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Abstract
Objective—Bariatric surgery is emerging as an effective method to alleviate a multitude of
medical conditions associated with morbid obesity and type 2 diabetes. However, little is known
about the effects and mechanisms of bariatric surgery on visceral fat inflammation and endothelial
dysfunction in type 2 diabetes. We hypothesize that bariatric surgery ameliorates interferon-
gamma (IFNγ-mediated adipose tissue inflammation/oxidative stress and improves endothelial
function in type 2 diabetic mice.

Methods and Results—Control mice (m Leprdb) and diabetic mice (Leprdb) were treated with
either sham surgery or Improved Gastric Bypass Surgery (IGBS) and then evaluated at 5, 10, 20,
and 30 days to assess post-surgical effects. Surgery reduced body weight, abdominal adiposity,
blood glucose level, and food intake in Leprdb. The surgery-induced decrease in visceral adiposity
was accompanied by amelioration of T-lymphocytes and macrophage infiltration, as well as
reduction in the expression of IFNγ and other inflammatory cytokines in the mesenteric adipose
tissue (MAT) of Leprdb mice. Furthermore, surgery improved endothelium-dependent, but not
endothelium-independent vasorelaxation in small mesenteric arteries (SMA) of Leprdb mice. The
improvement in endothelial function was largely attenuated by nitric oxide synthase inhibitor (L-
NAME) incubation. IFNγ treatment increased the mRNA expression of tumor necrosis factor-
alpha (TNFα) in the MAT of control mice, and incubation of SMA of control mice with TNFα
caused impairment of endothelial function. Superoxide production in MAT/SMA and nitrotyrosine
protein level in SMA were elevated in diabetic mice. Surgery reduced MAT/SMA oxidative stress
in Leprdb mice.
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Conclusions—The amelioration of adipose tissue inflammation and the improvement of
endothelial function may represent important mechanisms that result in cardiovascular benefits
following bariatric surgery.
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Obesity and diabetes are becoming pandemic and pose a major risk for a number of
comorbidities including cardiovascular diseases.1 Morbid obesity remains largely refractory
to diet, exercise and medication, but generally responds well to bariatric surgery.2-7 Bariatric
surgery demonstrates the most encouraging results in the treatment of patients with morbid
obesity and type 2 diabetes by effectively reducing body weight and profoundly improving
insulin sensitivity.8-14 Moreover, a substantial majority of obese patients with diabetes,
hypertension, and other cardiovascular complications experience complete resolution or
improvement.3 Importantly, endothelium-dependent vasodilatory function was enhanced
after gastric bypass surgery in morbidly obese patients with type 2 diabetes,11, 15 but the
mechanism by which bariatric surgery improves endothelial function in morbidly obese and
diabetic patients has yet to be clearly elucidated.

Macrophage infiltration and chemoattractant gene expression were reduced in white adipose
tissue of morbidly obese subjects after gastric bypass surgery-induced weight loss.16 Among
various cytokines produced by activated macrophages, tumor necrosis factor-alpha (TNFα)
is a key proinflammatory cytokine involved in the pathogenesis and progression of
cardiovascular dysfunction17 by stimulating vascular oxidative stress,18 enhancing
endothelial permeability,19 promoting inflammation,18 and potentiating vasoconstriction.20

As a hallmark cytokine of T-lymphocyte, interferon-gamma (IFNγ) plays a critical role in
the regulation of adipose tissue inflammation and enhances the production of various
inflammatory cytokines, including TNFα, in cultured adipose tissue.21 Within this context,
the purpose of this study was to examine the effects of bariatric surgery on IFNγ-induced
visceral adipose tissue inflammation/oxidative stress and endothelial dysfunction in type 2
diabetic mice.

Methods
Animals

The procedures followed were in accordance with approved guidelines set by the Animal
Care Committee at the University of Missouri. Heterozygote control mice (m Leprdb)
(Background Strain: C57BLKS/J), and homozygote type 2 diabetic mice (Leprdb)
(Background Strain: C57BLKS/J) were purchased from Jackson Laboratory and maintained
on a normal rodent chow diet. Male, 20-35g m Leprdb, 40-60 g Leprdb mice were used in
this study. m Leprdb was treated with murine recombinant IFNγ (R&D, 330 μg/kg/day, i.p.
injection, 5 days) at the age of 12 to 16 weeks.22

Improved Gastric Bypass Surgery
Improved gastric bypass surgery (IGBS) was performed using a modified surgical method
that mimics the traditional Roux-en-Y gastric bypass surgery23 (Supplemental Figure I).
Mice were anesthetized with sodium pentobarbital (50 mg/kg i.p. injection). The stomach
and small intestine were exposed from the abdominal cavity, 15 cm away from Treitz
ligament, and prepared for anastomosis. The small intestine and large curve of the stomach
were anastomosed with 6-0 silk suture side to side. The pylorus was separated and the two
parts of the pylorus were dissected and closed. In the sham surgery, the abdominal cavity
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was opened, but no further surgical procedures were performed. At age 12 weeks, m Leprdb

and Leprdb mice were treated with either sham surgery or IGBS. Leprdb mice were assessed
5, 10, 20, and 30 days post IGBS (P5, P10, P20, and P30), or 20 days after sham surgery. m
Leprdb mice were assessed 20 days after either sham surgery or IGBS.

Experimental Design
IFNγ, MCP-1 and nitrotyrosine protein expression were determined by western blotting.
mRNA expression of CD3, CD68, IFNγ, MCP-1 etc. was examined by quantitative RT-
PCR. Immunohistochemistry was used to examine mesenteric adipose tissue (MAT)
accumulation of CD3 positive T-lymphocytes, Mac-3 or F4/80 positive macrophages. EPR
(Electron Paramagnetic Resonance) spectroscopy was used to determine the superoxide
production in both MAT and small mesenteric arteries (SMA). Isolated SMA responses
were studied using wire Myograph. The expanded Methods section in the Online Data
Supplement can be found at http://atvb.ahajournals.org.

Data Analysis
All data were presented as mean±SEM except as specifically stated. Statistical comparisons
were performed with 2-way ANOVA for vasomotor responses under various treatments, and
with one-way ANOVA for other data. Intergroup differences were tested with LSD
inequality. Significance was accepted at P < 0.05.

Results
Bariatric surgery reduced body weight, adiposity, and improved glycemic control

The effects of bariatric surgery on weight loss and glycemic control were examined. We
note that 5, 10, 20, and 30 days post surgery in mice are equivalent to 0.5, 1, 2, and 3 years
after surgery in human beings. Our results revealed rapid weight loss and decrease in body
fat mass by day 5 after surgery, and the body weight and body fat mass continued to
decrease at day 10, 20, and 30 following surgery (Supplemental Table I). Surgery also
reduced abdominal adiposity by decreasing abdominal girth, mesenteric bed weight and
MAT adipocyte size in diabetic mice (Supplemental Table II). The food intake decreased by
15%-25% in diabetic mice following surgery (Supplemental Table I). Adiponectin level was
lower in the serum of Leprdb mice, and surgery increased serum adiponectin levels
(Supplemental Figure II).

Bariatric surgery also exerted profound effects on glycemic control and metabolism. IGBS
significantly decreased blood glucose level as early as 5 days post surgery, and the blood
glucose level continued to decrease at 10 and 20 days post surgery. Within 20 days
following surgery, glucose had a parallel evolution to weight, abdominal girth and fat mass
although at 30 days after surgery, we noted a slight, but non-significant increase in glucose
level (Supplemental Table I).

The Effects of Bariatric Surgery on Adipose Tissue Inflammatory Cell Infiltration and
Inflammatory Cytokine Expression

CD3 is the marker of T-lymphocytes. The CD3 positive T-lymphocyte infiltration was
increased in the MAT of diabetic mice. The mRNA expression of CD3 was also higher in
the MAT of diabetic mice. Bariatric surgery reduced MAT CD3 positive T-lymphocytes
infiltration as well as CD3 mRNA expression (Figure 1A and 1B). IFNγ is the hallmark
cytokine of T-lympohcytes. The mRNA and protein expression of IFNγ were elevated in the
MAT of diabetic mice. Bariatric surgery reduced MAT expression of IFNγ in diabetic mice
but not in control mice (Figure 1C and 1D).
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Mac-3, CD68 and F4/80 are the markers of macrophages. The Mac-3 or F4/80 positive
macrophage infiltration and CD68 mRNA expression were higher in MAT of diabetic mice
vs. control mice. Bariatric surgery reduced macrophage accumulation in MAT of diabetic
mice (Figure 2A and 2B, and Supplemental Figure III). MCP-1 is mainly produced by
macrophages. The mRNA and protein expression of MCP-1 were higher in diabetic mice vs.
control mice. Bariatric surgery ameliorated the mRNA and protein expression of MCP-1 in
MAT of diabetic mice (Figure 2C and 2D). Additionally, the mRNA expression of other
macrophage-derived inflammatory cytokines, such as TNFα, macrophage inflammatory
protein-1-alpha (MIP-1α) and MIP-1β, were also increased in diabetic mice. Bariatric
surgery inhibited MAT TNFα, MIP-1α and MIP-1β mRNA expression (Supplemental
Figure IV).

The Effects of Bariatric Surgery on SMA Endothelial Function
Acetylcholine (ACh)-induced endothelium-dependent vasorelaxation was impaired in SMA
of diabetic mice vs. control mice. Bariatric surgery improved endothelial function of
diabetic mice (Figure 3). Sodium nitroprusside (SNP)-induced endothelium-independent
vasorelaxation and phenylephrine (PE)-induced vasoconstriction were comparable among
groups (Supplemental Figure V and Supplemental Figure VI). Nitric oxide synthase
inhibitor (L-NAME) incubation largely attenuated the surgery-induced improvement of
endothelial function in diabetic mice (Figure 4). Despite the profound effects of bariatric
surgery on improving endothelial function of diabetic mice, bariatric surgery affected
neither the endothelium-dependent nor the endothelium-independent vasorelaxation in non-
diabetic control mice (Supplemental Figure VII).

m Leprdb mice treated with recombinant IFNγ showed significantly increased TNFα mRNA
expression in MAT (Figure 5A). Incubation of SMA with 10 ng/ml of recombinant TNFα
impaired endothelial function of SMA in m Leprdb mice (Figure 5B).

The Effects of Bariatric Surgery on MAT/SMA oxidative stress
The superoxide level was elevated in both MAT and SMA of diabetic mice. Bariatric
surgery reduced superoxide production in diabetic mice without affecting that in control
mice (Figure 6A and 6B). Furthermore, the nitrotyrosine protein expression in SMA was
higher in diabetic mice vs. control mice. Bariatric surgery decreased SMA nitrotyrosine
protein expression (Figure 6C).

Discussion
Bariatric surgical procedures have increased exponentially in the United States24 and animal
models are increasingly being used in the study of bariatric surgery in order to examine the
underlying mechanisms of the therapeutic effects.25 However, no studies to date have
examined the effects of bariatric surgery in the type 2 diabetic murine model. We modified
the work of Troy et al.23 to establish the Improved Gastric Bypass Surgery (IGBS) method
in murine model of type 2 diabetes; this allows the study of mechanisms responsible for the
therapeutic effects of bariatric surgery in morbid obesity and type 2 diabetes. The major
findings in this study are: 1) Bariatric surgery leads to rapid weight loss, reduces whole body
and abdominal adiposity, and improves glycemic control; 2) Bariatric surgery serves as an
effective anti-inflammatory strategy by ameliorating IFNγ-mediated adipose tissue
inflammation; and 3) Bariatric surgery reverses endothelial dysfunction by improving NO
availability and inhibiting vascular oxidative stress.
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Bariatric surgery serves as a successful anti-inflammatory strategy
Obesity-related chronic inflammation is implicated in the pathogenesis of type 2 diabetes.26

Previous studies demonstrated that long-term weight loss after bariatric surgery is
accompanied by a decreased proinflammatory state. Bariatric surgery decreased circulating
levels of c-reactive protein (CRP),27-30 IL-6,29 serum amyloid A (SAA),31-32 and leptin,8
but increased the circulating level of adiponectin.8 Bariatric surgery also reduced
subcutaneous adipose tissue macrophage attraction, and gene expression of inflammatory
cytokines, such as TNFα and IL-6.16, 29 Compared with subcutaneous fat, visceral fat
showed a higher transcript level of IFNγ and a broader leukocytosis that included
macrophages, T cells and natural killer (NK) cells.33 Our murine model of IGBS allowed us
to examine the effects of bariatric surgery on the inflammatory status of MAT. Our results
showed that bariatric surgery reduced T-lymphocyte and macrophage infiltration, as well as
the expression of IFNγ, MCP-1, TNFα, MIP-1α and MIP-1β in MAT of diabetic mice. Thus,
surgery-induced weight loss is accompanied by reduced adipose tissue inflammation, and
bariatric surgery serves as a successful anti-inflammatory strategy in type 2 diabetes.

The association between adipose tissue inflammation and endothelial dysfunction
Increased adipose tissue inflammation in type 2 diabetes reflects the positive association
between cardiovascular diseases and diabetes.34 An abdominal fat pattern, as determined by
an increased waist-to-hip ratio and visceral fat diameter, was the sole significant predictor of
flow-mediated vasodilation (FMD) in overweight adults,10, 35 suggesting the link between
visceral adiposity and vascular dysfunction.36-37 The mechanisms whereby excessive
visceral fat depot leads to deterioration of vascular health are complex. Adipose tissue-
derived inflammatory cytokines may serve as mechanisms linking adipose tissue
inflammation and endothelial dysfunction.34 As an important adipose-derived
proinflammatory mediator, TNFα plays a key role in endothelial dysfunction associated with
ischemia reperfusion injury,38-39 obesity40 and diabetes.41 In type 2 diabetic mice, increase
in TNFα and TNFα receptor 1 (TNFR1) expression induced activation and production of
superoxide via NAD(P)H oxidase and/or the mitochondria respiratory chain, leading to
endothelial dysfunction in coronary microcirculation and aortas.42-44 Our results suggest
that IFNγ treatment significantly increased the mRNA expression of TNFα in the MAT of
non-diabetic control mice. Recombinant TNFα incubation impaired the endothelial function
of SMA in control mice, suggesting the potential role of the IFNγ-induced MAT pro-
inflammatory status in the regulation of SMA endothelial function. Moreover, the
superoxide level in the MAT of diabetic mice was significantly higher, but bariatric surgery
reduced MAT superoxide production. Thus, visceral obesity-associated alterations of the
vasculature are likely a consequence of perturbation of the normal physiological balance of
adipose-derived inflammatory cytokines and oxidative stress, and bariatric surgery can
reverse the alteration.

Bariatric Surgery Improves Endothelial Function by Inhibiting Oxidative Stress and
Increasing NO Availability

In morbidly obese patients, bariatric surgery rapidly improved endothelial function.45-46 The
mechanisms of bariatric surgery-induced amelioration of endothelial dysfunction are not
clearly elucidated, but some studies suggest that reduction in circulating level of markers of
endothelial activation and oxidative stress may serve as mechanisms.47-48 Our study shows
that bariatric surgery remarkably improved the endothelium-dependent vasorelaxation of
SMA without affecting endothelium-independent vasorelaxation and PE-induced
vasoconstriction (Figure 3, Supplemental Figure V and Figure VI). The superoxide level and
nitrotyrosine protein expression in the SMA were elevated in diabetic mice, but reversed by
bariatric surgery (Figure 6). Although bariatric surgery improved endothelium-dependent
vasorelaxation of SMA in diabetic mice, the improvement was largely attenuated by
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incubating the vessels with nitric oxide synthase inhibitor, L-NAME, suggesting that
bariatric surgery improves endothelial function by improving NO availability (Figure 4).

Although we observed that the SMA endothelial function of Leprdb at 5, 10, and 20 days
after surgery was completely restored to the level of non-diabetic control mice, In Leprdb at
30 days, this procedure only partially improved endothelial function (Figure 3). Moreover,
the protein expression of IFNγ and MCP-1 in diabetic mice at 30 days post surgery slightly
returned towards the level observed in the Leprdb+Sham surgery group even though there
was no significant body weight regain or hyperglycemia. We postulate that an early
indicator of post-surgery relapse may be characterized by the partial restoration of adipose
tissue inflammation and endothelial dysfunction that precedes a regain of body weight and
increased incidence of hyperglycemia over the long term after surgery in type 2 diabetic
mice. Thus, weight is likely not the determinant of endothelial dysfunction.49-50 The
inflammatory milieu that was rapidly corrected by surgery is linked to endothelial
dysfunction in diabetes.

One caveat to this study is that the mice were fairly young (3 month old) when subjected to
the surgery procedure. However, since the lifespan of Leprdb mice is up to 10 month, our
protocol will potentially allow the observation of long-term effects by bariatric surgical
procedures. We found that the endothelial function of Leprdb at 90 days after surgery was
slightly impaired compared with Leprdb at 30 days after surgery (although still better than
Leprdb+Sham surgery), with a slight increase in body weight and blood glucose level
(unpublished data), which highlights the need to examine the long-term effects of bariatric
surgery. Indeed, the long-term follow-up study of patients undergoing bariatric surgery
showed that body weight reached the lowest point at approximately 2 years and there was a
significant increase in BMI from the nadir to 5 years and from 5 years to 10 years post-
surgery.51 Thus, although bariatric surgery is a favorable option in the treatment of diabetic
patients with severe obesity, discerning the benefits over time requires further evaluation.
Due to the difficulties in conducting long-term follow-up studies in human subjects treated
with bariatric surgery over time, our study using type 2 diabetic mice can explore a wider
spectrum of interest more quickly and definitely to evaluate and refine the most relevant
protocols that may be translatable to clinical studies.

Conclusion
In summary, bariatric surgery reduces body weight, whole body and abdominal adiposity,
and improves glycemic control in type 2 diabetic mice. Bariatric surgery ameliorates IFNγ-
mediated MAT inflammation/oxidative stress and improves SMA endothelial function in
type 2 diabetes. We posit that the vascular benefits of bariatric surgery are chiefly derived
from a surgery-induced reduction in adipose tissue inflammation. These data demonstrate
that the amelioration of adipose tissue inflammation and the improvement of endothelial
function may represent important mechanisms that result in cardiovascular benefits
following bariatric surgery.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Improved Gastric Bypass Surgery (IGBS) reduced T-lymphocyte infiltration and IFNγ
expression in mesenteric adipose tissue (MAT) of diabetic mice. A, Immunohistochemical
staining was performed in control (m Leprdb) and diabetic (Leprdb) mice treated with either
sham surgery or IGBS. Leprdb mice were assessed 5, 10, 20, and 30 days post IGBS (P5,
P10, P20, and P30), or 20 days after sham surgery. m Leprdb mice were assessed 20 days
after either sham surgery or IGBS. The results show that CD3 positive T-lymphocyte
infiltration in MAT was higher in Leprdb+Sham versus IGBS. Data shown are representative
of 4 separate experiments. B, mRNA expression of CD3 increased in MAT of Leprdb+Sham.
IGBS significantly reduced CD3 mRNA levels in MAT. The mRNA (C) and protein (D)
expression of T-lymphocyte hallmark cytokine, IFNγ, increased in MAT of Leprdb+Sham.
IGBS decreased the mRNA and protein expression of IFNγ. Data represent mean±SEM,
n=4-12 mice. *P<0.05 compared with m Leprdb+Sham surgery; #P<0.05 compared with
Leprdb+Sham surgery.
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Figure 2.
IGBS reduced macrophage infiltration and MCP-1 expression in MAT of diabetic mice. A,
Immunohistochemical staining shows that Mac-3 positive macrophage infiltration in MAT
was higher in Leprdb+Sham versus IGBS. Data shown are representative of 4 separate
experiments. B, mRNA expression of CD68 was increased in MAT of Leprdb+Sham. IGBS
significantly reduced CD68 mRNA levels in MAT. The mRNA (C) and protein (D)
expression of MCP-1 were increased in MAT of Leprdb+Sham, and were reduced by IGBS.
Data represent mean±SEM, n=4-12 mice. *P<0.05 compared with m Leprdb+Sham surgery;
# P<0.05 compared with Leprdb+Sham surgery.
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Figure 3.
IGBS improved endothelium-dependent vasorelaxation to acetylcholine (ACh) in small
mesentery arteries (SMA) of Leprdb mice. Data represent mean±SEM. n=6-31 rings from
4-18 mice (1 or 2 rings per mouse). *P<0.05 compared with m Leprdb+Sham surgery; #
P<0.05 compared with Leprdb+Sham surgery.
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Figure 4.
Incubation with nitric oxide synthase inhibitor, L-NAME, largely attenuated the
improvement of SMA endothelial function in surgery-treated diabetic mice. Data represent
mean±SEM. n=6-31 rings from 4-18 mice (1 or 2 rings per mouse).
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Figure 5.
IFNγ stimulated the expression of proinflammatory cytokine TNFα, which impaired
endothelial function of SMA. A. mRNA expression of TNFα increased in the MAT of m
Leprdb mice treated with IFNγ. Data represent mean±SEM, n=6-8 mice. *P<0.05 compared
with m Leprdb. B, 1 ng/ml recombinant TNFα incubation (90 minutes) only slightly
impaired endothelial function of m Leprdb mice. 10 ng/ml TNFα incubation significantly
impaired endothelial function. n=4-5 rings from 4-5 mice (1 ring per mouse). *P<0.05
compared with m Leprdb.
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Figure 6.
IGBS ameliorated MAT/SMA oxidative stress. A and B, IGBS reduced superoxide level in
MAT and SMA of Leprdb mice. Data represent mean±SEM. n=6-8 mice. *P<0.05 compared
with m Leprdb+Sham surgery; # P<0.05 compared with Leprdb+Sham surgery. C, IGBS
decreased protein expression of nitrotyrosine in SMA of diabetic mice. Data shown are
representative of 3 separate experiments.
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