found that shRNA knockdown of SPOP in MDA-MB-231 cells increases cancer cell size 

(Fig S3), consistent with previous publications (Torres-Arzayus et al., 2004; Zhou et al., 

2003). Taken together, these data suggest that the SPOP/Cul3/Rbx1 ubiquitin ligase 

complex functions as a breast cancer tumor suppressor.

As a component of a Cul3-based ubiquitin ligase complex, SPOP has been shown to target 

several proteins in different signaling pathways for ubiquitination and degradation, including 

the Polycomb group protein BMI1, the histone variant MacroH2A1 (Hernandez-Munoz et 

al., 2005), the death domain-associated protein Daxx (Kwon et al., 2006), the 

phosphatidylinosital phosphate kinase PIPKIIβ (Bunce et al., 2008), the transcription factor 

Gli (Chen et al., 2009), the Jun-kinase phosphatase Puckered (Liu et al., 2009) and Pdx1 

(Claiborn et al.). Notably, while it was initially identified as an apoptotic factor, Daxx has 

also been reported to be anti-apoptotic (Michaelson et al., 1999; Tang et al., 2006). It has 

been reported that overexpression of SPOP as well as Cul3 and Rbx1 increases cell 

apoptosis (Kwon et al., 2006). Thus, it is likely that by destroying one or more potent 

growth-promoting oncoproteins in multiple signaling pathways of breast cancer, SPOP acts 

to suppress cancer cell functions. Indeed, overexpression of SPOP inhibited MCF7 cell 

growth; additional overexpression of degron-mutated SRC-3 rescued significantly cell 

growth (Fig 7C). We reason that restoration of SRC-3 did not fully rescue the cell growth 

rate due to existence of other growth-promoting targets of SPOP. In a specific cancer cell, 

SPOP may target one or more of its oncogenic substrates in addition to SRC-3 for 

degradation, resulting in an additive or synergistic effect on inhibition of tumorigenesis. A 

number of E3 ubiquitin ligases have been well-characterized to function as tumor 

suppressors through their ability to degrade oncoprotein substrates. One of the better known 

examples is the SCF ubiquitin ligase adaptor Fbw7 that functions as a tumor suppressor 

through its ability to degrade proto-oncoproteins including Myc, cyclin E, Notch and Jun 

(Welcker and Clurman, 2008).

Role of SPOP in the Regulation of Phosphorylation-Dependent Degradation of SRC-3

A common feature of SCF and SCF-like E3 ubiquitin ligases is that their recognition of 

substrates often involves posttranslational modifications of substrates, and the modification 

frequently is phosphorylation. Phosphorylated degrons bind to E3 ubiquitin ligase adaptors 

such as F-box proteins or BTB domain-containing proteins (Jin et al., 2004; Petroski and 

Deshaies, 2005). Consistent with these findings, binding and degradation of SRC-3 by SPOP 

is SRC-3 phospho-degron dependent, requiring phosphorylation at S101 and S102 residues 

(Fig 4 and 5). We further demonstrated that casein kinase CKIε is an enzyme that 

phosphorylates the S102 site, enhances the binding between SPOP and SRC-3, and 
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destabilizes the SRC-3 protein (Fig 5). In another example, it has been shown that the F-box 

protein β-TrCP controls degradation of circadian regulatory protein PER1 and PER2 via 

CKIε-dependent phosphorylation (Eide et al., 2005; Shirogane et al., 2005). In the present 

and previous studies, we demonstrated that phosphorylation critically determines SRC-3 

protein stability. We now have completed identification of this reversible pathway by 

showing that the steady-state phosphorylation level of SRC-3 is controlled by 

phosphorylation/dephosphorylation targeted by CKIε and protein phosphatase 1 (PP1), 

respectively (Li et al., 2008a). Consequently, the balance of CKIε and PP1 activity in a 

specific cellular setting can determine SRC-3 phosphorylation, ubiquitination, protein half-

life and its oncogenic activity.

Additionally, recent studies of the structures of SPOP-substrate complexes have revealed 

that a five residue φ-π-S-S/T-S/T (φ, nonpolar; π, polar) SPOP-binding consensus (SBC) 

motif is present in known SPOP substrates such as Puc, MacroH2A, Ci and Daxx (Zhuang et 

al., 2009). This is consistent with our finding that the SRC-3 degron also resembles a SST 

consensus sequence (Li et al., 2008a) and is required for binding to SPOP. The 5′-end 

flanking sequence located before SST in SRC-3 is DV, which are polar and non-polar 

residues respectively, although they occur in a reversed order compared to SBC. Importantly 

we identified that this motif is phosphorylated in SRC-3.

A 3-Step Mechanism for Regulation of SRC-3 Oncoprotein Turnover

SRC-3 is a master gene regulator and potent oncoprotein, critically involved in a number of 

tumor growth promoting signaling pathways. Its protein turnover is rapid and very tightly 

controlled so that the cell is able to respond selectively to different hormones, growth factors 

and environmental signals. Consequently, SRC-3 protein turnover is controlled at multiple 

levels. We hypothesize that (1) at the first step of SRC-3 protein regulation, prior to 

phosphorylation, the SRC-3 protein exists in an inactive state in a cellular reservoir where its 

degradation is controlled in an ubiquitin- and ATP-independent manner by the REGγ-

proteasome (Li et al., 2006). (2) During its activation, SRC-3 protein is phosphorylated at a 

number of important sites including the S101 and S102. When SRC-3 becomes an activated 

oncoprotein, its turnover is mainly controlled by the SPOP/Cul3/Rbx1 ubiquitin ligase 

complex. (3) In the third step, functioning SRC-3 is actively engaged in transcription on the 

promoters of its target genes; on the promoter, SRC-3 protein turnover is regulated by the 

Fbw7 ubiquitin ligase in a different phosphorylation-dependent manner via GSK3 

phosphorylation of serine residues S505 and S509 (Wu et al., 2007). These three distinct 

levels of regulations contribute to the highly regulated turnover of SRC-3 and to its function 

as a potent oncogenic molecule (Fig S4). Applications that harness the extraordinary power 

and specificity of these regulatory enzymes and pathways could hold future promise for 

therapeutic interventions.

Methods and Materials

Yeast Two-Hybrid Screen

Yeast two-hybrid screening was performed by using Matchmaker Gal4 Two-Hybrid System 

3 and a Matchmaker Pretransformed Normalized HeLa cDNA Library (Clontech 
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Laboratories, Mountain View, CA). The SRC-3 degron and part of the PAS region (SRC3-

PASC) was subcloned into the pGBKT7 vector as bait and subsequently transformed into 

the yeast AH109 strain growing on SD/-Trp medium according to the company’s protocol. 

Saccharomyces cerevisiae strain Y187 containing the cDNA library was used to mate the 

yeast AH109 containing SRC3-PASC. Positive blue colonies growing on SD/-Ade/-His/-

Leu/-Trp/X-α-Gal medium were selected, and PCR using the T7 and 3′ AD sequencing 

primers was performed for the positive cDNA clones followed by sequencing to identify 

genes.

GST Pulldown

GST-SPOP and GST-Cul3 vectors were made by subcloning SPOP and Cul3 into the 

BamHI/NotI and XhoI/NotI sites, respectively, of the pGEX-4T-1 vector. GST-SRC3-N390 

was also constructed similarly into pGEX-4T-1, while the GST-SRC3-N180 and –N84 each 

were generated by introducing a stop-codon in GST-SRC3-N390. All the GST-fusion 

proteins were induced by 0.2 mM IPTG in BL21 bacteria for 2 hrs and purified by 

Glutathione Sepharose 4B (Amersham). The GST-protein-containing beads were further 

incubated with in vitro transcribed/translated HA-tagged proteins, which were generated by 

the TNT Coupled Reticulocyte Lysate System (Promega). Additionally, GST-SPOP was 

incubated with purified FLAG-SRC-3 protein, which was expressed by baculoviruses in Sf9 

cells. Subsequently the binding assays were carried out in the mammalian cell lysis buffer 

with protease inhibitors for 2 hr with rotation followed by washes using the lysis buffer. 

Finally the bound proteins were resolved in SDS-PAGE and analyzed by Western Blot.

Co-Immunoprecipitation (Co-IP) and Western Blot

293T cells were transfected with pcDNA3.1-HA-SPOP and pXF2F-FLAG-SRC-3. Two 

days later, the cells were lysed in lysis buffer supplemented with protease inhibitor cocktails 

(Roche, Indianapolis, IN) (Li et al., 2008a). Cell lysates were immunoprecipitated with 

EZview red anti-FLAG M2 affinity gel for 2 hrs at 4 °C with constant rotation and then the 

beads were washed 4 times with the above buffer. Finally the beads were directly boiled in 

Laemmili sample buffer prior to separation by 10% SDS-PAGE. Western blot was carried 

out using FLAG or HA antibodies. HA-SPOP and FLAG-SRC3-S101A/S102A in 293T 

cells were analyzed in the same method described above. Interaction of SRC-3 and SPOP in 

MCF-7 cells was examined using SRC-3 antibodies (Santa Cruz) and protein G-plus 

agarose. Western blot was performed by first blocking nitrocellulose membranes with 5% 

nonfat milk in PBS-T buffer prior to adding antibodies as indicated. Image J software (NIH, 

US) was used for quantification of Western blots.

The antibodies against SPOP were either affinity-purified rabbit polyclonal generated by 

Abgent or monoclonal antibodies obtained from Dr. Kevin White. The other mouse 

monoclonal antibodies used in the experiments were: anti-FLAG-HRP (Sigma), anti-β-

Actin-HRP (Sigma), anti-β-Gal (Roche), anti-Hsp70 (BD Biosciences), anti-α-tubulin 

(Millipore), anti-SRC-3/AIB1 (BD Biosciences), anti-Ub (Santa Cruz), anti-SRC-1 and anti-

SRC-2 (BD Transduction). Rabbit polyclonal were anti-Cul3 (Bethyl), and anti-Rbx1 

(Millipore), while anti-HA-HRP (Roche) was rat monoclonal.

Li et al. Page 11

Oncogene. Author manuscript; available in PMC 2012 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cycloheximide Protein Stability Assays

Protein decay was studied by cycloheximide (CHX) treatment experiments as described 

previously (Li et al., 2008a). 293T cells were transfected with either siRNA control or 

siSPOP, and one day later FLAG-SRC-3 or together with FLAG-DN-Cul3 were transfected 

for an additional 2 days. Afterwards, 0.5 mM CHX (Sigma) was added for different times as 

indicated, followed by SDS-PAGE and Western analysis. FLAG-SRC-3 expressed alone or 

together with HA-CKIε was also transfected into 293T cells and analyzed in these CHX-

based experiments.

siRNA and shRNA Knockdown

The siRNAs for SPOP, Cul3, Rbx1 and control were purchased from Dharmacon as ON-

TARGET plus SMART pools. siRNAs were transfected using TransIT-TKO Transfection 

Reagent (Mirus) according to manufacturer’s instructions. Lentiviral shRNAs for SPOP and 

control GFP were purchased from Sigma and transduced into breast cancer cells followed by 

puromycin (5ug/ml) selection.

Lentiviral Overexpression

Lentiviral Expression Systems were purchased from System Biosciences (SBI, Mountain 

View, CA). Each cDNA for SPOP or SRC-3 was subcloned into pCDH-CMV-MCS-EF1-

Puro vector, which was subsequently co-transfected with pPACKH1 Lentiviral Packaging 

Plasmid Mix (SBI) into 293T cells for two days before each virus-containing medium was 

collected. The resultant lentiviruses were transduced into breast cancer cells in the presence 

of polybrene (5ug/ml) followed by puromycin selection.

Ubiquitination Assays

In vivo ubiquitination assays of SRC-3 were performed by co-transfection of FLAG-SRC-3 

and either HA-tagged or untagged SPOP, Cul3, Rbx1 into 293T cells in the presence or 

absence of HA-Ub. After immunoprecipitation by FLAG antibodies, ubiquitinated SRC-3 

was detected by HA antibodies in Western Blot. In vitro ubiquitination assays were 

performed by in vitro transcribed/translated FLAG-SRC-3, and HA-tagged SPOP, Cul3 and 

Rbx1 proteins produced by TNT Coupled Reticulocyte Lysate Systems in the presence of 

E1, E2 (UbcH5a), Ubiquitin and ATP (Boston Biochem). The biochemical reactions were 

conducted at 37°C for 1.5 hrs followed by SDS-PAGE and Western Blot analysis.

Expression Plasmids

HA-tagged SRC-3 and its deletion mutants were constructed by pcDNA3.1 Directional 

TOPO Expression Kit (Invitrogen, Carlsbad, CA) using PCR primers containing an HA tag 

at the N-terminal. PCR amplification was performed by the pfu polymerase (Stratagene). 

HA-N84 and HA-N180 were generated by introducing a stop codon in HA-595. HA-SPOP, 

HA-SPOP-N and-C were generated using pCMV-SPORT6-SPOP (ACCESSION: 

NM_001007226) as a template in the same manner as HA-SRC-3 (Open Biosystems, 

Huntsville, AL). FLAG-DN-Cul3 was purchased from Addgene deposited by Wade Harper 

(Jin et al., 2005). HA-CKIε also was from Addgene deposited by David Virshup (Rivers et 

al., 1998).
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In Vitro Kinase Assays

Biotin-labeled phosphorylated or non-phosphorylated peptides were synthesized by Abgent 

(San Diego, CA). Kinase Assays were performed using CKI, a positive control peptide for 

the CKI known substrate and buffer systems (New England Biolabs). 32--γ-ATP was 

purchased from MP-Biomedicals (Solon, OH). Full-length SRC-3 protein was expressed by 

baculoviruses and purified from Sf9 cells as described previously (Li et al., 2008a).

Real-Time RT-PCR

The basic procedure was described previously (Li et al., 2008a). Total RNA was isolated 

using TRIzol (Invitrogen). TaqMan Gene Expression Assays (Applied Biosystems) were 

performed using a StepOnePlus™ Real-Time PCR System (Applied Biosystems) to analyze 

each gene expression level. mRNA levels were normalized to 18S as the endogenous 

control. Each TaqMan probe for its corresponding target gene mRNA and One-Step RT-

PCR master mix also were from Applied Biosystems. Each target was measured in triplicate.

Soft Agar Assay

This assay was performed according to Cell Transformation Detection Assay (Chemicon 

International). 10,000 cells were suspended in complete medium containing 0.4% top agar 

layered on 0.8% solidified base agar in each of a 6-well plate. Feed cells 1-2 times per week 

with cell culture media. After 3-4 weeks, colonies with a diameter of more than 100 μm 

were counted.

Trans-well Matrigel Invasion Assay

As basically described previously (Li et al., 2008a), the shRNA knockdown stable cells were 

detached and transferred to Trans-well Matrigel Invasion chambers (BD Biosciences) 

following manufacturer’s protocols. 20,000 cells were placed in each insert chamber 

containing 01% BSA medium while in the lower chamber containing 10% FBS. Cells were 

allowed to migrate and invade through the matrigel membrane for one day before being 

fixed with 4% formaldehyde and stained with crystal violet. The cells on the apical side of 

each insert were scraped off by Q-tips. The number of cells that had migrated through the 

matrigel membrane was counted under a microscope.

SPOP Genome Structure Analyses

For SPOP copy number analysis, we obtained Affymetrix 10K SNP microarray genotype 

data for 42 breast cancer cell lines from the Cancer Genome Project of the Wellcome Trust 

Sanger Institute. We analyzed the SNP data of the SPOP loci (47,617,000-47,815,000 bp) 

locating between rs1320283 (46,806,920-46,807,350 bp) and rs1406012 

(48,292,440-48,293,020 bp) in chromosome 17, visualized them using the Cluster and 

TreeView software (Eisen, MB), and presented the results using heat maps. CONAN 

program was applied to analyze genomic high amplification, LOH, homozygous deletion, 

and mutation in multiple cancer types and the summarized percentages of genome 

alternations were shown in heat maps.
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Nude Mice Tumor Xenograft

Mouse protocols were approved by the Baylor College of Medicine Animal Care and Use 

Committee. Stable MDA-MB-231 cell pools expressing shRNAs for SRC-3, SPOP and 

both, or control shRNA were injected into the 4th mammary glands on both sides of 5-6 

weeks old female athymic Ncr-Nu/Nu mice (NCI) after being anesthetized with 2.5% 

Avertin (0.1ml/10g, i.p.). For each site, 5 × 106 cells in 100 μl DMEM were injected. Tumor 

length (L) and width (W) were measured once a week and tumor volume was calculated by 

(πL × W2)/6.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. SPOP/Cul3/Rbx1 ubiquitin ligase complex targets SRC-3 protein for degradation
(A). SPOP promotes proteasome-dependent degradation of SRC-3. In 293T cells FLAG-

SRC-3 was co-expressed with SPOP or other controls including Cyclin-dependent kinase 

inhibitor 3 (CDKN3), IQ motif containing K (IQCK), Brain and reproductive organ-

expressed (BRE), and Dynactin 6 (DCTN6). After treatment of cells with or without 

MG132, protein abundance was analyzed by SDS-PAGE and Western blot using indicated 

antibodies or anti-FLAG antibodies for SRC-3. α-tubulin (Tubulin) served as a loading 

control.

(B). Dominant negative Cullin3 (DN-Cul3) stabilizes SRC-3 protein. FLAG-tagged SRC-3 

was co-expressed with each one of the dominant negative Cullins (DN-Cul1, -Cul2, -Cul3, -

Cul4B and -Cul5) in 293T cells. The cells were treated with or without 10−7M estradiol (E2) 

for 90 min before Western blot analysis. FLAG-tagged SRC-3 and DN-Cul1-5 were 

detected by FLAG antibodies; β-actin (Actin) was by anti- β-actin antibodies.

(C). Degradation of SRC-3 protein by SPOP is Cul3- and Rbx1-dependent. FLAG-SRC-3 

and HA-SPOP were expressed in 293T cells in the presence of control siRNA (siCtrl), 

siRNA to Cul3 (siCul3) or to Rbx1 (siRbx1). Each protein level was determined by 

immunoblotting using FLAG to detect FLAG-SRC-3 or the antibodies as indicated.

(D). SPOP/Cul3/Rbx1 control SRC-3 protein stability. siSPOP and DN-Cul3 stabilize 

SRC-3 protein. The time course of the cycloheximide (CHX) chase experiment was 

performed in the presence of siRNA to control (Ctrl), SPOP, or Ctrl together with 

overexpressing DN-Cul3 (siCtrl+DN-Cul3) for indicated times. Protein abundance was 

determined by immunoblotting using FLAG antibodies to detect SRC-3 and DN-Cul3 or the 

other indicated antibodies.

(E). Quantitation of the data in Fig 1D.
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Figure 2. The SRC-3 degron interacts directly with the N-terminal MATH domain of SPOP
(A). SPOP interacts with SRC-3 in MCF7 cells. Co-IP was performed using SRC-3 

antibodies for IP followed by SDS-PAGE and Western blotting using SRC-3 and SPOP 

antibodies as indicated. IP with IgG served as a control.

(B). SRC-3 directly binds to SPOP. GST-pulldown was performed using GST-SPOP and 

purified recombinant FLAG-SRC-3 protein, which was expressed from baculoviruses 

(Coomassie staining). The bound protein was resolved by SDS-PAGE and Western blotting 

using anti-FLAG antibodies. GST alone served as a negative control.

(C). SPOP directly binds to the SRC-3 N-terminal region. GST-pulldown was performed 

using GST-SRC-3 N-terminus N390 (GST-SRC3-N) and in vitro translated HA-SPOP 

followed by SDS-PAGE and Western blot using HA antibodies.

(D). Schematic representation of SRC-3 deletion mutants was shown.

(E). Mapping the domain of SRC-3 interacted with SPOP. In GST-pulldown experiments, 

GST-SPOP was assayed with HA-tagged SRC-3 wt, N1103, and N595 (upper panel); GST-

SRC-3 N390, N180 and N84 were assayed with HA-SPOP (lower panel). Western blots 

were performed using HA antibodies.

(F). Schematic representation of SPOP deletion mutants containing the MATH or BTB 

domain.

(G). The SPOP MATH-containing domain binds to SRC-3 and the SPOP BTB-containing 

domain binds to Cul3. In GST-pulldown experiments, GST-SRC3-N or GST-Cul3 were 

assayed with HA-tagged SPOP wt (HA-SPOP), SPOP N-terminal MATH-containing (HA-
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SPOP-N) or its C-terminal BTB-containing domain (HA-SPOP-C). Western blot was 

performed using HA antibodies to detect SPOP wt or its mutants.

Li et al. Page 20

Oncogene. Author manuscript; available in PMC 2012 April 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. SPOP/Cul3/Rbx1 ubiquitin ligase complex promotes SRC-3 poly-ubiquitination
(A). SPOP/Cul3/Rbx1 promote SRC-3 poly-ubiquitination in cells. FLAG-SRC-3 and HA-

tagged SPOP/Cul3/Rbx1 were expressed in 293T cells in the presence or absence of 

MG132. Poly-ubiquitinated SRC-3 was detected in whole cell lysates by Western blot using 

FLAG antibodies.

(B). SPOP/Cul3/Rbx1 promote SRC-3 poly-ubiquitination. FLAG-SRC-3 and HA-Ub were 

co-expressed with SPOP/Cul3/Rbx1 in 293T cells in the presence or absence of MG132. 

Immunoprecipitation using FLAG antibodies was performed, followed by immunoblotting 

using HA antibodies to detect poly-ubiquitinated SRC-3. Western blot using FLAG 

antibodies to detect SRC-3 was shown as a loading control.

(C). SPOP/Cul3/Rbx1 poly-ubiquitinate SRC-3 in a cell-free system. Purified recombinant 

E1, UbcH5a (E2) and ubiquitin (Ub) were incubated in ubiquitination reactions with SPOP, 

Cul3, Rbx1 and FLAG-SRC-3 proteins, which were in vitro transcribed/translated. Poly-

ubiquitinated forms of SRC-3 were detected by Western blotting using either anti-FLAG 

antibodies or anti-Ub antibodies.
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Figure 4. Phosphodegron-Dependent regulation SRC-3 protein stability by SPOP
(A). SPOP promotes phosphodegron-dependent degradation of SRC-3. SRC-3 wt (FLAG-

SRC-3) or its phospho-degron mutants S102A (FLAG-S012A) or S101A/S102A (FLAG-

SSAA) were expressed in 293T cells with HA-SPOP. The SPOP N-terminal MATH-

containing domain (SPOP-N) or C-terminal BTB-containing domain (SPOP-C) also were 

examined in the experiment. Protein levels were detected by SDS-PAGE and Western blot 

using the indicated antibodies.

(B). Interaction between SPOP and SRC-3 is phospho-degron dependent. In the experiment 

shown in (A), Co-IP was performed using FLAG antibodies followed by SDS-PAGE and 

Western blot using FLAG or HA antibodies to detect SRC-3 or SPOP, respectively.

(C). Overexpression of SPOP down-regulates the SRC-3 protein level in MCF7 breast 

cancer cells. Lentiviral vectors expressing HA-SPOP were transduced into MCF7 cells. 

After puromycin selection, these cells were analyzed for SRC-1, -2, -3, SPOP and tubulin 

protein levels by immunoblot using each antibody indicated.

(D). shRNA knockdown of SPOP leads to up-regulation of the SRC-3 protein level in MCF7 

breast cancer cells. Lentiviral vectors expressing shRNA against SPOP were transduced into 

MCF7 cells. After puromycin selection, these cells were analyzed for SRC-3 and SPOP 

protein levels by immunoblot using each antibody indicated.

(E). shRNA knockdown of SPOP does not change the SRC-3 mRNA level in MCF7 cells. In 

the same experiment as in (D), total RNAs were isolated and the mRNA levels were 

analyzed by real-time RT-PCR using each gene-specific Taqman probe as indicated. Error 

bars indicate SEM.
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Figure 5. CKIε phosphorylates the S102 site in the SRC-3 degron and enhances SPOP-mediated 
degradation of SRC-3
(A). CKI phosphorylates SRC-3 protein in vitro. CKI protein was incubated with purified 

recombinant SRC-3 protein in an in vitro kinase assay. Phosphorylated SRC-3 was detected 

by 32-P autoradiography.

(B). CKI phosphorylates SRC-3 at Ser 102. Four peptide sequences spanning the SRC-3 

degron with phosphates at S101 and S102 in different combinations are shown in (i). In vitro 

kinase assays were performed using these peptides as indicated and CKI’s known substrate 

(CKI Sub) as a positive control. Assayed products were analyzed by SDS-PAGE and 

autoradiography (ii).

(C). CKIε enhances SPOP-mediated degradation of SRC-3. FLAG-SRC-3 (SRC-3), its 

mutants S102A (S102A) or S101A/S102A (SSAA), HA-CKIε (CKIε) and HA-SPOP 

(SPOP) were expressed as indicated in cells followed by immunoblot analysis.

(D). CKI inhibitors stabilize SRC-3 protein. SRC-3-overexpressing cells were treated with 

CKI inhibitors IC261 or D4476 followed by Western blot analysis using FLAG antibodies to 

detect SRC-3.

(E). CKIε enhances the binding of SPOP and SRC-3. FLAG-SRC-3, HA-tagged SPOP and 

CKIε were expressed in 293T cells followed by Co-IP and immunoblot analyses using the 

indicated antibodies. SRC-3 immunoprecipitates were loaded in the same amount into the 

gel.
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(F). CKIε destabilizes SRC-3 protein. CHX chase experiments were performed with FLAG-

SRC-3 alone, or in the presence of CKIε (+HA-CKIε) or its kinase deficient mutant 

(+K35R). β-gal and Hsp70 were also included as the exogenous and endogenous controls in 

the experiment. F (ii) panel shows the quantitative analysis of this immunoblot.
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Figure 6. SPOP inhibits SRC-3-mediated oncogenic signaling
(A). SPOP inhibits SRC-3-enhanced estrogen receptor (ER) reporter gene activity. ERE-luc 

luciferase assays were carried out with ER treated with (+E2) or without (−E2) estradiol in 

the presence of SRC-3 or SPOP only, or SRC-3 and SPOP together, as indicated. Error bars 

indicate SEM. Statistically significant differences were indicated (**P<0.001, SRC-3 versus 

SRC-3 + SPOP).

(B). SPOP inhibits SRC-3-enhanced androgen receptor (AR) reporter gene activity. 

Experiments were performed similar to Fig 6A, except using AR, MMTV-luc reporter gene 

and DHT hormone. Error bars indicate SEM. Statistically significant differences were 

indicated (**P<0.001, SRC-3 versus SRC-3 + SPOP).

(C). SPOP inhibits SRC-3-enhanced NF-kB-luc reporter gene activity. Similar to Fig 6A, 

except using NF-kB-luc and TNFα. Error bars indicate SEM. Statistically significant 

differences were indicated (**P<0.001, SRC-3 versus SRC-3 + SPOP).

(D). SPOP inhibits SRC-3 target gene IGF-1. IGF-1 mRNA levels were analyzed in MCF-7 

cells with indicated shRNA knockdown of target gene expression. qRT-PCR was performed 

to measure mRNA levels as indicated. Error bars indicate SEM. Statistically significant 

differences were indicated (*P<0.05, shSRC-3 versus shSRC-3 + shSPOP).

(E). SPOP inhibits SRC-3 target gene MMP-2. MMP-2 mRNA levels were analyzed in 

MCF-7 cells with indicated shRNA knockdown of target gene expression. qRT-PCR was 

performed to measure mRNA levels as indicated. Error bars indicate SEM. Statistically 

significant differences were indicated (**P<0.001, shSRC-3 versus shSRC-3 + shSPOP).

(F). Western blot analysis of SRC-3 and SPOP in MCF-7 cells in panel D and E. Lentiviral 

shRNAs were used to knockdown SRC-3, SPOP or both as indicated.
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Figure 7. Tumor suppressor role for SPOP
(A). Genomic copy number losses of SPOP loci in breast cancer cell lines. Analysis of the 

SPOP loci by 10K SNP arrays in 42 breast cancer cell lines. Colograms represent SNP copy 

numbers. Red represents allelic gain; green indicates allelic loss. Bar chart shows the 

percentage of chromosome loss.

(B). LOH of SPOP in human cancers. CONAN (Copy Number Analysis) resulted from 

Sanger Cancer Genome Project. There are high percentages of distinct cancers containing 

LOH of SPOP.

(C). Inhibiting cancer cell proliferation by SPOP. Cell proliferation was increased in MCF-7 

cells with shSPOP knockdown (upper panel). Cell proliferation was inhibited in MCF-7 

cells overexpressing SPOP (SPOP) by lentiviruses and this inhibition was substantially 

rescued by additional expression of SRC-3 S101A/S102A degradation mutant (SPOP

+SRC3m) (lower panel). Error bars indicate SEM. Statistically significant differences were 

indicated (**P<0.001, control versus SPOP; *P<0.05, SPOP versus SPOP+SRC3m).

(D). SPOP inhibits breast cancer cell invasion. Trans-well invasion assays were performed 

using MDA-MB-231 breast cancer cells after shRNA knockdown of the indicated gene 

expression (Left panel). Each indicated protein level was measured by Western blot (Right 

panel). Error bars indicate SEM. Statistically significant differences were indicated 

(**P<0.001, shGFP versus shSPOP).

(E). SPOP inhibits tumor growth in nude mice. The nude mice were inoculated with MDA-

MB-231 cells after shRNA knockdown of the genes indicated. Tumor volumes were 
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measured each week. Error bars indicate SD. Statistically significant differences were 

indicated (**P<0.001, shctrl versus shSPOP; * P<0.05, shctrl versus shSRC-3).
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