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Abstract
Twins have been extensively used in economics, sociology and behavioral genetics to investigate
the role of genetic endowments on a broad range of social, demographic and economic outcomes.
However, the focus in these literatures has been distinct: the economic literature has been
primarily concerned with the need to control for unobserved endowments—including as an
important subset, genetic endowments—in analyses that attempt to establish the impact of one
variable, often schooling, on a variety of economic, demographic and health outcomes. Behavioral
genetic analyses have mostly been concerned with decomposing the variation in the outcomes of
interest into genetic, shared environmental and non-shared environmental components, with recent
multivariate analyses investigating the contributions of genes and the environment to the
correlation and causation between variables. Despite the fact that twins studies and the recognition
of the role of endowments are central to both of these literatures, they have mostly evolved
independently. In this paper we develop formally the relationship between the economic and
behavioral genetic approaches to the analyses of twins, and we develop an integrative approach
that combines the identification of causal effects, which dominates the economic literature, with
the decomposition of variances and covariances into genetic and environmental factors that is the
primary goal of behavioral genetic approaches. We apply this integrative ACE-β approach to an
illustrative investigation of the impact of schooling on several demographic outcomes such as
fertility and nuptiality and health.

1 Introduction
Twins studies have been extensively undertaken in economics, sociology and behavioral
genetics to incorporate the role of genetic endowments in relations for a broad range of
social, demographic and economic outcomes. However, the focus in these literatures has
been distinct: on the one hand, the economic literature has been primarily concerned with
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the need to control for unobserved endowments—including as a possibly important subset,
genetic endowments—in analyses that attempt to establish the impact of one variable, often
schooling, on a variety of economic, demographic and health outcomes (Behrman et al.
1994, 1996). On the other hand, behavioral genetics analyses have mostly been concerned
with decomposing the variation in the outcomes of interest into genetic, shared
environmental and non-shared environmental components, with recent multivariate analyses
investigating the contributions of genes and the environment to the correlation and causation
between variables (Plomin et al. 2005). Sociological research using twins has mostly build
on either the economic or the behavioral genetics approach (Conley and Bennett 2000;
Freese 2008). Despite the fact that data on twins and the recognition of the role of
endowments are central to both the economic and behavioral genetics literatures, the
methodological developments in these two areas have mostly evolved independently. And
while both of these approaches are increasingly valued within sociology and related social
science fields as important tools to investigate the interaction of social processes and social
structures with genetic and related biological processes (e.g., Bearman 2008; Conley et al.
2003; Freese 2008; Guo et al. 2008; Schnittker 2008), a detailed comparison and potential
integration of these two approaches to the study of twins data has been lacking so far.

This paper formally develops the relationship between the economic and behavioral genetics
approaches to the analyses of twins, and discusses both the economic within-MZ and the
behavioral genetics ACE model within a unified conceptual framework that highlights the
similarities and differences between these models.1 It also reviews some of the approaches
that are available to test and/or relax some of the key assumptions underlying these methods.
Most importantly, this paper also develops an extension of the conventional ACE model,
denoted ACE-β, that bridges between the economic within-MZ approach and the behavioral
genetics approach. The new features of this model include that it allows the joint estimation
of the causal relationship—denoted by β—between, say, schooling and fertility or health,
and the contributions of genetic and social endowments to the variation and covariation of
outcomes within and across individuals. This model also provides a definition of heritability
h2 that appropriately captures the different pathways through which genetic endowments
affect both schooling x and outcomes y such as fertility or health in an ACE-β framework
where schooling has a direct effect on fertility (health). In addition, extensions of our ACE-β
model can identify the extent to which social interactions between twins affect schooling or
fertility/health, or the extent to which schooling is affected by measurement error. In the
instrumental variable version, the ACE-β model can also provide estimates of all model
parameters—including the casual effect of schooling on fertility and the extent of
heritability of the different outcomes—even if unique environmental factors affecting
schooling affect fertility (health) not only through schooling but also directly. The ACE-β
model therefore enriches both the economic within-MZ approach by providing a more finely
grained picture about the influence of unobserved endowments on schooling and fertility
(health), and it extends the ACE model, which has been one of the cornerstones of research
in behavioral genetics, by integrating causal pathways between schooling and fertility
(health).

1While not the focus of our discussion here, it is important to point out that there have been many other uses of twins data in the social
sciences. Historically, for example, the predominant use probably has been for univariate heritability estimates of the ratio of genetic
variance to phenotypic variance in a linear model. Also in economics the combination of identical and fraternal twins has been used to
investigate how intrafamilial allocations (say, of schooling among children) respond to individual-specific endowments (e.g., Behrman
et al. 1994). The birth of twins has also been used to represent unexpected increases in fertility and to estimate quantity-quality
fertility models and to study the consequences of fertility on other life-course outcomes (Rosenzweig and Wolpin 1980a,b). Behrman,
Kohler and Schnittker (2010) provide a comprehensive treatment of twins methods for social scientists that includes both conceptual
and methodological discussions that are beyond the scope of this paper.
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The “cost” of the additional analytic leverage of the ACE-β model, which extends both
beyond the within-MZ model in economics and the ACE model in behavioral genetics, is
that the model is subject to more restrictive assumptions than the within-MZ approach in
economics. In particular, the model is subject to the same assumptions as the behavioral
genetics ACE model. The most relevant restrictions of the ACE model, beyond what is
already required in the within-MZ model, pertain to the underlying genetic model and other
assumptions required for decomposing the sources of variation into social and genetic
endowments and individual-specific factors. Specifically, the ACE-β model—just like the
ACE model in behavioral genetics assumes: (i) an additive genetic model with no assortative
mating (albeit both can be relaxed with suitable data), which establishes the correlation of
genetic endowments between DZ twins, and (ii) the absence of gene-environment
interactions, which implies that the latent endowments (genetic factors A, shared
environments C, and individual-specific factors E) are independent of each other and
additively affect the outcomes.2

2 Twins and Twinning: Setting the Stage
To help set the stage for what follows, there are two kinds of twins: monozygotic (MZ) or
“identical” twins and dizygotic (DZ) or “fraternal” twins. Except for being born at the same
time, DZ twins are ordinary siblings in the sense that they are the product of two different
eggs and two different sperm. MZ twins are genetically identical at conception, emerging
from a single sperm and egg, from which two separate eggs later emerge. Whereas the rate
of DZ twinning is affected by several factors, including maternal age and fertility drugs, and
is therefore subject to change over time, across women, and among countries, MZ twinning
occurs at a relatively constant rate among contexts (Kiely and Kiely 2001). Irrespective of
context, MZ twins are rarer than DZ twins. In most pre-fertility drug populations, about 1 in
85 births are twins (Plomin et al. 2005), of which about a third are MZ, a third same-sex DZ,
and a third opposite-sex DZ (Keith et al. 1995). While some prominent datasets of twins
raised apart exist (e.g., the Minnesota Study of Twins Raised Apart (Bouchard et al. 1990)
or the Swedish Adoption/Twin Study on Aging (SATSA) (Björklund et al. 2005)), most
twins data include twins that were raised together. Important U.S. twins datasets, for
example, include the National Longitudinal Study of Adolescent Health (Add Health) Twin
Data (Harris et al. 2006), the Midlife Development in the United States (MIDUS) Study
(Brim et al. 1996) and the National Academy of Science-National Research Council (NAS-
NRC) Twin Registry of World War II Veterans (Page 2002). Extensive register-based twins
data exist in Denmark, Sweden, Norway and Australia (Harris et al. 2002; Lichtenstein et al.
2002; Miller et al. 1997; Skytthe et al. 2002).

Because twins raised together share both genetic factors and important social and economic
contexts during childhood and adolescence, they provide a unique opportunity to better
understand how genetic and social endowments affect a variety of behaviors and outcomes
that are of key interest to social scientists. For example, in the economic “fixed-effects”
approach to twins data, twins have been extensively used to control for genetic and other
background unobserved confounding factors. Social scientists long have used sibling
comparisons for this purpose, reasoning that if brothers/sisters are similar with respect to
family background and other characteristics, using differences between them in levels of
schooling controls a great many relevant confounding factors.3 However, twins are more
attractive than other siblings data insofar as they share a birth. Differences between twins are

2An extensive literature exists that discusses these assumptions and the potential implications of violations of these assumptions (e.g.,
Behrman et al. 2010; Derks et al. 2006; Guo 2005; Hobcraft 2003; Plomin et al. 2005). There also exist several ways to test or relax
these assumptions if additional data are available (e.g., Behrman et al. 2010; Neale and Maes 2004; Plomin et al. 2005), including for
example the incorporation of assortative mating if data on spouses is available, or the consideration of dominance genetic effects if
additional sibling categories (half siblings, adopted children) are available.
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therefore not confounded by parental family life-cycle differences and, in the case of MZ
twins, genes at conception, both of which can have substantial confounding effects on both
the outcome and explanatory variables in a particular study.4 To overcome these concerns,
twins fixed-effects studies have been interested in estimating the causal effect of one (or
more) variable (e.g., schooling, birth weight) that may be partly determined directly by
unobserved endowments on other variables (e.g., fertility, marital status, health-related
behaviors and outcomes, social interactions, wages and well-being) that are themselves
partly determined directly by endowments (e.g., Behrman and Rosenzweig 2004; Behrman
et al. 1994, 1996; Kohler et al. 2005). These analyses explicitly acknowledge that both
schooling and outcomes such as fertility, nuptiality or health are possibly determined by
unobserved genetic or social endowments, where examples of the latter include as an
important dimension socioeconomic and psychological characteristics of the twins’ parents,
and these studies argue that twin designs can be used to obtain correct estimates of the
relevant relations even in the presence of such unobserved endowments.

3 Use of Twins in Economics: The Fixed-Effects Approach
The general framework of our discussion in this paper is a context where a researcher would
like to infer the causal effect of some variable x, which in our running example will be
schooling, on a second variable y. For our methodological discussions in Sections 3–7, we
will use (completed) fertility as the running example for y, and in the empirical examples
(Section 8) we will obtain estimates for the effect of schooling on health, spouse’s schooling
(which is an important indicator of marriage market outcomes) and fertility. The notion of
causality that underlies our discussions in this paper of the relationship of schooling with
outcomes such as health and fertility is thereby closely related to the recent discussion of
causality in the social sciences (Heckman 2008; Moffitt 2005, 2009; Rosenzweig and
Wolpin 2000; Winship and Sobel 2000). A basic point in this literature, emphasized by
Moffitt (2005) among others, is that the causal effect of, say, schooling x on fertility y,
cannot be estimated without some type of assumption or restriction, even in principle,
because of the inherent unobservability of the counterfactual.5 A cross-sectional regression
coefficient on x is necessarily estimated by comparing the values of y for different
individuals who have different values of x, not by comparing different values of y for a
single person observed at different levels of schooling x. Because individuals with different
values of schooling x are likely to differ in unobservable ways, the differences in their
fertility y may not accurately reflect the extent to which a specific person’s fertility would
vary if this individual could be observed at different levels of schooling. In light of this
inherent identification problem of the causal influence of, say, schooling x on fertility y, the
literature on causal modeling emphasizes that the estimation of a causal effect always
requires a minimal set of identifying assumptions, and moreover, that social science theory
needs to guide these assumptions because the minimal set of identifying assumptions for
causal inference cannot be empirically tested. Outside evidence, intuition, theory, or some
other means outside the specific empirical model and the specific data, are required to justify
any empirical approach to causal modeling. Using the words of Moffitt (2005), “while the
necessity to make these types of arguments may at first seem dismaying, it can also be
argued that they are what social science is all about: using one’s comprehensive knowledge
of society to formulate theories of how social forces work, making informed judgments

3See for instance Behrman and Wolfe (1987); Chamberlain and Griliches (1977); Griliches and Mason (1972); Hauser and Wong
(1989) and Warren et al. (2002).
4See Behrman and Taubman (1976) and Behrman et al. (1980) for early work on this issue.
5This point holds even if some random assignment (e.g., of incentives for attending school) is used as an instrument to attempt to
identify the impact of schooling x on fertility y. Such identification occurs only under the assumption that the random assignment does
not affect the outcome y through other channels (e.g., financial wealth accumulation) than through x.
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about these theories, and debating with other social scientists what the most supportable
assumptions are.”

We will argue in this paper that social science methods for twins data provide one promising
approach to the identification of causal effects that relies on transparent assumptions that are
consistent with the contemporary understanding about the underlying social and biological
processes that determine social, demographic and economic outcomes such as schooling,
nuptiality, fertility, wages and related aspects. By integrating the economic and behavioral
genetics approaches to the analyses of twins, we develop an approach that combines the
identification of causal effects, which dominates the economic literature, with the
decomposition of variances and covariances into genetic and environmental factors, which is
the primary goal of behavioral genetics approaches.

Figure 1 illustrates one possible conceptual framework about how unobserved genetic and
social endowments affect both schooling x and fertility y. While the economic fixed-effects
approach is usually presented somewhat differently, the representation in Figure 1 is
observationally equivalent and facilitates our subsequent comparison with the behavioral
genetics models and the integration of both approaches.6 Specifically, the conceptual
framework in Figure 1 assumes that schooling xij of twin i in pair j has a direct and causal
influence on the fertility yij of twin i in pair j that is represented by the coefficient β. In
addition, each of the phenotypic variables, xij and yij, is potentially subject to influences

from the three latent sources: genetic endowments (  and ), common environmental

influences (  and ), which we refer to as social endowments, that are shared by twins
reared together in the same family j, and unique or individual-specific environmental

influences  and  that in the economic literature are sometimes referred to as shocks to
either schooling xij or fertility yij. In this path diagram in Figure 1, the paths axx and cxx

indicate, respectively, the effects of the latent genetic component  and shared
environmental component  on schooling xij, while the paths ayx and cyx reflect the effect
of these latent genetic and shared environmental factors on fertility yij. The path exx

measures the effect of the unique environmental factors  on schooling xij, and eyy

measures the effect of the unique environmental component  on fertility yij.

As we will argue in more detail below, a required assumption of the standard economic
fixed-effects approach to twins data is that the unique environmental influences affecting
schooling xij and the outcome yij, say fertility, are independent.7 It is therefore important to
observe that, consistent with this assumption, we have drawn the path-diagram in Figure 1
without a path eyx that would connect the unique environmental factor  to fertility yij.

6We use this presentation because this paper is concerned with integrating the economic and behavioral genetics approaches to twins
data. The more conventional way of presenting the economic fixed-effects model is as follows, where the fertility yij of twin i in pair j
is related to schooling xij as

where β = the effect of schooling on fertility (to be estimated), fj = family endowments common to both twins in pair j, aij =
endowments specific to twin i in pair j, vij = random fertility shocks specific to twin i in pair j, αf = effect of family endowments fj on
schooling xij, αa = effect of individual-specific endowments aij on schooling xij, and uij = disturbance affecting xij but not yij except
indirectly through xij. The model can also be extended to allow for sibling endowment effects on schooling by specifying xij = αf fj +
αa aij + αs akj + uij, where αs akj is the effect of twin i’s co-twin k’s endowment on i’s schooling xij.7For a critical discussion of this key assumption, see Griliches (1979) and Bound and Solon (1999).
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The economic “fixed-effects” approach to twins data rests on the insight that, if unobserved
genetic and social endowments affect the variables x and y together with individual-specific
environmental factors as outlined in Figure 1, MZ twins data—but not other siblings data—
can be used to estimate the causal effect of schooling x on fertility y. This causal effect,
which we have denoted with β in Figure 1, is often a primary focus of analyses in the social
sciences. In the presence of unobserved endowments, however, cross-sectional estimates or
inferences based on sibling data (within-siblings analyses) are generally not able to correctly
infer these causal pathways.

To illustrate this within-MZ twins approach and its underlying assumption in more detail,
consider the following formal statement of the model in Figure 1 that is based on a linear
representation of a reduced-form equation relating fertility yij of twin i in pair j to his or her
schooling xij and to three sets of unobserved variables representing (i) social endowments 

and  affecting schooling xij and fertility yij that are common among both members of twins
pair j (e.g., exogenous features of the parental family environment in childhood, including
family income, parents’ human capital, average genetic endowments among siblings, local

schooling and health-related options), (ii) genetic endowments  and  that additively
affect both xij and yij and that are correlated among the members of each twins pair, and (iii)

unique individual environmental influences  and  that capture random “shocks” to the
schooling attainment and fertility outcomes of twin i in pair j. For schooling, the path
diagram in Figure 1 then implies the specification

(1)

where  and  are independently distributed and standardized to mean of zero and a
variance of one.

Schooling xij is assumed to have a direct causal effect, denoted by β, on fertility yij for twin i
in pair j. In addition, we assume that yij is also influenced by unobserved endowments. On
the one hand, yij is assumed to possibly depend on the shared environmental factors  and
the genetic endowments  that also affect schooling of the twin i in pair j. In addition,
fertility yij is potentially affected by unobserved endowments and shocks that are specific to

fertility y: (i) social endowments  that are common for both twins in pair j, (ii) genetic

endowments , which are correlated within a twins pair, and (iii) a random individual-

specific shock  that also includes measurement error. Assuming a linear relationship, we
thus obtain:

(2)

where  and  are independently distributed and standardized to mean of zero and a
variance of one. In addition, the model in Eqs. (1–2) and Figure 1 also assumes, as we have
mentioned earlier, that the random shocks  affecting schooling xij of twin i in pair j have
no direct effect on the fertility yij, and that these random shocks affect the fertility yij of twin
i in pair j only through their effect on schooling (in the path diagram in Figure 1 this
assumption is equivalent to specifying eyx = 0.). The coefficients ayx and cyx in Eq. (2),
which reflect the importance of the “cross-paths” in Figure 1 from the endowments  and

Kohler et al. Page 6

Biodemography Soc Biol. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



 to the fertility yij, indicate the extent to which the endowments affecting schooling xij and
fertility yij are interrelated. For example, when studying the effect of schooling attainment
on labor market outcomes or fertility, this interrelation is conceivably strong—and the path
coefficients ayx and cyx are correspondingly large—because unobserved differences in
abilities and preferences tend to affect both decisions about schooling and fertility and other
outcomes of interest such as wage rates.

As is well known, the parameter β in Eq. (2) is not identified in standard cross-sectional
regression analyses if at least one of the coefficients ayx or cyx is not zero, that is, if the
unobserved endowments  and  affecting schooling xij have also a direct effect on
fertility yij. In this case, β is estimated with bias if equation (2) is estimated across

individuals with different values of  and . The extent of bias in these cross-sectional
analyses depends on the covariance between the unobserved determinants of xij and yij in
Eqs. (1–2). It can be shown that the cross-sectional OLS regression coefficient β ̂ for
schooling is equal to

where β is the “true” effect of schooling x on fertility y from Eq. (2). The cross-sectional
OLS estimate of β is therefore biased unless both ayx and cyx equal zero, that is, unless the
genetic and social endowments affecting schooling have no effect on yij except through their
effect on xij. This assumption, however, is not plausible in many empirical applications.
Thus, generally, the cross-sectional estimate of the association between schooling and
fertility is a biased estimate of the causal impact of schooling on fertility because schooling
is partially proxying for genetic, family background, and other endowments.

It is important to emphasize that, in situations where the paths ayx and cyx in Figure 1 cannot
be assumed to be both equal to zero, using sibling rather than standard cross-sectional data
for the estimation does not provide a remedy. While siblings from the same family j have the
same shared environments  in common, siblings (other than MZ twins) do not share all
genetic endowments and therefore .8 Sibling data thus do not (fully) control for
unobserved genetic endowments, and if ayx ≠ 0 in Eq. (2), the estimate of β is biased also in
sibling analyses. With no further assumptions, it is therefore clear that β is not identified
even if sibling-pair data are used in the estimation of β. This is because of the individual-
specific genetic endowments  that are not equal for siblings, expect for MZ twins. As
long as families or individuals respond to individual-specific differences in endowments,
and such differences are important, then sibling estimators do not provide unbiased
estimates (Behrman et al. 1994, 1996). In recognition of this problem, researchers have
employed samples of monozygotic (MZ) twins, between whom there are as minimal as
possible endowment differences at conception, to identify β in estimates of relations (1–2).

One potential solution to the dilemma of identifying the effect β of schooling x on fertility y
is provided by using MZ twins because Eqs. (1–2) can be rewritten for MZ twins as:

8In addition, since siblings other than twins are of differential ages, the argument of sibling models that within-sibling estimates
control for all relevant social endowments so that the path eyx in Figure 1 can reasonably be assumed to be zero is weaker than in the
case of twins who are born at the same time and thus share factors such as parents’ ages, socioeconomic conditions, etc., all at the
same age.
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(3)

(4)

where for MZ twins we can assume that  (and, by definition, for shared

environments, ). Relations parallel to Eqs. (3) and (4) can be written for the
other member k of twins pair j.

The fixed-effects MZ twins estimation, or a within-MZ twins estimation, of Eqs. (3) and (4)
then controls for all right-side variables in these relations that are common to both members

of a MZ twinship: the genetic endowments  and , and the social endowments  and .
In particular, the within-MZ-twins estimator for the effect β of schooling x on fertility y is
obtained by subtracting relations (3) and (4) for twin 1 and 2 in each twins pair j. With such
a within-MZ-twins estimator, all of the unobserved endowment components in (3) and (4)
are swept out so that consistent estimates of β can be obtained from within-MZ estimation
under the maintained assumption that eyx = 0 (i.e., the assumption that the individual-
specific shocks to schooling  of twin i in pair j are not correlated with the unobserved
shocks to fertility yij):

In summary, under the assumption noted above, MZ fixed-effects estimators can be used to
identify the true reduced-form impact β of schooling x on fertility y. In addition,
comparisons can be made with estimates of relation (2) for the same fertility outcomes to
learn to what extent the estimates of the impact of schooling on fertility β are biased in
cross-sectional estimates that fail to control for unobserved endowments  and .
Comparisons can also be made between the within-MZ estimates for females and males,
between racial and ethnic groups, across birth cohorts, across levels of SES, over time, and
across countries. Comparisons can also be made between MZ fixed-effects and DZ fixed-
effects estimators to see if the unobserved individual specific genetic endowments  are
important so that within-sibling estimates that control only for common family endowments

 are misleading. Finally, comparisons can be made between DZ fixed-effects and ordinary
sibling fixed-effects estimators controlling for birth spacing to investigate the impact of
changes in the timing of births and birth order on the estimated impacts.

Although the MZ fixed-effects literature emphasizes the value of controlling for
endowments in the context of twins, there are other potential estimation strategies to break
the correlation between the disturbance term and the right-side schooling variable in relation
(2). Although these approaches are popular, data on twins may be preferable. Continuing
with the schooling example, the dominant alternative has been to use instrumental variables
(IV) or two-stage least squares (2SLS) in which actual schooling in relation (2) is replaced
by the estimated value of schooling based on first-stage instruments that predict schooling
but are not correlated with the disturbance term in relation (2). These approaches are
discussed in more detail in Section 4 below. Perhaps the most widespread example is the use
of changes in compulsory schooling regulations as a first-stage instrument to predict
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schooling (Angrist and Krueger 1991; Lleras-Muney 2005). However, as noted by several
scholars (Amin et al. 2010; Behrman et al. forthcoming; Lundborg 2008), these IV estimates
tend to be local average treatment effects (LATE) that are relevant for individuals who are at
the margin to be affected by the instruments used (e.g., at the margin of completing only
compulsory schooling levels); however, IV estimates are not average treatment effects
(ATE) for the broader population beyond this margin (Angrist and Krueger 1991; Moffitt
2009). Because within-MZ schooling differences exist over most schooling levels, the MZ
fixed-effects estimate are likely to be closer to average treatment effects (ATE) rather than
local average treatment effects (LATE).

4 Extensions of the Fixed-Effects Approach
Several extensions of the fixed-effects approach to twins data have been developed to
address the concern that, at least in some applications, the assumptions required for the
within-MZ estimator to identify the causal effect β of schooling on, say, fertility may not
hold. In our discussion below we address some of the concerns that have received the most
emphasis in the literature, and we present some of the approaches that have been developed
to address or remedy these concerns.

4.1 Gene-Environment Correlations
The model in Eqs. (1–2) and Figure 1 has been presented under an assumption that there are
no gene-environment correlations. One aspect of this assumption is that the genetic
endowments (Ax and Ay) are independent of the social endowments (Cx and Cy) and the
unique environmental effects (Ex and Ey). While this is a necessary assumption for the
behavioral genetics models discussed below, this assumption is overly restrictive for the
economic fixed-effects models. In order for the within-MZ estimator in Eqs. (3–4) to give an
unbiased estimator of β it is sufficient that, within monozygotic twins, the individual-

specific influences (“shocks”)  and  that affect schooling xij and fertility yij are

independent of the endowments  and  that are common to both members of a

MZ twins pair. It is not necessary that the genetic and social endowments (  and ) and

(  and ) are independent of each other, as will be assumed later on when we discuss the
behavioral genetics analyses of twins data. Moreover, the independence of the individual-
specific influences of the social and genetic endowments in the within-MZ analyses, is a
relatively innocuous assumption because the variance of the variables xij and yij in MZ twins
can always be decomposed into within-MZ twins pair variation resulting from the
individual-specific influences and between-twins pair variation that results from social and
genetic endowments. It is therefore important to point out that the ability of the within-MZ
model to correctly estimate β is not affected if there is a gene-environment correlation
between the genetic endowments (Ax or Ay) and the corresponding social endowments (Cx

and Cy). For example, if children with a higher-than-average genetic ability, which is
reflected in the genetic endowments Ax, also grow up in families that foster intellectual
development more than the average family, then the genetic endowment Ax is positively
correlated with the social endowment Cx. While a gene-environment correlation of this sort
is potentially problematic for a behavioral genetics model and can result in biased estimates
of heritability and related parameters, the within-MZ model provides an unbiased estimate
of β in the presence of gene-environment endowment correlations.

There is an another form of gene-environment interaction that merits consideration if
“environment” is interpreted to include observed right-side variables such as schooling xij.
Eq. (2) is written in a linear form, which means that the marginal impact of schooling xij on
fertility yij of twin i in pair j is assumed to be a constant β independent of the genetic—and
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social, for that matter—endowments. While this linear form is widely used, the approach
above can be modified to accommodate some alternative functional forms with different
implications. For example, if log-linear functions are used by defining the variables to be all
in logarithmic form, the marginal impact of schooling xij on fertility yij no longer is, by
assumption, the constant β independent of the genetic and social endowments. Instead this
marginal effect is β multiplied by yij/xij. In this specification, thus, this marginal effect
depends on both genetic and social endowments because yij/xij depends on both genetic and
social endowments. This particular specification is restrictive to be sure regarding the
possible interactions between endowments and schooling. And given that the endowments
are unobserved latent variables, more flexible specifications are not easily tractable. But it
does permit at least some exploration of schooling–endowment interactions.

4.2 Correlated cross-equation shocks
Perhaps the most emphasized criticism of the economic fixed-effects approach to the
analyses of twins data (as opposed to more general criticisms that also apply to other uses,
such as that twins are basically different from singletons), pertains to the assumption noted
above that the path eyx in Figure 1 and Eq. 2 is assumed to be zero. As mentioned earlier,
this assumption implies that the individual-specific shock  to schooling x does not have a
direct effect on the fertility yij. If this assumption holds, the individual-specific factors
affecting schooling are not correlated with the individual-specific factors affecting fertility y.
On the other hand, if between-twins differences in schooling reflect unobserved factors that
also directly determine fertility (or whatever is the dependent variable in Eq. 2), the
estimated schooling-fertility association is still biased in the within-twins estimator (Bound
and Solon 1999; Griliches 1979). Somewhat more formally, suppose that there exists a path
eyx in Eq. (4) such that the unobserved individual shocks  have a direct effect on fertility y
as in

(5)

In this case, the individual-specific influences affecting schooling xij and fertility yij are
correlated because some of the unobserved individual twin-specific factors contained in 
affect directly both the schooling and fertility of twin i in pair j. Hence, if eyx ≠ 0, some of
the shocks affecting schooling are “persistent” and also affect later-life outcomes such as
fertility; if eyx > 0, then the impact of the persistent shock on schooling is in the same
direction as the impact on fertility, and schooling and fertility are affected in opposite
directions if eyx is negative. An example for the latter case, for instance, is an unintended
teenage pregnancy that disrupts schooling and increases completed fertility.

Within-MZ-twins estimators are obtained by subtracting relations (1) and (5) within twins

pairs. While the unobserved endowment components  and  are, again, swept out
when using this within-MZ estimator, there remains the difference in the unobserved twin-
specific persistent shocks:

(6)

(7)
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Because of the presence of eyx in Eq. (7), therefore, the unobserved determinants of
schooling differences within twins pairs are correlated with the unobserved residuals
affecting differences in fertility within twins pairs. The within-MZ estimator in equation (7)
thus no longer gives an unbiased estimate of the effect β of schooling on fertility. The sign
of the bias is determined by the sign of the correlation of the unobserved factors in Eqs. (6–
7), which is equal to the sign of eyx. This sign is positive (negative) if the impact of the
shock on schooling is in the same (opposite) direction as the impact of the shock on fertility.
The estimate of β from equation (7), then, is an overestimate (underestimate) or upper
(lower) bound of the true value of β. For example, if more favorable in utero environments
due to proximity to the placenta increase both schooling and fertility beyond any effect
through schooling, as might be suggested by the results in Behrman and Rosenzweig (2004),
then the estimate of β from equation (7) is an overestimate of the true value of β. Although
in utero influences receive considerable attention, this overestimate due to positively
correlated shocks is not limited to the early life course: the same holds if an accident or
illness limits schooling and has persistent effects on later fertility.

Empirical studies have examined some of the implications of these concerns. Some studies,
for example, have explored how sensitive the estimates of interest are to the exclusion of
outliers regarding schooling differences between twins based on the argument that large
differences are more likely to be based on persistent factors that directly affect both
schooling and fertility in relation (2). In some cases, excluding such outliers does not change
the estimates substantially (Amin and Behrman 2010a,b; Amin et al. 2010), but in at least
one case it does. Amin (2010) reports that the Bonjour et al. (2003) estimates change a great
deal if a single outlier is eliminated. Another possible approach is to include additional
variables that might have persistent effects on both schooling and the outcome of interest,
such as measures of cognitive ability (Behrman et al. 1980) or birth weight (Amin et al.
2010). In these two cases, the estimates of interest are not changed much by including these
additional controls, but other applications could reveal different results.

In certain contexts, when the data include variables that satisfy the conditions for an
instrumental variable in the within-MZ model, a instrumental variable estimation of the
within-MZ model—to which we refer as within-MZ IV approach—can provide a direct test
of the assumption that eyx = 0. And if this assumption is rejected, the within-MZ IV model
can provide an estimate for the effect of schooling on fertility under the condition that eyx ≠
0. Finding a valid instrument that can be used in combination with within-MZ analyses can
sometimes be challenging, as these instruments need to predict differences in schooling x
within identical twins, but affect fertility y only through the effect on schooling. Two broad
category of instruments exit. On the one hand, one can envision for the estimation of the
within-MZ IV model an instrument z that is completely exogenous in the sense that it
predicts x but is not correlated with any of the unobserved endowments that affect the
schooling x and fertility y. In the context of twins reared together, instruments meeting these
criteria are likely to be rare, though random assignment to different teachers who inspire
different degrees of schooling might provide good instruments. On the other hand, within
the within-MZ framework, an acceptable instrument can be found under much weaker
conditions. In particular, in observational studies, it is more likely that there exists a variable
z that is correlated with the genetic and social endowments that affect x and y, but is not
correlated with the individual-specific environmental effects that affect schooling x and/or
fertility y. An example that has been used in the context of the economic twins model is
birth weight, where the birth weight of each twin in a pair is likely to be affected by
common endowments. But in the case of the effect of studying the effect of schooling x on
fertility y it might be reasonable to assume that the effect—net of endowments—of birth
weight on fertility works only through the effect of birth weight on schooling. More
formally, a suitable instrument z for the within-MZ IV approach is provided by a variable z
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that depends on the social and genetic endowments that affect schooling x and/or fertility y,
and is additionally determined by its own set of social and genetic endowments and
individual-specific influences in the form:

with schooling xij being determined by both zij and the endowments  and  as

and fertility yij depending, as is given in Eq. (5), on the endowments (  and ),

the individual-specific shocks to fertility , and additionally, also on the individual-specific
shocks  to twin i’s schooling.

In this case, a valid instrument for the within-MZ IV approach can therefore depend on the
social and genetic endowments, as long as it affects schooling zij and is not correlated with

the individual-specific shocks  and  that affect schooling xij and fertility yij
respectively. If such an instrument exists, an unbiased estimate of the effect β of schooling
on fertility can be obtained—even if eyz ≠ 0 in Eq. (5)—by regressing the within-MZ
difference in fertility y,

(8)

on the within-MZ difference in schooling x,

(9)

using the within-MZ difference in z, , as an instrument for the

within-MZ difference in schooling . Because these within-MZ IV analyses
difference out all endowments that are shared by twins within a twins pair, and only because

this is the case, the difference  is a valid instrument in that it is not correlated with
the unobserved residuals for the within-MZ schooling and fertility differences in Eqs. (8)
and (9).

4.3 Cross-twins endowment effects
In some applications of the within-MZ model in Figure 1 it might seem plausible that the
value of xij of twin i in pair j is affected by the endowments of i’s co-twin k. For example, in
contexts where x measures schooling attainment, it might be reasonable to assume that a
particularly high genetically-determined “ability” of i’s co-twin k has a positive spill-over
effect on i, and that as a result of k’s endowments and high ability, twin i attains a higher
level of schooling than would otherwise be the case. To capture this possibility, Eq. (1) can
be modified as
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(10)

where  is the effect of a twin’s own genetic endowments on twin i’s schooling attainment
xij, and  is the effect of the co-twin’s genetic endowment on i’s schooling.9 Obtaining the
within-MZ estimator by differencing within monozygotic twins pairs the relations (10) and
(2) then shows that the cross-endowment effects as specified in Eq. (10) do not bias the
within-MZ estimator. Hence, conditional on the other assumptions of the within-MZ
approach being satisfied, analyses that focus on the differences in schooling x and fertility y
within MZ twins continue to provide an unbiased estimate of the causal effect β of schooling
on fertility.

4.4 Social interactions: Twins reacting to each other
A somewhat related concern in twins studies pertains to the empirical implications of one
twin’s behavior occurring in reaction to the other. For example, twin i’s schooling
attainment could be affected—positively in the case of imitation, or negatively in the case of
competition for scarce resources such as money or parental time or by efforts of one twin to
distinguish herself/himself from her/his co-twin—by the co-twin k’s schooling attainment.
The implications of such social interactions for the fixed-effects approach, which are
somewhat distinct from the case of cross-twins endowments explored in Section 4.3 above
—can be investigated by introducing a social interaction parameter s into the framework in
Figure 1. In particular, in the context of social interactions, a shock to co-twin k’s schooling
will have implications for i’s schooling attainment because of the social interaction among
twins, while in the case of cross-twins endowment effects discussed in the previous section,
twin i’s schooling responds only to the co-twin k’s endowment but not to k’s specific
schooling attainment that is a function of both k’s endowments and individual specific
shocks.

The implications of social interactions with respect to schooling can be investigated by
augmenting our earlier framework in relations (1) and (2) with a cross-twins effects on
schooling x, where the cross effects are assumed to be less than the own effects (|s| < 1).
Specifically, social interactions on x among twins can be incorporated as

where sxkj is the effect of co-twin k’s schooling, denoted xkj, on twin i’s schooling
attainment xij. The corresponding within-MZ expression can then be obtained as:

This relation suggests that: (i) the usual MZ fixed-effects estimator is unbiased even though
the disturbance term includes  in addition to  under the assumption that the maintained
assumption that  does not enter the disturbance term in Eq. (2), which means that, as is

9More generally,  can also represent the effect of any other sibling’s specific endowments on i’s schooling attainment.
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intuitively appealing, the schooling difference is less (more) than the difference in the
random shocks that affect schooling if there is imitation (reaction).

Instead of a social interaction processes that affects schooling x, we can assume a cross-
twins effect that affects y, say, because twins imitate each others’ fertility behavior, with the
social interaction effect less than the own effect so that |s| < 1:

The manipulation of this relationship parallel to that for Eq. (11) leads to

In the case of social interactions regarding fertility y, and in contrast to our earlier discussion
in this section of social interactions on schooling x, this relation suggests that the usual twins
estimator of β is biased downwards (if s > 0) or upwards (if s < 0) even if eyx = 0 because of
the imitation/reaction effects with respect to the fertility y.

In summary, if there are social interactions—either in the form of imitation or reaction—
with respect to the right-side determinant, such as schooling in relation (2), there is no bias
in either direction for the MZ fixed-effects twins estimator. But if there are social
interactions with regard to the dependent variable, such as fertility in relation (2), the
estimated β is a lower bound if there is positive imitation (if s > 0) and an upper bound if
there is negative imitation (reaction) with s < 0. If there is positive imitation on the outcome
y, the maximum downward bias is 50%, but the actual bias is likely to be considerably less
because the maximum is for the unlikely situation in which the twin’s fertility is weighted as
much as the own direct determinants of one’s own fertility

4.5 Classical Measurement Error
Another critique of twins fixed-effects estimates—or, for that matter, of any fixed-effects
estimates—pertains to the consequences of classical random measurement error. Because
much more of the variation in schooling is across twins pairs rather than within twins pairs,
the fixed-effects estimator filters out much of the true signal of schooling without also
reducing measurement error (Bishop 1977; Griliches 1979). Because of this larger noise-to-
signal ratio, the fixed-effects twins estimator is subject to more of the measurement error
bias towards zero than is the cross-twins pairs or simple cross-sectional estimator. If the
coefficient estimate from the fixed-effects twins estimator is smaller, it may be because it
controls for the endogenously determined part of schooling or because of the larger bias due
to measurement error or due to some combination of these two factors.

To see the impact of measurement error, assume that measured schooling xij is linearly
related to true schooling  but is measured with random measurement error εij:

Bishop (1977) and Griliches (1979) show that if measurement error is not correlated across
siblings,10 the bias towards zero in β ̂w, the estimated within-sibling coefficient β, is:
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(11)

where ρx is the correlation in schooling between siblings (which is zero in standard

individual estimates) and σ2(εij) and  denote the variance of εij and xij respectively.
This bias towards zero due to measurement error is likely to be greater for within-DZ
estimates than for individual estimates and for within-MZ estimates than for within-DZ
estimates because ρx is likely to be positive and greater for MZ than DZ twins.

Table 1 gives some illustrations, with each row representing different noise-to-signal ratios

 as given in column 1; the percentage biases in individual, within-DZ and
within-MZ estimates due to measurement error in columns 2–4, and the ratios of the
coefficients from DZ estimates and MZ estimates to individual estimates due to
measurement error in columns 5 and 6.

Twins studies that have reports from other respondents (i.e., the other member of a twins
pair, the twins’ adult children), so that they can estimate measurement error models, report
estimated noise-to-signal ratios of 0.04–0.12 (Amin et al. 2010; Ashenfelter and Krueger
1994; Ashenfelter and Rouse 1998; Behrman et al. 1994). Therefore a noise-to-signal ratio
of about 0.08 is suggestive of the extent of bias due to measurement error near the midpoint
of the range of noise-to-signal estimates from these studies and how these biases differ
across the three types of estimates: 8% for individual estimates, 16% for within-DZ
estimates, and 32% for within-MZ estimates. Thus fairly substantial drops in the coefficient
estimates for the within-DZ and within-MZ estimates occur due to measurement errors of
this magnitude, even if in reality there are no biases due to unobserved endowments. These
measurement error biases result in the coefficient estimates for the within-DZ estimates
being 9% smaller and those for the within-MZ estimates 26% smaller in absolute magnitude
than those for the individual estimates. Behrman et al. (1980) observed that estimates of
noise-to-signal ratios from other studies could account for up to half of the difference
between their fixed-effects estimates and OLS estimates. Ashenfelter and Krueger (1994)
and Behrman et al. (1994) introduced the use of another report on the twin’s schooling to
instrument schooling and therefore eliminate the bias due to measurement error under the
assumption that the measurement error in the other report is independent of the measurement
error of one’s own. Both studies find that this method for controlling for measurement error
increases the estimated returns to schooling in comparison with estimates that do not correct
for measurement error.11

5 Behavioral Genetics Structural Equation Models for Twins Resemblance
In contrast to the economic approach that has been outlined above, the behavioral genetics
approach to twins data has traditionally been concerned with identifying the contributions of

10If the correlation in measurement error between siblings (ρε) is nonzero, , where ϕ = (1 − ρw)/
(1 − ρx). Note that the measurement error bias in the within-sibling estimate is decreasing in ρw and is less in the within-sibling
estimate than in the standard estimate if ρw > ρx. We are not aware of any estimates of ρw. But what appears to be random noise in
cross-sectional data may have a family component if the measurement error is due to such unobserved factors as exaggeration or
modesty or to failure to control for school quality, all of which may be shared by siblings.
11Ashenfelter and Krueger also find that correcting for measurement error leads to larger estimates than found by conventional
ordinary least squares models. Behrman, Rosenzweig and Taubman and subsequent studies using this method have yielded
measurement-error corrected estimates that are usually less than the OLS estimates, suggesting that conventional cross-sectional
estimates of the schooling-wage association are, in any case, too large.
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genetic and social endowments to variation in phenotypes, and to use this approach to
measure aspects such as the “heritability” of phenotypes that reflect the proportion of
variance of a phenotype in a given population that is attributable to genetic factors. We
briefly discuss in this section the univariate behavioral genetics model, but then focus on the
bivariate behavioral genetics (ACE) model that is more closely related to the economic
approach discussed in the previous sections. The emphasis in interpreting the results, and the
assumptions underlying the analyses, however differ in important ways between the
economic and behavioral genetics approaches to twins data, and these differences will be
highlighted in our discussion below.

5.1 Univariate ACE model
Resemblance between twins can be modeled using a two-group structural equation model fit
to variance-covariance matrices. Figure 2 presents the basic ACE model for a single
phenotype xij (say, schooling). Parallel to the discussion of the MZ fixed-effects twins model
above, the three latent components in the model refer to additive genetic influences (Aij),
common environmental influences (Cij), and unique environmental influences (Eij). These
unobserved latent factors are independently distributed and standardized to a mean of zero
and a variance of one.12 The ACE model is usually identified (as for heritability), by
assuming different correlations between different types of twins. The ACE model is often
limited to MZ and same-sex DZ twins, although other models, such as the sex-limitation
model, consider cross-sex DZ pairs. The C factors are correlated at 1, as they denote
environments shared by twins, and therefore C1j = C2j = Cj. The Aij factors are correlated at
different levels depending on the type of twins. Because they represent unique influences
(including measurement error) affecting only twin i in pair j, the Eij factors are not
correlated within twins pairs.13,14

Formally, the univariate behavioral genetics approach usually assumes an additive genetic
model with no assortative mating and with equal environmental influences across kinship
categories.15,16 In this additive genetic models, multiple genes each have small effects on a

12For a detailed discussion of this ACE model and similar approaches for the study of twins and families, see for example Neale and
Maes (2004).
13The ACE model can be fit using any structural equation program, but some programs are better for samples of relatives. Mx (and
more recently, its successor OpenMx) is perhaps the single most popular program for estimating behavioral genetics models, but other
programs have functions that are also well-suited (Neale et al. 2006; OpenMx Development Team 2010). On their webpage, for
example, M-Plus provides example scripts for assorted models using twins, including those discussed here. Likewise LISREL scripts
are provided in Neale and Cardon (1992).
14The ACE model can easily be generalized to other relatives by focusing on the correlation among the A factors, as for example,
parents and offspring share 50% of genes, half siblings 25%, first-cousins 12.5%, and so on. Such models also require making
assumptions regarding C, which are less definitive than assumptions regarding A. Identifying genetic influences also requires relatives
who differ in their level of shared genetic variance, which means that surveys in which all members of a household are interviewed are
usually not sufficient for calculating heritability, as the expected child-parent and child-child correlations are all 0.5.
15The equal environments assumption requires that environmentally caused similarity for a particular phenotype be the same for both
MZ and DZ twins and, thus, that the shared environment correlation between twins be identical for both types of twins. While some
critics argue that this assumption is regularly and severely violated (Richardson and Norgate 2005), the validity of this assumption
needs to be evaluated in the specific context. Empirical tests of the equal environment assumption often provide support for the
acceptability of this assumption. According to the critics, for example, MZ twins experience more similar environments than DZ
twins, thereby inflating differences between the two types of twins and, in turn, inflating estimates of heritability. In response to such
concerns, the validity of the equal environments assumption has been evaluated using mislabeled twins (twins labeled DZ when they
are in fact MZ) or and MZ twins who are in fact treated differently (Scarr 1968). Both methods rely on the idea that MZ twins who are
treated more individually should show more differences than those who are treated more similarly. Studies using both methods
provide evidence for the validity of the assumption. Physical similarity, for example, is unrelated to twin similarity in personality
(Morris-Yates et al. 1990; Plomin et al. 1976) and concordance on many psychiatric disorders, with the notable exception of bulimia
(Hettema et al. 1995). Plomin et al. (1976) find evidence that MZ twins who resembled each other more were less similar in
personality, leading to a downwardly biased estimate of heritability. Kendler et al. (1993) explore concordance for several common
psychiatric disorders as a function of real zygosity, as revealed by biological tests, and perceived zygosity, as reported by twins or
their families. In their study, 15% of twin pairs (one or both members) disagreed with the zygosity assigned by investigators, but
perceived zygosity had no bearing on concordance for psychiatric disorders, including three disorders commonly studied by
sociologists (i.e., major depression, generalized anxiety, and alcoholism).
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particular phenotype xij (e.g., schooling), and the overall influence of genetic factors on the
phenotype xij can then be represented as aAij, where Aij is the relevant genetic endowment
that affects the phenotype xij, and a measures the extent to which xij is affected by this
genetic endowment. In order to establish the degree of genetic relatedness among DZ twins,
an additional assumption about assortative mating is required. Since traditional twins data
often do not provide information that would allow the identification of assortative mating,
traditional behavioral genetics analyses assume that there is no assortative mating.17 In this
case, an immediate corollary of the additive genetic model is that the correlation in genetic

endowments between DZ (fraternal) twins is . This correlation of .5 in DZ
twins occurs because in the additive genetic model, DZ twins (like ordinary siblings) share
50% of their genes on average. For MZ twins, who share all of their genes at conception,
this correlation is equal to one at conception. In the path diagram in Figure 2 the paths
linking the genetic endowments of twins 1 and 2 therefore have a value of 1 for MZ and .5
for DZ twins.

Similar to the structure of the economic model that we outlined above, the behavioral
genetics model can then be presented (again, as deviations from the means) as

(12)

where Aij, Cij and Eij are independently distributed latent factors, standardized to a variance
of one, that represent respectively the additive genetic, shared environmental and unique
environmental influences on the observed phenotype xij of twin i in pair j. This specification
for the determinants of the phenotype xij is analogous to the relation (1) that we specified for
schooling in our earlier discussion of the within-MZ model in Section 3.

Assuming an additive genetic model with no assortative mating, the correlations of the

genetic endowments within twins pairs is  for DZ twins and

 for MZ twins. Shared environmental factors, or social endowments, are
assumed to be identical for both members of a twins pair (Cor(C1j, C2j) = 1, independent of
zygosity), and the individual-specific influences are independent within twins pairs.
Stacking the observed phenotype for both twin 1 and twin 2 in a twins pair into a vector P,
which in the case of the univariate ACE model means that Pj = (xij, x2j)′, then allows us to
then obtain the variance and covariances of the observed phenotypes for MZ twins (denoted

) and DZ twins (denoted ) as

16In addition to additive genetic factors, the model can easily be modified to include dominance effects; in standard twins data,
however, additive genetic contributions cannot be distinguished from dominance genetic effects, except under the restrictive
assumption of no shared environmental influences, and our discussion therefore focuses on the additive genetic model; for a more
extensive discussion of how additive and dominance genetic influences can be incorporated in twins and sibling analyses, see Neale
and Maes (2004).
17Twins data that include information about the characteristics of spouses can potentially identify the extent of assortative mating and
can include this aspect explicitly in the analyses (see Neale and Maes 2004). In addition, the assumption of no assortative mating in
behavioral genetics analyses tends to be “conservative” in the sense that estimates of heritability in traditional behavioral genetics
analyses will be biased towards zero if there is positive assortative mating.
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where the subscript j for twins pairs has been omitted for simplicity and εMZ and εDZ denote
the expectation operators taken for MZ and DZ twins respectively.

Heritability (usually denoted h2) in the behavioral genetics literature is defined as the ratio
of the variance of the genetic contributions to x, which are given by of aAij in Eq. (12), to
the variance in the phenotype x for a given population. In the univariate ACE model,
heritability h2 is obtained as , where a2 is the total genetic variance in
the phenotype x, and  is the overall variance of x. In a similar fashion, the
proportion of the variance that can be attributed to social endowments (or shared
environmental factors) in this model can be obtained as .

An important advantage of the ACE model for obtaining estimates of the heritability and the
underlying parameter a, c and e, is the transparency of the approach and the flexibility of its
assumptions. As with other structural equation models, the assumptions of the ACE model
can be relaxed directly based on theory, prior perceptions and relative fit of different
models. For example, if one assumes no genetic influence on a phenotype, a model that
freely estimates a can be compared with a model that constrains a to zero. Likewise, if one
knows that DZ twins share more than 50% of their genes owing to assortative mating, the
correlation between the A components can be increased (e.g., Neale and Maes 2004). More
complicated explorations are possible, but require additional information for identification.
18

5.2 Bivariate ACE model
Of particular relevance to our previous discussion about the use of twins data in economics
is the extension of the ACE model to multivariate contexts. We focus here particularly on
the bivariate case where the observed phenotypes include xij (say schooling) and yij (say
fertility) of twin i in pair j. While several observationally-equivalent specifications for the
bivariate behavioral genetics model are possible, Figure 3 shows the most common

specification that includes two latent additive genetic components (  and ), two
additive latent shared environmental components (  and ), and two latent unique

environmental components  and .19 As in the univariate model, within a twins pair, the
genetic and shared environmental components are correlated within twins pairs. Assuming
an additive genetic model with no assortative mating, as is done in most applications, the

correlation for the genetic endowments  and  within-pairs is .5 for DZ and 1 for MZ
twins, the correlation for shared environmental factors is 1, and hence  and

 independent of zygosity. The unique environmental factors  and  are not
correlated within twins pairs.

The bivariate ACE model is attractive because it allows for the possibility that schooling and
fertility are affected by common genetic factors, or are similarly affected by the same shared
environmental influences. For example, the paths axx and cxx indicate, respectively, the
effects of the latent genetic component Ax and shared environmental component  on

18In addition to the structural equation (ACE) approach to estimating heritability, DeFries and Fulker (1985) propose a method of
estimating heritability (h2) and common environmental influences (c2) with twins data by a simple linear regression of a twin’s trait
on the co-twin’s trait and the degree of genetic relatedness (see also Kohler and Rodgers 2000). In addition, several extensions of
DeFries-Fulker (DF) analyses have been proposed that allow the consideration of genetic non-additivity (Waller 1994), observed
differences in non-shared environment (Rodgers et al. 1994), and binary or censored observations (Kohler and Rodgers 1999).
19This specification is also sometimes referred to as the Cholesky decomposition because it is based on a decomposition of the
variance-covariance matrix into lower triangular matrices that is known as the “Cholesky decomposition”.

Kohler et al. Page 18

Biodemography Soc Biol. Author manuscript; available in PMC 2012 January 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



schooling xij, while the paths ayx and cyx reflect the effect of these latent genetic and shared
environmental factors on fertility yij.20 The path exx measures the possibly effect of the
unique environmental factors Ex on schooling x, and the path eyx measures the effect of the
unique environmental component Ex on fertility y. In addition, fertility y is affected by
additional genetic, shared environmental and unique environmental components Ay, Cy and
Ey that contribute to variation in fertility, but not to variation in schooling.

In a close resemblance to the economic twins model outlined earlier in this paper, the
relationship between the observed phenotypes, xij and yij, and the latent genetic, share
environmental and unique environmental factors are specified as

(13)

(14)

where in contrast to the economic model in Section 3 there is no direct effect β of schooling
x on fertility y and the model allows for a direct influence of the individual-specific factors
affecting schooling, Eij, on fertility y (i.e., the path eyx in relation 14 can be non-zero).

To derive the variance-covariance matrix in the bivariate ACE model of the observed
phenotypes, stacked again in a vector P = (x1j, y1j, x2j, y2j)′, it is useful to arrange the
coefficients of the path diagram in Figure 3 (see also Eqs. 13–14) into lower triangular
matrices as

with their corresponding products being given by A = LaLa′, C = LcLc′, and E = LeLe′.
Maintaining the assumption of an additive genetic model with no assortative mating, we
then can obtain the variance and covariances of the observed phenotypes P = (x1j, y1j, x2j,

y2j)′ for MZ twins (denoted ) and DZ twins (denoted ) as

(15)

(16)

where εMZ and εDZ denote again the expectation operator taken for MZ and DZ twins
respectively.

20The presentation of the bivariate ACE model uses the “Cholesky decomposition approach” of presenting this model; while this is
the most frequently used bivariate ACE specification, there are other specifications of the latent genetic and social endowments that
are observationally equivalent (Neale and Cardon 1992; Neale and Maes 2004).
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The expected variance of the phenotypes,  for x and  for y in the bivariate ACE model is
equal for MZ and DZ twins and can be obtained from Eqs. (15–16) as  and

. In addition, Table 2 provides co-variances that are implied by
the bivariate ACE model in Eqs. (15–16) as a function of the path values in Figure 3. While
there are a total of 20 variances and covariances in the data they correspond to only nine
unique moment conditions when stated as functions of the coefficients axx, ayx, ayy, cxx, cyx,
cyy exx, eyx and eyy. The nine parameters of the bivariate ACE model in Figure 3 are
therefore exactly identified with data on twins reared together.

In most empirical applications, similar to the univariate behavioral genetics model, the
bivariate ACE model in Figure 3 and Eqs. (13–14) has primarily been used to decompose
the variance in the observed phenotypes x and y, say schooling and fertility, into the latent
genetic, shared environmental and unique environmental components (Coolidge et al. 2004;
Willcutt et al. 2007). In addition, the bivariate ACE model in Figure 3 can reveal that a
certain fraction of the variance in fertility y is due to genetic factors that also contribute to
variation in schooling x (path ayx), and that another part of the variation in fertility is due to
genetic factors that contribute to fertility but not schooling (path ayy). For example, Table 3
shows the contributions of genetic endowments to the variance and co-variance matrices
implied by ACE model in Eqs. (15–16). The heritability of schooling x, using the genetic
contributions given in Table 3, is then obtained from the top panel (  for monozygotic
twins) as , where the numerator is the genetic variance and the
denominator is the overall variance of x. Analogously, the heritability of fertility y is given

by , where  in the numerator and
denominator reflects the contribution to the genetic variance in fertility y that stems from
genetic factors that also affect schooling. In a similar vein, the ratio axxayx/(axxayx + cxxcyx +
exxeyx) is the fraction of the covariance between schooling x and fertility y within each
individual that can be attributed to genetic factors that affect both schooling and fertility, and

 is the correlation between the genetic endowments that affect
schooling x and the genetic endowments that affect fertility y. Similar calculations can be
conducted for social endowments (shared environments) and individual-specific factors.

For example, using data on Danish twins born between 1953 and 1970 and who participated
in a survey in 1994, Kohler and Rodgers (2003) conclude that a bivariate behavioral genetics
analysis confirms earlier findings that fertility in low-fertility settings, such as contemporary
Denmark, is subject to important genetic influences, while at the same time, the bivariate
model shows the new and somewhat unexpected result that genetic variance in fertility is not
necessarily shared with genetic variance in completed schooling (measured in years of
tertiary schooling). Instead, Kohler and Rodgers’ results show that for both males and
females most genetic variance in fertility is residual variance that affects the number of
children but not schooling attainment. Overlapping influences mainly exist for shared
environmental factors analyses of females, where all shared environmental factors affecting
fertility also affect schooling.

6 Introducing causal pathways between phenotypes: Extending the ACE
framework

While univariate, bi- and multivariate behavioral genetics models have been widely used in
the behavioral genetics literature, and have received some interest from social scientists,
their use within the social sciences remains limited. One possible reason for this is that, from
a social science perspective and in light of our earlier discussion of the economic approach
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to twins data, the behavioral genetics model in Figure 3 is not fully satisfactory because it
attributes the association between schooling x and fertility y exclusively to the latent
components in this model that reflect genetic, shared environmental or unique
environmental factors. Specifically, schooling and fertility within each individual in this
ACE model are correlated because at least one of the paths ayx, cyx or eyx is non-zero. In
addition, a non-zero pathway ayx or cyx implies that fertility and schooling are correlated
between twins within the same twins pair. The ACE model, however, does not allow for the
possibility that there is a direct effect of schooling x on fertility y, i.e., it explicitly ignores a
direct pathway from schooling and fertility, a pathway that has been subject of an extensive
literature in the social sciences and the identification of which is the primary goal of the
economic model for twins data discussed earlier.

Therefore, in order to allow for a direct effect of schooling on fertility, as is shown in Figure
4, it is desirable to introduce causal pathways between the variables x and y in the bivariate
ACE model. We denote the ACE model that includes such a direct effect of x (schooling) on
the outcome y (fertility) as an ACE-β model, where β refers to the causal effect of x on y that
is present in the ACE-β but absent in the conventional ACE model. While conceptually
appealing, however, the ACE-β model in Figure 4 is not empirically identified in twins or
other family data. If one allows for the direct pathway from schooling to fertility, the data do
not contain enough moment conditions to identify all pathways included in the model.21

Moreover, this lack of identification cannot be overcome by using an extended twins design
that would include other siblings that have a different degree of genetic relatedness or that
include twins reared apart because identification of all pathways in Figure 4 would require
more moments between the observed variables for each twin within a twins pair (see also
Table 4).

While there have been some models in the behavioral genetics tradition that include causal
pathways, such as for example directed causality models (e.g., Gillespie and Martin 2005;
Gillespie et al. 2003; Heath et al. 1993) and the children of twins design (D’Onofrio et al.
2009, 2003; Eaves et al. 2005), these approaches are targeted for research questions that are
different from the ones emphasized in this paper. The directed causality models are aimed at
identifying the direction of causality between two variables in cases where the genetic and
social endowments for these variables are distinct. These models therefore attempt to
identify whether x has a causal effect on y, or vice versa with y having a causal effect on x,
in contexts where each of these variables is affected by its own distinct set of latent
influences (endowments and individual specific factors).22 The children of twins (COT)
design has been proposed as an alternative to the adoption study to resolve the direct effects
of parental treatment from secondary parent-child association due to genetic factors. In
particular, because parents provide the environmental context for the family and transmit
genetic makeup to their offspring, the genetic and environmental processes responsible for
associations between family risk factors and offspring adjustment are confounded. The
children of twins design therefore uses a twins design to delineate intergenerational
associations into (i) environmental processes specifically related to the risk factor, (ii)
genetic factors that influence the risk factor and offspring characteristic, and (iii) common
environmental factors that vary between families. Neither the directed causality model nor

21In order to identify β in the ACE-β model in Figure 4, additional moment conditions that link x (schooling) on the outcome y within
the same individual would be required; while an extended ACE framework that adds additional sibling relationships (half-sibs,
cousins, etc.) allows to identify more complex genetic models (e.g., see Neale and Maes 2004), these additional sibling categories do
not provide additional moment conditions linking x and y within individuals that provide identification of the causal pathway β
between x (schooling) on the outcome y in the ACE-β model in Figure 4.
22In Figure 4, the condition of distinct latent influences (endowments and individual specific factors) for both x and y implies that all
of the coefficients ayx, cyx and eyx are equal to zero. A direction of causality model would then try to separate whether the path
between x and y is directed from x to y (x → y) or vice versa (y → x).
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the children of twins design provide a substitute for the framework developed here. In
particular, in the contexts that are of primary interest for our discussion in this paper, the
direction of causality is usually given from the context or the sequencing during the life-
course—e.g., as in studying the causal effect of schooling attainment on completed fertility
later in life—and it is the potential presence of correlated unobserved endowments between
schooling x and fertility y that is of primary concern. In addition, the primary concern in this
paper is about the interrelations of behaviors/outcomes that occur over the life-course of an
individual, such as the effect of schooling on fertility, rather than on the intergenerational
aspects that link parental behaviors (or risk factors) to child outcome as studied in the
children of twins design.

Given our previous discussion, one might conclude that there is an inherent empirical
incompatibility between, on the one hand, the behavioral genetics analyses of schooling x
and fertility y within a multivariate ACE model that focuses on identifying the contributions
of genetic and social endowments on the variation and covariation of the phenotypes x and y
(Figure 3), and on the other hand, the conventional social science approaches that would
generally emphasize the direct effect of schooling x on fertility y as one of the primary
parameters that need to be inferred from data (Figure 1).

This incompatibility, however, can be resolved if one is willing to make identifying
assumptions that one of the diagonal paths within the ACE-β model in Figure 4 is known a
priori. Of particular interest in this context is the ACE-β model in Figure 5 that constrains
the path eyx to zero.

It is important to emphasize that the restriction eyx = 0 is a plausible—and probably the most
plausible—identifying assumption in the ACE-β model in Figure 5. This assumption is
equivalent to the assumption that underlies the identification of the parameter β in the
economic fixed-effects model for twins analyses, and similar to our earlier discussion, this
assumption implies that the unique environmental factors that affect schooling x are
assumed to affect fertility y only through its effect on schooling, but not directly.23,24

The ACE-β model in Figure 5 therefore blends the economic fixed-effects approach and the
behavioral genetics bivariate ACE model. As in the twins fixed-effects model, this model
includes a direct effect β of schooling x on fertility y. In addition, the diagonal paths ayx and
cyx in the extended ACE-β model in Figure 5 also reflect the contributions of unobserved
endowments—either genetic or shared environmental factors—to both fertility and
schooling. As our earlier analyses has shown, if one of these paths is non-zero, standard
estimates of the effect β of schooling on fertility are biased. To avoid this bias, both the
economic fixed-effects model in Eqs. (1–2) as well as the ACE-β model in Figure 5
explicitly allow for the possibility that genetic and/or social endowments jointly affect
schooling x and fertility y.25,26

23While eyx = 0 is a plausible assumption to achieve the identification of the model parameter in the ACE-β model, it is not the only
possible assumption. Alternative assumptions are cyx = 0 or ayx = 0.
24Although the path β might be seen in the ACE-β framework as absorbing the influence of the individual-specific factors  along
the cross-path eyx in the conventional ACE model, the interpretation of the two approaches is fundamentally different and the two
specifications imply different moment conditions (see below) and can result in different estimates for all model parameters. In the
ACE-β framework, β measures the direct causal effect of schooling (xij) on fertility (yij), and all individual-specific shocks to
schooling affect fertility only through schooling. In the conventional ACE model, eyx measures the extent to which unobserved shocks
that affect schooling also have an direct effect on fertility. Distinctions of this sort are informative, and a conventional ACE and an
ACE-β model can lead to very different conclusions. In the empirical illustration we provide below, for instance, we show that the
negative relationship between schooling and fertility is observed within individuals is attributed in the ACE model to a negative
coefficient for the path ayx, that is, to genetic factors that have a positive effect on schooling and a negative effect on fertility. In the
ACE-β model, the negative association between schooling and fertility is predominantly due to a causal negative effect β of schooling
on fertility. The interpretation of the ACE-β results is therefore much more consistent with the social science literature on the
interrelation between schooling and fertility (e.g., Kravdal and Rindfuss 2008).
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The ACE-β model in Figure 5 has an important advantage over the within-MZ approach
discussed earlier in this paper in that it not only provides a consistent estimate of the direct
effect β of schooling x on fertility y, like the economic model in Eqs. (1–2), but it also
differentiates between the genetic and shared environmental components contributing to the
(co-)variation in schooling x and fertility y within a population. The model therefore
integrates the economic approach that has focused on identifying the causal effects of
schooling on fertility and the behavioral genetics approach that has focused on identifying
the sources of variation and covariation in schooling and schooling in term of genetic,
shared environmental and unique environmental factors. The ACE-β model in Figure 5
achieves both of these aims.

The ability of the ACE-β model to not only infer the causal effect β of schooling x on
fertility y, but also to distinguish between the genetic and social endowments that contribute
to the variation and covariation of x and y within individuals and within twins pairs, is
attained at the cost of somewhat more restrictive assumptions. In particular, for the ACE-β
model to accurately identify the model parameters (see Figure 5), one needs to accept the
assumptions of the bivariate behavioral genetics model that are more restrictive than those
required for the economic fixed-effects model to provide an unbiased estimate of β. In
addition to the assumption that the path eyx = 0 in Figure 5, which is common to both the
economic fixed-effects model and the ACE-β model proposed in this section, the ACE-β
model requires two assumptions underlying the bivariate ACE model in order to provide
accurate estimates of the model parameters: (i) an additive genetic model with no assortative
mating, which establishes the correlation of genetic endowments between DZ twins as

, and (ii) the absence of gene-environment interactions, which implies that

 and  are independent of  and .27 In comparison, the within-MZ approach
only requires the assumption that MZ twins share their genetic endowments, but not a
specific genetic model, and in the economic model, gene-environment latent variable
interactions do not affect the unbiasedness of the within-MZ estimator of β.

More formally, the ACE-β model in Figure 5 is obtained by introducing a direct effect of x
on y into the earlier relation (14) for the ACE model that specified fertility y in terms of the
latent genetic, shared environmental and unique environmental factors. The resulting
specification then is

(17)

which is merely a restatement of the corresponding equation (2) of the economic twins
model. The relation for schooling xij is as in the standard bivariate ACE model (13), which
is equivalent to the corresponding relation of the economic twins model (1).

25Unique environmental influences affecting schooling x, however, are assumed to have no direct effect on fertility y, and in both
approaches, unique environmental influences on schooling are assumed to affect fertility only through their effect on schooling.
26It is important to point out that, while the path-diagram of the children-of-twins design (D’Onofrio et al. 2003) is isomorphic to that
of the ACE-β framework in Figure 5, the focus of these models is distinctly different: the children of twins design focuses on the
estimation of the causal connection between parental behaviors and child outcomes, using parents who are twins to provide partial
control for parental genetic endowments that also affect these child outcomes; in contrast to this intergenerational perspective, the
ACE-β model focuses on behaviors/outcomes that occur across the life-course of individuals, using the twins design to control for the

genetic and social endowments (  and , and  and ) that affect both xij (schooling) and y (fertility).
27In some cases if the data include other sibling categories in addition to twins, dominance and additive genetic effects can be
estimated; also, when the data include information on spouses, aspects of assortative mating can be considered.
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Stacking the observed phenotype for each twins pair as Pj = (x1j, y1j, x2j, y2j)′, we can restate

the ACE-β model in Eqs. (13) and (17) as ,
or equivalently, as

where , Im is the m × m identity matrix, and , and  are the stacked
latent genetic, shared environmental and unique environmental factors that for twins pair j

are given by  and .

Similar to the bivariate behavioral genetics model discussed in the previous section, the
variance and covariances of the observed phenotypes P = (x1j, y1j, x2j, y2j)′ for MZ twins

(denoted ) and DZ twins (denoted ) can then be obtained as

(18)

(19)

where the inverse , εMZ and εDZ denote again the expectation

operator taken for MZ and DZ twins respectively. The matrices  and  denote
respectively the variance/covariance matrix of the combined latent genetic, shared
environmental and unique environmental model that are given by

(20)

(21)

To illustrate the moment conditions that are used in the estimation of the model parameters,
Table 4 gives the variance and covariances of xij and yij that implied by the ACE-β model in
Eqs. (18–19) as a function of the coefficient β and V[l, k], which refers to rowl and column k
of the variance/covariance matrix for MZ or DZ twins in Eqs. (15–16) under the maintained
assumption that eyx = 0 (see also Table 2). Specifically, the expected variances of the

phenotypes,  for x and  for y, that are implied by Eqs. (18–19) are equal for MZ and DZ
twins and are given by  and

. While for schooling x, the
components of the variance merely reflect the influence of the three latent factors Ax, Cx and
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Ex, the terms in the relation for the variance of fertility y reflect respectively the different
pathways that determine variation in y: (i) variation in schooling x that results in variation in
y because of the direct effect β of schooling x on fertility y; (ii) variation in y that results
from the fact x has a direct effect on y and the genetic and social endowments affecting
schooling x and fertility y are correlated; and (iii) the direct influences on fertility y of the
genetic and social endowments (Ax, Ay, Cx and Cy) and the unique environmental factor Ey.

In addition, Table 4 shows that the observed covariance between schooling x and fertility y
for individuals, which is given in row2 and column 1 of the table, is the result of a direct
effect of schooling on fertility, which is measured by β, and the fact that a part of the genetic
and social endowments affecting schooling also affect fertility, which is measured by V[2,
1]. Schooling is correlated among members of the same twins pair because the genetic and
social endowments are correlated within twins pairs, which is reflected in row3 and column
1 of Table 4 by V[3, 1]. And schooling of twin 1 will be correlated with the fertility of twin
2 (see row4 and column 1) because (i) twin 1’s schooling is correlated with twin 2’s
schooling, and twin 2’s schooling has a direct effect on 2’s fertility through β, and (ii)
because the genetic and social endowments that jointly affect schooling and fertility are
correlated within twins pairs.

The variances/covariances in Table 4 are also informative because they illustrate how the
effect β of schooling x on fertility y can be obtained from MZ twins, and only from MZ
twins, as

which represents—in terms of the parameters of the ACE-β model—the moment condition
that is used by the economic within-MZ model for the estimation of the causal effect β of
schooling x on fertility y.28

Within the two-fold goals of the ACE-β model to identify both the effect β of schooling x on
fertility y, as well as the contribution of genetic and social endowments to the variation/
covariation of schooling and fertility within and across individuals, the definition of
heritability deserves some discussion. For schooling x, the definition is analogous to the
bivariate ACE model and can be obtained from the model parameters as

. For fertility however, one needs to consider the fact that the
genetic variation in schooling is through three distinct pathways: first, direct influences of
the genetic factors Ay on fertility y (path ayy in Figure 5); second, direct influences of the
genetic factors Ax, which also affect schooling (path ayx); and third, indirect influences of
the genetic factors Ax that directly affect schooling x (via path axx) and subsequently affect
schooling y through the causal effect of schooling on fertility (path β in Figure 5).

28In particular, this relationship follows from the variances/covariances in Table 4 because

and the right-side term equals to β under the assumption of the ACE-β model that eyx = 0.
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One could think of heritability as the contribution of the first two pathways to the total
variation y. In this case, heritability would be defined, like in the bivariate ACE model, as

.29 This definition of heritability, however, would ignore the third indirect
pathway through which genetics affect fertility, i.e., the extent to which the genetic factors
Ax affect fertility y through their effect on schooling x.

To avoid this limitation, we therefore propose as a measure of heritability of y, say fertility,
in the ACE-β model that is based on the expressions in Table 4. In particular, the genetic
contributions to all the variances and covariances in the ACE-β model can be obtained in
Table 4 by replacing V[l, k] with , where  refers to rowl and column k of
the top panel of Table 3 (for monozygotic twins). An appropriate definition of heritability in
the ACE-β model then is obtained from Table 4 as

(22)

which expresses heritability of y, say fertility, as the overall contribution of genetic
endowments—including genetic factors that affect fertility y directly and genetic factors that
affect y indirectly through schooling x—to the variance of y. In particular, the three
components in the numerator of the heritability h2 in Eq. (22) reflect, respectively, the
contributions to the variation in y of (i) genetic factors that affect schooling x, and then
fertility y through x; (ii) the genetic factors that are common to both schooling x and fertility
y and affect fertility y through x; (iii) the direct influences of the genetic endowments Ax and
Ay on fertility y.

7 Variations of the ACE-β model
An attractive feature of the ACE-β model introduced in the previous section is that several
of the extensions of the economic within-MZ approach can be applied also to the ACE-β
model to investigate and/or ameliorate concerns about the validity of the estimates. We
discuss some of the most important issues in this context below, and the formal presentation
of the corresponding models is provided in the Appendix.

7.1 Measurement error in x
Earlier in this paper (Section 4.5) we discussed the potential relevance of measurement error
in xij (schooling) for obtaining a correct estimate of the causal effect β of schooling x on
fertility y. These concerns about measurement error in x carry over analogously to the ACE-
β framework, and in particular, measurement error in schooling has received extensive
attention in the economic literature on twins. Measurement error in x (e.g., schooling) is
known to bias the inferences of β and other parameters of the ACE model. In contrast,
random measurement error in y is usually subsumed in the unique environmental influences
Ey affecting y and it causes no biases in the estimated impact β ̂ of schooling x on fertility y.

To control for the measurement error in x, some twins datasets contain multiple measures of
x. For example, to control for measurement error in schooling, some twins data contain a
twin’s own report of schooling, denoted  and a co-twin’s report of the twin’s schooling,

29While this definition of heritability would be identical between the ACE-β and the bivariate ACE model, the estimated heritability
would differ because both models would generally yield different parameter estimates.
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denoted . Figure 6 presents the corresponding path diagram where both a twin’s own and
co-twin’s report on schooling x are available, under the maintained assumption that the
measurement error between a twin’s own and co-twin’s report on schooling x are
independent. Appendix A.1 provides the corresponding formal representation. Using these
dual reports about the schooling of each twin, the ACE-β model can control for
measurement error in both the estimation of the causal effect β of schooling x on fertility y
and the inference of heritabilities and the contributions of the genetic and social endowments
to the variation in schooling and fertility.

7.2 Social interactions: twins react to each other
Social interactions among twins is a second frequently-raised criticism leveled against the
use of twins data in the social sciences. We have already discussed earlier that, within the
economic twins model, social interaction between twins with respect to x does not affect the
estimate of β, while social interactions with respect to y will bias the estimates.

The corresponding key questions in the ACE-β model are twofold: On the one hand, does
the fact that social interaction with respect to x does not bias the inferences, which was the
case in the within-MZ model (Section 4.4), also apply to the ACE-β model? And on the
other hand, given that additional data—DZ and MZ twins—are used for the analyses, is it
possible to empirically infer the extent of social interactions?

Social interaction with respect to schooling x can be included in the path-diagram for the
ACE-β model by introducing paths s (with |s| < 1) from schooling of twin i, xij to the
schooling of i’s co-twin k, xkj (see Figure 7). There will be positive (s > 0) social interaction
if schooling of twin i benefits from the schooling attainment of twin k, and there will be
negative (s < 0) or competitive social interaction if the twins compete for limited resources
—such as money or parental time—in order to increase their schooling attainment, or if
twins attempt to distinguish themselves from their co-twins through different behaviors.

It turns out that an attractive feature of the ACE-β model is the fact that not only can β be
estimated in the presence of social interactions on x, but the degrees of social interaction can
be estimated. In particular, solving for the variance/covariance matrix of the observed
phenotypes x and y (Appendix A.2) reveals that social interaction results in a different
variance for x for DZ and MZ twins. Table 5 shows that the variance of x depends on the
social interaction parameter s as well as V[3, 1], which is equal to  for MZ and

 for DZ twins (Table 4). Using this differential variance in x, the coefficient of
social interaction can be identified in addition to the other parameters of the ACE-β model
(Plomin et al. 1997). An important advantage of the ACE-β model therefore is that, subject
to the model assumptions, the analyses can jointly estimates (i) the causal effect β of
schooling x on fertility y, (ii) the extent s to which social interactions affect schooling within
twins pairs, and (iii) the contributions of genetic and social endowments to the variation and
covariation of schooling x and fertility y within and across individuals.

In addition, despite the presence of social interaction on x, the coefficient β can be inferred
from the observed variances/covariances of MZ twins (and only those of MZ twins) as
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as long as the assumption eyx = 0 remains valid,30 which is congruent with the fact that the
within-MZ model continues to give an accurate estimate of β in the presence of social
interactions on x.

Social interaction with respect to fertility y can also be incorporated in the ACE-β model,
and in contrast to the within-MZ approach, all parameters can be estimated because social
interactions with respect to fertility y imply a different variance of y for MZ and DZ twin,
while the variance of x remains equal for MZ and DZ twins.

Because of the effect of social interactions on the variance of schooling x and/or fertility y,
and the fact that in the presence of social interactions the variance of these outcomes will
differ between MZ and DZ twins, the possible presence of social interactions can be inferred
from the pattern of variances of x and y by zygosity (Table 6). For example, in a situation in
which one expects β > 0, a pattern where VarMZ(x) > VarDZ(x) and VarMZ(y) > VarDZ(y) is
indicative of positive (s > 0) or reinforcing social interaction with respect to schooling x; a
pattern where VarMZ(x) = VarDZ(x) and VarMZ(y) > VarDZ(y) possibly indicates positive (s
> 0) or reinforcing social interaction with respect to fertility y.

7.3 Correlated cross-equation shocks
A further assumption for the estimation of β in the ACE-β model is the assumption that eyx =
0 that is, that any individual-specific shocks that affect x (say, schooling) have an effect on
fertility y only through x but not directly. In the first part of this paper in the context of the
economic twins model we discussed that, if this assumption is not satisfied, an instrumental
variable estimation can be used. The requirement for the instrument is that it predicts the
within-MZ difference in schooling x and that it is not correlated with the unobserved
determinants of fertility y.

Figure 8 shows the corresponding integration of the instrumental variable estimation in the
ACE-β model, to which we refer as the ACE-β IV model. In the top part of Figure 8 the
available instrument z is completely exogenous in the sense that it predicts x but is not
correlated with any of the unobserved endowments that affect schooling x and fertility y.
The bottom part of Figure 8 shows the more likely scenario for social-science applications
of the ACE-β IV model of an instrument that is correlated with the endowments affecting
schooling x and fertility y. The crucial advantage of the ACE-β IV approach in Figure 8,
which is formally presented in Appendix A.3, is the ability—conditional on a valid
instrument being available—to test the assumption that eyx = 0, and if is assumption is
rejected, to estimate an ACE-β model that allows for eyx ≠ 0. That is, if a suitable instrument
is available, the assumption that individual-specific influences on schooling x affect fertility
y only through schooling and not directly can be relaxed. The ACE-β model in Figure 8
therefore allows the estimation of (i) the causal effect β of schooling x on fertility y, (ii) the
contributions of genetic and social endowments to the variation and covariation of schooling
x and fertility y within and across individuals, and (iii) the extent to which individual-
specific factors that affect schooling  affect fertility y through x as well as directly along
the path eyx.

8 Application to the Minnesota Twins Data
We illustrate the models discussed earlier in this paper using analyses of the effect of
schooling on three outcomes—self-reported health, schooling of the first spouse and fertility

30This follows by solving for the variance/covariance matrix of the observed phenotype P in the ACE-β model as given in Appendix
A.2.
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—for which the relationship with schooling has received considerable attention in the
literature (Wolfe and Haveman 2003). The data used for these analyses is provided by a
subset of the Minnesota Twins Registry (MTR) Data. The MTR is one of the largest birth-
record based twins registries in the world; details of the sample and its characteristics are in
Lykken et al. (1990). The specific data that we use consists of a socioeconomic survey
conducted in 1994 of about 3,600 twins born in 1936–1955. The interesting features of these
data include the availability of birth weight information that is obtained through a link with
the birth registry, and the inclusion of a co-twin’s report about a twin’s schooling that will
allow us to control for measurement error. These data have previously been used by
Behrman et al. (1994, 1996) and Behrman and Rosenzweig (1999, 2002, 2004). We focus in
our analyses on female twins only (same-sex MZ twins and same-sex DZ twins) with
complete information on own schooling and the co-twin’s report of schooling. Descriptive
statistics of our study population are provided in Table 7. Scripts and data for replicating the
analyses presented in this section are available online at
http://www.ssc.upenn.edu/~hpkohler.

In our illustrations of the different methods for the analyses of twins data in this Section, we
do not present any analyses that allow for social interactions on schooling among twins
because the equal variance of schooling between DZ and MZ twins does not provide an
indication that social interaction among twins is an important determinant of the schooling
outcome in the study population. There is also no differential variation between MZ and DZ
twins in health, fertility or schooling of the first spouse, thereby providing no indication that
social interaction processes of the form outlined earlier in this paper (Section 7.2) are
important for the outcomes considered in this section.

8.1 Within-MZ analyses of the effect of schooling on health, spouse’s schooling and
fertility

Table 8 compares within-MZ analyses—with and without correction for measurement error
—with standard OLS analyses for the relationship between schooling on the one hand and
self-reported health, schooling of the first spouse and fertility, respectively. Because the
twins were between 39–55 years old at the time of the survey, these outcomes reflect
completed schooling and near-completed fertility.

In all analyses that are shown in Table 8, the twin’s schooling, health, fertility and schooling
of the first spouse has been converted into z-scores with zero means and variances of one by
first regressing each variable, and then the residual of this regression, on a quadratic
function of birth year. Cohort-specific mean and standard deviations were then used to
standardize each variable to a mean of zero and a variance of one using the cohort-specific
mean and variance. In addition to removing secular cohort trends in schooling, health and
fertility, this standardization of all variables renders the coefficients comparable across
models and outcomes. A coefficient of .11, as is shown for the OLS analyses for health in
Table 8, for example, suggests that a 1-standard deviation (SD) increase in schooling is
associated with a .11 SD increase in subjective health.

Several interesting substantive and methodological issues emerge from our analyses in Table
8. First, in contrast to the extensive literature on health and schooling (Cutler et al. 2006;
Cutler and Lleras-Muney 2007) that have documented a strong association—that has often
been interpreted as a causal effect—between schooling and health (see also the OLS
analyses for health in Table 8), the within-MZ analyses of schooling and subjective health in
Table 8 show that the effect of schooling on health is essentially zero. This finding is
unchanged after controlling for measurement error using a twin’s co-twin report of her
schooling. Very similar results have also obtained by Behrman et al. (forthcoming) using
data on Danish twins. While the within-MZ regression that underlies this result relies on an
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assumption that individual-specific “shocks” to schooling affect health only through
schooling (i.e., the assumption that eyx = 0), it seems unlikely that the near-zero coefficient
estimate in the within-MZ model is caused by a violation of this assumption. In particular,
the most plausible violation of this assumption are individual-specific “shocks” such as an
accident that affect schooling and health in the same direction (which would imply eyx > 0).
Examples of such shocks are accidents that disrupt schooling and have long-term health
consequences. If the true effect of schooling and health were positive, and in violation of the
model assumptions eyx were positive (instead of eyx = 0) because such shocks are important,
the within-MZ estimate would be biased upwards. This upward bias, however, is
inconsistent with an within-MZ point estimate of almost zero if the true effect of schooling
on health were positive.

This finding of a close-to-zero coefficient in the within-MZ analyses of schooling and health
hence raises questions about the usual attribution to schooling of substantial positive effects
on health-related behaviors and outcomes and the existence of an important causal
schooling–health gradient. In terms of causal effects, despite the strong associations with
schooling, the real strati-fication appears to be with regard to social and genetic
endowments. “Better” endowments, thus, apparently tend to lead to more schooling and
better self-reported health, and the resulting positive association between schooling and
health does not appear to reflect causal effects of schooling towards improved health in the
population studied here.

In contrast to the above findings for health, the within-MZ results in Table 8 suggest a
significant effect of own schooling on schooling of a twin’s first spouse: a 1 SD increase in
the twin’s own schooling would on average imply a .26 SD increase in the schooling of the
first spouse. The presence of measurement error in schooling, which is exacerbated in
within-MZ analyses, implies that this estimate might be biased downwards. Consistent with
this expectation, the within-MZ analyses that control for measurement error find a somewhat
stronger effect of .28 of own schooling on that of the first spouse. In both cases, however,
the within-MZ analyses provide an estimate of the effect of own schooling on spouse
education that is substantially below the association of .51 that is suggested by the OLS
estimates. This finding therefore suggests that the cross-sectional association between own
and spouse’s schooling results to a substantial extent from assortative mating on
endowments: both own and spouse’s schooling are affected by unobserved social and
genetic endowments that tend to move own and spouse’s schooling in the same direction.
For example, if there is positive assortative mating in the marriage market on aspects such as
“ability” or “motivation”, or if sorting on unobserved dimensions such as parents’
socioeconomic status, own and spouse’s schooling would tend to be correlated as a result of
correlated endowments and OLS analyses are biased upwards. Consistent with such
assortative mating on schooling-related endowments, the OLS estimate in Table 8 is
between 80–95% above the estimated within-MZ effect of own schooling on spouse’s
schooling, and arguably, the within-MZ estimates provide a better estimate of the causal
effect of own on spouse’s schooling that suggests that a 1 SD increase in own schooling
implies a .26–.28 SD increase in spouse’s schooling. Behrman and Rosenzweig (2002)
report similar results.

The final set of our within-MZ analyses considers the relationship between schooling and
fertility, where the within-MZ analyses suggest that a 1 SD increase in own schooling for
women reduces fertility by about .24 SD. This estimate remains essentially unchanged if co-
twin reports are used to control for measurement error in schooling. Moreover, the reduction
in fertility as a result of schooling that is suggested by the within-MZ analyses is only
marginally larger in magnitude than the association obtained from a OLS analyses of
fertility and schooling, suggesting that unobserved social and genetic endowments affecting
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schooling are only weakly associated with the social/genetic endowments that affect
(completed or near-completed) fertility.

In assessing this estimate of the negative effect of schooling on fertility that is revealed by
the within-MZ estimate in Table 8, the possible robustness—or not—of the results with
respect to the assumption eyx = 0 of the within-MZ model is an important consideration. In
the context of fertility, individual-specific shocks that affect schooling and fertility in the
opposite direction might be expected, such as for example, an unintended pregnancy during
high-school/college education or an “unexpectedly” early marriage that disrupts schooling.
In terms of our empirical model, if these and similar shocks are important determinants of
both schooling and fertility, the path coefficient eyx would be negative in violation of the
within-MZ model assumptions. As a result, the within-MZ estimate of the reduction in
fertility as a result of schooling would be biased towards zero, and the true effect of
schooling on fertility would be more negative than suggested by the within-MZ analyses.

The combination of instrumental variable estimation with within-MZ analyses is one
strategy to explore the potential importance of a non-zero eyx path on the estimation results,
provided that there is an instrumental variable(s) that predicts schooling, but affects fertility
only through its effect on schooling. In the Minnesota Twins Data that are used in this paper,
one possible instrument that predicts schooling and, arguably affects fertility only through
schooling, is birth weight. Previous studies using within-MZ twins have found significantly
effects of birth weight on schooling, though they have not addressed the question of possible
direct effects on fertility beyond any indirect effects through schooling (Almond et al. 2005;
Behrman and Rosenzweig 2004; Conley et al. 2003). The impact of birth weight on
schooling arguably differs depending on various parental characteristics, such as mother’s
age or whether mothers died before the child reached adulthood. Therefore we also interact
birth weight with mother’s age at birth of the twins and an indicator variable for whether a
twin’s mother died before the twins reached age 20. It is important to notice that the
instruments—birth weight and its interactions with mother’s age at the birth of the twins and
maternal mortality—are likely to be correlated with the social and genetic endowments of
the twins. The instruments would therefore be not acceptable in standard IV analyses that do
not control for endowments, but they may constitute valid instruments in within-MZ IV
analyses because social and genetic endowments are controlled.

In our application using the Minnesota Twins Registry data, birth weight and its interactions
significantly predict the z-score of schooling (as well as schooling directly), with the
F(3,333)-statistic of the first-stage fixed-effect regression equal to 2.62 (p = .05) and the
instruments explaining 2.3% of the within-MZ variation in schooling. While the F-statistic is
statistically significant, a better predictive power of the instruments in the first-stage
regression would clearly be desirable and our analyses are potentially subject to concerns
about weak instruments (Staiger and Stock 1997; Stock 2010; Stock and Yogo 2002). But
since finding suitable instruments that predict schooling differences among MZ twins is
often challenging, as is the case in our application using the Minnesota Twins Registry data,
we present our within-MZ IV analyses that allow an assessment of the potential biases that
are incurred if the assumption of eyx = 0 is violated with an important cautionary note about
potential concerns about weak instruments.

Table 9 presents the within-MZ IV regression results for the effect of schooling on fertility,
using birth weight and its interactions as instruments for schooling in the within-MZ
analyses. Clearly, the precision of the estimate for the effect of schooling substantially
declines in the within-MZ IV estimates, in part due to the weak first-stage instruments. At
the same time, the within-MZ IV estimate of the effect of schooling on fertility is about
0.84, suggesting that the reduction in fertility as a result of increased schooling might be
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substantially larger than is suggested by the within-MZ analyses (without IV). In particular,
taking the within-MZ IV estimate in Table 9 at face value suggests that a 1 SD increase in
schooling for women in the study population reduces fertility by about .84 standard
deviation, about 3.5 times the effect indicated by the within-MZ analyses without
instrumenting. This substantial increase in the magnitude of the fertility-reducing effect of
schooling in the within-MZ IV estimates would be consistent with a considerable
importance of individual-specific shocks—such as unintended early pregnancies—that
affect schooling and fertility in opposite directions.

In summary, the different within-MZ analyses in Tables 8 and 9 illustrate a broad spectrum
of results that are obtained from such analyses: For the relationship between schooling and
health, the analyses suggest that the true effect of schooling on health might be zero, and
that the observed strong association between schooling and health might the result of
stratification on endowments that jointly affect schooling and health. Neither measurement
error in schooling nor the presence of individual-specific shocks that jointly affect schooling
and health are likely explanations for this finding. For schooling of the first spouse, which is
an important indicator of marriage market outcomes, our within-MZ analyses show that
more own schooling is likely to imply also substantially more schooling of the spouse. With
controls for measurement error, our analyses suggest that a 1 SD increase in own schooling
increases schooling of the spouse by about .28 SD. But our analyses also point to the
presence of assortative mating on social and genetic endowments. In particular, these
assortative mating processes imply that the cross-sectional association between own and
spouse’s schooling is substantially higher—nearly 80% higher in our analyses—than the
effect that is found in the within-MZ analyses. Finally, for fertility, both our OLS and
within-MZ analyses in Table 8 point to an important reduction of fertility as a result of
increased schooling. Because the within-MZ results might be an underestimate of the true
reduction of fertility that is implied by more schooling, we use within-MZ IV analyses to
explore the potential importance of individual-specific shocks that affect schooling and
fertility in opposite directions. While we emphasize a cautionary note about possibly weak
instruments in these analyses, the within-MZ IV results suggest a substantially larger
reduction in fertility as a result of increased schooling than do the within-MZ analyses
without instrumenting. This pattern suggests that, in the context of assessing the relationship
between schooling and fertility, potential individual-specific shocks—such as unintended
early pregnancies—that affect schooling and fertility in opposite directions might be an
important aspect that cannot be ignored in within-MZ analyses.

8.2 ACE analyses for the relationship between schooling and health, spouse’s schooling
and fertility

A limitation of the above within-MZ analyses is that they are not very informative about the
nature of endowments, and the pathways of how genetic and social endowments affect the
relationship between a twin’s schooling and the outcomes health, spouse’s schooling and
fertility. In Tables 10–12 we therefore present univariate and multivariate ACE models for
these phenotypes, including ACE-β models that are closely related to the within-MZ
analyses discussed above. For each table, all analyses (with the exception of the instrumental
variable model for fertility in Table 12) are estimated on the same sample so that differences
in the estimates across the models are not the result of different samples. We also continue
to use z-scores for all variables to remove secular cohort/age trends in the outcomes and to
make the estimated model coefficients more comparable across different specifications and
outcome variables.

The univariate ACE model (Model 1) for the z-score of schooling (coefficients axx, cxx, and
exx) in Table 10 indicates that schooling is strongly influenced by genetic endowments,
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resulting in a heritability estimate for schooling of about 47% ( ), with an important
influence of social endowments (shared environments) that is consistent with about 20% of
the variation in schooling in this study population ( ). Self-reported health, on the
other hand, is less affected by social or genetic endowments. In particular, the univariate
ACE model for health (coefficients ayy, cyy, and eyy in Table 10) suggests that about 28% of

the variation in self-reported health is related to genetic endowments ( ), while 7% of

the variation stems from social endowments such as parental characteristics ( ).
Almost two thirds of the variation in self-reported health is attributed in the univariate ACE
model to individual-specific factors that are not shared by twins.

The bivariate ACE model for schooling and heath (Model 2 in Table 10) provides the same
estimates for the heritability (h2) and the variance contribution from social endowments (c2)
for these outcomes, but it points to more complex underlying processes that shape the
observed relationship between schooling and health. Most importantly, the bivariate ACE
model suggests that an important source for the observed association between schooling and
health stems from the fact that social endowments—e.g., parental characteristics or
socioeconomic status—that affect schooling in early adulthood have long-term influences on
self-reported heath. The coefficient of cyx = .27 in this model, for example, implies that
about 76% of the observed correlation between schooling and health results from social
endowments that are shared between twins, with genetic factors contributing about 19% to
the observed correlation. Moreover, after accounting for the extent to which endowments
jointly affect schooling and health, there are no unique contributions of social endowments
to subjective health and the coefficient cyy is estimated to be insignificantly different from
zero. The very small estimate for eyx suggests that individual factors affecting schooling are
not associated with health once the endowments are controlled.

The ACE-β model (Model 3 in Table 10), which includes the possibility of a direct of effect
β of schooling on health, confirms the findings of our earlier within-MZ analyses of the
schooling–health relationship and also does not suggest a relevant direct effect of schooling
on health after the influence of endowments is accounted for.

The ACE-β model with measurement error (Model 4) additionally identifies that schooling
reports include some measurement error, with measurement error contributing 13% to the
variance of own schooling and 8% to the variance in the co-twin’s report of schooling.
Controlling for measurement error in schooling reduces somewhat the estimate for
heritability of the “true” unobserved schooling of the twins, and it suggests social
endowments contribute about 32%—about 50% more then the ACE-β model without
measurement error—to the variation in schooling. But similar to our earlier within-MZ
analyses, controlling for measurement error does not affect the conclusion of our analyses
that there does not seem to be a direct effect of schooling on health in this study population.

Table 11 presents the different ACE analyses for the relationship between own schooling
and schooling of the first spouse. The univariate ACE results for the subset of ever-married
twins suggest a somewhat higher heritability and lower variance contribution of social
endowments than found in our earlier analyses. For the schooling of the first spouse, the
univariate ACE model (Model 1 in Table 11) suggests a “heritability” of 32%, implying that
about a third of the variation in spouse schooling is related to genetic endowments that are
shared by the twins and indicating a substantial extent of assortative mating on genetically
determined traits (for related studies of assortative mating, see Buss 1984, 1985; Eckman et
al. 2002; Schwartz and Mare 2005).
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The bivariate ACE model for spouse’s schooling (Model 2 in Table 11) indicates that there
is a substantial overlap in the latent social and genetic endowments affecting own and
spouse’s schooling. For example, the coefficient estimates of ayx = .26 and cyx = .49 suggest
that about 34% of the observed correlation between own and spouse’s schooling is due to
genetic endowments that affect both own schooling and spouse’s schooling through
assortative mating, and 52% of the correlation is due to social endowments that affect both
own and spouse’s schooling. After accounting for overlapping influences of social and
genetic endowments, the bivariate ACE model no longer identifies social endowments that
affect spouse’s schooling only, while there remain important genetic endowments that affect
spouse’s schooling but not own schooling. All in all, the bivariate ACE model suggests
somewhat lower heritabilities for both own and spouse’s schooling than the univariate ACE
model, while social endowments make a somewhat stronger contribution to the variation in
own and spouse’s schooling.

While the ACE-β model (Model 3 in Table 11) provides similar estimates for heritability h2

and the variance contribution of social endowments (c2) for both own and spouse’s
schooling, the ACE-β model that allows for a direct effect of own schooling on spouse’s
schooling suggests a different story regarding the underlying processes that lead to the
observed association between own and spouse’s schooling. Foremost, and similar to the
within-MZ analyses earlier in this paper, the ACE-β model (Model 3) suggests that an
increase in own schooling has a direct effect on the spouse’s schooling. This effect is sizable
in that a 1 SD in own schooling implies a .18 SD increase in spouse’s schooling in our
analyses without controls for measurement error, and a .25 SD increase in the spouse’s
schooling once measurement error is controlled.

Once this direct effect of own on spouse’s schooling is allowed, the ACE-β models (Models
3 and 4 in Table 11) reveal a different explanation than the bivariate ACE model about the
underlying processes that lead to the pronounced association between own and spouse’s
schooling that is well documented in many populations. Focusing on the ACE-β model with
measurement error (Model 4), where these changes in interpretation are most clearly
expressed, the introduction of a direct pathway β from own to spouse’s schooling leads to a
substantial drop in the coefficient ayx that measures the extent to which the genetic
endowments  that a twins own schooling directly affect the schooling of the spouse. In
contrast, the bivariate ACE model for the relationship between own and spouse’s schooling
(Model 2) suggested that this effect is sizable and importantly contributes the observed
covariance between these outcomes. The results of the ACE-β model (Model 4), however,
imply that this pathway is relatively unimportant. In particular, while the ACE-β model with
measurement error suggests that about 30% of the correlation between the unobserved
“true” own schooling and spouse’s schooling is due to genetic factors, the primary pathway
operates through schooling: the genetic endowments  are an important source of variation
in a twin’s own schooling, and these genetic factors affect spouse’s schooling primarily
through the effect on twin’s own schooling. Specifically, in the ACE-β model with
measurement error, only 11% of the correlation between own and spouse’s schooling is
attributed to a direct effect of the genetic endowments for own schooling  on spouse’s
schooling, while 19% are due the indirect pathway in which  affects a twin’s own
schooling, and spouse’s schooling only through the effect on own schooling. Shared
environmental factors that affect schooling account for about 57% of the correlation
between own and spouse’s schooling, and three quarters of this contribution are accounted
for by the direct effect cyx on spouse’s schooling of the social endowments for own

schooling .
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In terms of assortative mating in the marriage market, the bivariate and ACE-β model
present two different scenarios (see also Behrman et al. 1994). The bivariate ACE model
(Model 2) suggests strong assortative mating on unobserved genetic and social endowments
—including for example aspects such as ability, personality characteristics, parental
socioeconomic status—that directly affect a twin’s own schooling, and via assortative
mating on these characteristics, also spouse’s schooling. In contrast, the ACE-β model
(Models 3 and 4) emphasizes a direct effect β of own schooling on spouse’s schooling that
may arise due to social processes such as assortative mating on observed schooling (rather
than the latent determinants of schooling), bargaining in the marriage market where own
schooling affects the ability to attract more-schooled spouses, or a marriage search process
where educational institutions are an important source of potential partners. The results of
Model 4 that control for measurement error, for example, imply that a 1 SD increase in own
schooling increases spouse’s schooling by 1/4 SD. Once this direct effect of own on
spouse’s schooling is accounted for, the ACE-β model suggests a substantially reduced
extent of assortative mating on genetic endowments that affect a twin’s own schooling (such
as for example genetic factors underlying ability). The ACE-β model continues to attribute a
substantial fraction of the observed correlation between own and spouse’s schooling to
social endowments that affect a twin’s own schooling (e.g., parental socioeconomic status),
but to a lesser extent than is suggested in the bivariate ACE model because the bivariate
ACE model does not allow for the possibility that these social endowments affect the
spouse’s schooling through the twin’s own schooling.

Table 12 presents the results of our different ACE models for the relationship between
schooling and fertility. The negative relationship between schooling and fertility, especially
for women, has been widely documented across many populations (e.g., Kravdal and
Rindfuss 2008) and the determinants and changes of this negative schooling–fertility
relation have been the topic of extensive investigations (Kohler and Rodgers 2003).

The univariate ACE analyses of fertility (Model 1 in Table 12) yield an estimate of
heritability h2 for fertility of about 40%, with social endowments providing a negligible
contribution to the variation in (completed/near-completed) fertility. These conclusions from
the Minnesota Twins Registry data are similar to findings obtained from Danish twins data
and NLSY data (Rodgers and Doughty 2000; Rodgers et al. 2001a,b). In its univariate form,
however, the ACE model is not informative about the processes that contribute to the
negative association between schooling and fertility. To explain the observed negative
association between schooling and fertility, the bivariate ACE model (Model 2 in Table 12)
points in particular to the genetic endowments of schooling that exert a strong negative
influence on fertility ayx = −.23. This model would therefore suggest that genetic factors that
tend to increase schooling—e.g., the genetic factors affecting ability—have a direct negative
effect on fertility through the path ayx. In addition, the bivariate ACE model suggests that
individual-specific shocks to schooling have a strong direct effect on schooling (eyx = −.13),
for instance, in the form of an unintended pregnancy that disrupts schooling and leads to an
overall increase in completed fertility.

The limitation of this model that there is no direct effect of schooling on fertility is avoided
in the ACE-β model (Model 3) that estimates a coefficient β suggesting that a 1 SD increase
in schooling reduces fertility by .23 SD, which is very similar to our earlier results obtained
from within-MZ analyses. Controlling for measurement error in schooling (Model 4)
increases this negative effect of schooling on fertility to −0.27. Most importantly, and in
contrast to the bivariate ACE model, the coefficient ayx in the ACE-β model with
measurement error has become insignificant and small in magnitude, suggesting that the
genetic factors affecting schooling ( ) do not affect fertility directly, but primarily
indirectly through their effect on schooling.
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The ACE-β IV model, which uses birth weight in interaction with mother’s age at the birth
of twins and maternal mortality as instruments for schooling, provides a test of the
assumption eyx = 0 that underlies the within-MZ and the ACE-β model. The ACE-β IV
model (Model 6 in Table 12) provides an estimate of β = −1.02 that is very similar to our
earlier within-MZ IV estimate in Table 9 and substantially larger than the effect of schooling
on fertility that is estimated by the ACE-β model (Models 4 and 5 in Table 12). While there
are some concerns about possibly weak instruments in these analyses that we recognize but
cannot resolve with the data used for the analyses in this paper, the ACE-β IV analyses
(Model 5) show that the null-hypothesis of eyx = 0 cannot be rejected. In the final column of
Table 12 (Model 6) we therefore re-estimate the ACE-β IV model with the coefficient eyx
constrained to zero. This final model, which is our preferred specification for the ACE-β IV
model for the schooling–health relationship—suggests that a 1 SD increase in schooling
reduces fertility by about .26 SD, which is an effect that is about 15% larger in magnitude
that suggested by the ACE model without measurement error correction (Model 3). In
addition, the final ACE-β IV estimates (Model 6) confirm our earlier conclusions that, once
direct effects of schooling on fertility are allowed in the model specification, there is no
longer evidence that the genetic endowments for schooling ( ) have a direct effect on
fertility, and instead, these endowments affect fertility primarily through schooling, and
through this pathway, account for about three-quarters of the negative association between
schooling and fertility in the data.
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Appendix

A.1 Measurement error model
To formally represent measurement error in the ACE-β model (Figure 6, we distinguish
between the “true”—but unobserved—values of the phenotypes, which are denoted as

, and the observed phenotypes that are denoted as P. If the concern is
particularly with respect to measurement error in schooling x, and the data contain both a
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twin’s own report of schooling, denoted , and a twin’s sibling’s report of his/her
schooling, denoted , then the observed data for each twins pair can be written as

. Moreover, the observed data P is related to the latent
phenotypes P* as

(23)

where

and GME is a vector containing the random “measurement error component” in own and

sibling’s report of schooling that is given as .

The variance/covariances among the observed phenotypes  is
then given as

(24)

(25)

where Var(GME) is variance of the random measurement error in own and sibling’s report of
x that, due the assumption of independent measurement error across twins, is given by
Var(GME) = ε[GMEGME′] = Diag(Var(eo), Var(es), 0, Var(eo), Var(es), 0).

A.2 Social interactions in the ACE-β model
Social interaction between twins within the same twins pair can be captured by modifying
the matrix B in the ACE-β model to reflect both the effect of schooling x on fertility y as
well as the interaction between the twins. We focus first on social interaction that affects the
schooling attainment x. Similarly to the economic fixed-effects model, where we discussed
social interactions in Section 4.4, interaction with respect to x between twins is represented
by modifying the relation for the first phenotype x in Eq. 13 as follows:

(26)

where s (with |s| < 1) is the social interaction parameter. Stacking the observed phenotypes
as P = (x1j, y1j, x2j, y2j)′, and redefining the matrix B to include the social interaction
parameter s as
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(27)

the relationships (18–19) continue to hold. Social interaction in the ACE-β model is
therefore straight forward to implement, and the variance-covariance matrix of the observed
phenotypes P can be obtained from Eqs. (18–19), using the matrix B as specified in Eq.
(27). Since the inverse of I4 – B in this case is given by

which is no longer block-diagonal as in the ACE-β model without social interaction Eqs.
(18), (19)) and (27) imply that MZ and DZ twins will have a different variance of x
whenever s ≠ 0 (see also Table 5). This fact allows the ACE-β model to not only estimate
the causal effect β of schooling x on fertility y, but also the extent s to which social
interactions affect schooling.

Social interaction with respect to the primary outcome, fertility y, can be incorporated into
the ACE-β model by specifying the matrix B as

(28)

Following similar steps as in the case of social interactions with respect to schooling x, the
variance-covariance matrix of the observed phenotypes P can be obtained from Eqs. (18–
19), using the matrix B as specified in Eq. (28). Because social interactions with respect to y
imply a different variance of y for MZ and DZ twins, the parameter s can be estimated along
with the other model parameters.

A.3 Instrumental variable estimation in the ACE-β model
The path-diagram for the instrumental variable estimation in the ACE-β model, which is
given in Figure 8(b) for the case where the instruments are possibly correlated with the
genetic and social endowments, can be obtained by stacking the observed phenotypes as P =
(x1j, y1j, z1j, x2j, y2j, z2j,)′. We can then represent the ACE-β model with instrumental
variables as

where
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and

With the above notation, the variance/covariances among the observed phenotypes z, x and y
can be written—similar to the ACE-β model in Eqs. (18–19)—as

(29)

(30)

where A = LaLa′, C = LcLc′, and E = LeLe′ and

(31)

(32)
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Figure 1. Path-diagram for the economics fixed-effects model for twins
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Figure 2. ACE model for the analyses of genetic, shared environmental and unique
environmental components to variation in phenotype x
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Figure 3. Bivariate ACE model for schooling and fertility
This graph shows the path-diagram for one twin, twin i in pair j only; an analogous diagram
exists for twin k in pair j, and the genetic and shared environmental components are

correlated across twins within the same pairs as  for

MZ twins,  for DZ twins,

 independent of zygosity, and 
also independent of zygosity.
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Figure 4. ACE-β model with direct effect of schooling on fertility
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Figure 5. ACE-β model with direct effect of schooling on fertility, including identifying
assumption e12 = 0
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Figure 6.
ACE-β model with measurement error in x: own and co-twin report of schooling are
indicators of the unobserved true schooling level 
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Figure 7. ACE-β model with social interaction on schooling x

The paths connecting the endowments  and  between twin 1 and twin 2 in pair
j have been omitted for clarity of the diagram
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Figure 8. ACE-β IV model: combining the ACE-β model with instrumental variable estimation
(Note: the coefficients for the paths between the latent variables and the phenotypes have
been omitted for clarity of the diagram)
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Table 3

Contribution of genetic endowments to the variance and co-variance matrices implied by the ACE model in
Eqs. (15–16)

MZ Twins:

Observed outcome (phenotype)

x1j y1j x2j y2j

x1j

y1j axx ayx

x2j axx ayx

y2j axx ayx axx ayx

DZ Twins: 

Observed outcome (phenotype)

x1j y1j x2j y2j

x1j

y1j axx ayx

x2j .5axx ayx

y2j .5axx ayx axx ayx

Note: One set of unique elements of the table are given in black, while duplicate elements given in gray.
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Table 4

Variance and co-variance implied by ACE-β model (Eqs. 18–19)

MZ and DZ Twins:  and 

Observed outcome (phenotype)

x1j y1j x2j y2j

x1j V[1, 1]

y1j βV[1, 1] + V[2, 1] β2V[1, 1] + 2βV[2, 1] + V[2, 2]

x2j V[3, 1] βV[3, 1] + V[4, 1] V[1, 1]

y2j βV[3, 1] + V[4, 1] β2V[3, 1] + 2βV[4, 1] + V[4, 2] βV[1, 1] + V[2, 1] β2V[1, 1] + 2βV[2, 1] + V[2, 2]

Note: V[l, k] refers to rowl and column k of the variance/covariance matrix for MZ or DZ twins in Eqs. (15–16) with eyx = 0 (see also Table 2).

The expected variance of the phenotypes,  for x and  for y is equal for MZ and DZ twins and can be obtained from the above table as

 and .
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Table 5

Variance of xij and yij implied by ACE-β model with social interaction on x (Eqs. 18–19)

Variance xij w((1 + s2)V[1, 1] + 2sV[[3, 1])

Variance yij w(β2(1 + s2)V[1, 1] + 2β(1 − s2)V[2, 1] + (1 − 2s2)2V[2, 2]+ 2β2sV[3, 1] − 2βs(1 − s2)V[4, 1])

where w= 1/[(1 + s)2(1 − s)2] and V[l, k] refers to rowl and column k of the variance/covariance matrix for MZ or DZ twins in Eqs. (15–16) with
eyx = 0 (see also Table 2)
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Table 6

Indications of social interactions in the ACE-β model with twins data (under assumption that β > 0)

Variance Social Interaction

VarMZ(x) > VarDZ(x) and VarMZ(y) > VarDZ(y) possible reinforcement interaction on x: s > 0

VarMZ(x) < VarDZ(x) and VarMZ(y) < VarDZ(y) possible competition on x: s < 0

VarMZ(x) = VarDZ(x) and VarMZ(y) > VarDZ(y) possible reinforcement interaction on y

VarMZ(x) = VarDZ(x) and VarMZ(y) < VarDZ(y) possible competition on y
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Table 8

The effect of schooling on health, spouse schooling and fertility: Comparison of OLS and within-MZ analyses
(female twins only)

MZ Twins

within-MZ within-MZ with meas. error OLS

Subjective Health (z-score)

Schooling (z-score) 0.007 (0.069) 0.014 (0.103) 0.110**(0.038)

Observations 838 838 838

Spouse Schooling (z-score)

Schooling (z-score) 0.259** (0.081) 0.285* (0.118) 0.510** (0.044)

Observations 484 484 484

Fertility (z-score)

Schooling (z-score) −0.239** (0.066) −0.232* (0.092) −0.220** (0.038)

Observations 758 758 758

p-values:

**
p < .01,

*
p < .05,

+
p < .1. The analyses are based on complete MZ twin pairs (females only) with non-missing information on the respondent’s schooling, the co-

twin’s report of the respondent’s schooling, and the outcome variable (subjective health, spouse’s schooling and fertility). For spouse’s schooling,
only twin pairs where both twins have been married are included. All variables have been converted into z-scores with mean zero and a variance of
one using cohort-specific estimates of the mean and standard-deviation for each variable.
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Table 9

The effect of schooling on fertility: Within-MZ IV analyses

within-MZ + IV within-MZ

Schooling (z-score) −0.846+ (0.509) −0.259** (0.070)

Observations 672 672

p-values:

**
p < .01,

*
p < .05,

+
p < .1. Notes: Instruments for schooling include birth weight (z-score) and interactions between birth weight and (a) mother’s age at birth of the

twins and (b) an indicator that the twins’ mother died before the twins reached age 20. The within-MZ model is re-estimated for the same set of
respondents for whom the instruments are available.
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Table 10

Univariate, bivariate ACE and ACE-β models for schooling and health (z-scores)

Univariate ACE Bivariate ACE ACE-β ACE-β with Meas. Err.

Model (1) (2) (3) (4)

axx 0.678** (0.069) 0.681** (0.067) 0.681** (0.067) 0.603** (0.064)

ayx — 0.044 (0.099) 0.031 (0.127) 0.055 (0.156)

ayy 0.537** (0.127) 0.534** (0.079) 0.534** (0.079) 0.549** (0.123)

cxx 0.439** (0.098) 0.436** (0.096) 0.436** (0.096) 0.524** (0.07)

cyx — 0.271* (0.131) 0.263* (0.127) 0.186 (0.118)

cyy 0.267 (0.213) 0.000 (0.576) 0.000 (0.58) 0.124 (0.483)

exx 0.580** (0.020) 0.579** (0.020) 0.579** (0.020) 0.466** (0.020)

eyx — 0.011 (0.039) — —

eyy 0.821** (0.027) 0.820** (0.026) 0.820** (0.026) 0.819** (0.027)

β — — 0.019 (0.067) 0.034 (0.093)

γ — — — 0.982** (0.018)

σ2(xo) — — — 0.13** (0.013)

σ2(xs) — — — 0.075** (0.012)

0.465 0.469 0.469 0.425

0.195 0.192 0.192 0.321

0.279 0.278 0.278 0.297

0.069 0.071 0.071 0.055

N 1,506 1,506 1,506 1,506

p-values (for model coefficients only):

**
p < .01,

*
p < .05,

+
p < .1. N refers to individuals. All variables have been converted to z-scores with mean zero and a variance of one using cohort-specific estimates

of both mean and variance of each variable. The subscripts x, y indicate the variables as: x = schooling; y = self-reported health.
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Table 11

Univariate, bivariate ACE and ACE-β models for (own) schooling and schooling of first spouse

Univariate ACE Bivariate ACE ACE-β ACE-β with Meas. Err.

Model (1) (2) (3) (4)

axx 0.678** (0.084) 0.577** (0.078) 0.577** (0.078) 0.559** (0.07)

ayx — 0.257* (0.114) 0.156 (0.135) 0.087 (0.142)

ayy 0.547** (0.133) 0.286* (0.124) 0.286* (0.124) 0.296* (0.118)

cxx 0.31+ (0.165) 0.456** (0.088) 0.456** (0.088) 0.485** (0.076)

cyx — 0.491** (0.099) 0.412** (0.093) 0.376** (0.092)

cyy 0.337+ (0.188) 0.000 (0.162) 0.000 (0.162) 0.000 (0.163)

exx 0.56** (0.025) 0.574** (0.026) 0.574** (0.026) 0.447** (0.026)

eyx — 0.101* (0.044) — —

eyy 0.708** (0.031) 0.719** (0.03) 0.719** (0.03) 0.717** (0.029)

β — — 0.175* (0.076) 0.254* (0.109)

γ — — — 0.996** (0.024)

σ2(xo) — — — 0.121** (0.014)

σ2(xs) — — — 0.072** (0.013)

0.529 0.383 0.383 0.418

0.111 0.239 0.239 0.315

0.327 0.162 0.162 0.153

0.124 0.264 0.264 0.272

N 890 890 890 890

p-values (for model coefficients only):

**
p < .01,

*
p < .05,

+
p < .1. N refers to individuals. All variables have been converted to z-scores with mean zero and a variance of one using cohort-specific estimates

of both mean and variance of each variable. The subscripts x, y indicate the variables as: x = schooling; y = schooling of first spouse. The analyses
include only twin pairs in which both twins are ever-married and data on schooling of the first spouse are available.
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