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Abstract
Over the last decades, cancer research has focused on tumor suppressor genes and oncogenes.
Genes in other cellular pathways has received less attention. Between 0.5% to 1% of the
mammalian genome encodes for proteins that are tethered on the cell membrane via a
glycosylphosphatidylinositol (GPI)-anchor. The GPI modification pathway is complex and not
completely understood. Prion (PrP), a GPI-anchored protein, is infamous for being the only
normal protein that when misfolded can cause and transmit a deadly disease. Though widely
expressed and highly conserved, little is known about the functions of PrP. Pancreatic cancer and
melanoma cell lines express PrP. However, in these cell lines the PrP exists as a pro-PrP as
defined by retaining its GPI anchor peptide signal sequence (GPI-PSS). Unexpectedly, the GPI-
PSS of PrP has a filamin A (FLNA) binding motif and binds FLNA. FLNA is a cytolinker protein,
and an integrator of cell mechanics and signaling. Binding of pro-PrP to FLNA disrupts the
normal FLNA functions. Although normal pancreatic ductal cells lack PrP, about 40% of patients
with pancreatic ductal cell adenocarcinoma express PrP in their cancers. These patients have
significantly shorter survival time compared with patients whose cancers lack PrP. Pro-PrP is also
detected in melanoma in situ but is undetectable in normal melanocyte, and invasive melanoma
expresses more pro-PrP. In this review, we will discuss the underlying mechanisms by which
binding of pro-PrP to FLNA disrupts normal cellular physiology and contributes to tumorigenesis,
and the potential mechanisms that cause the accumulation of pro-PrP in cancer cells.
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Filamins
Filamins (FLNs) are cytolinkers that connect cell surface receptors to the cytoskeleton
(Stossel et al., 2001; Feng and Walsh, 2004). Of the three FLNs, filamin A (FLNA) is the
most abundantly and widely expressed, followed by filamin B. Expression of filamin C is
restricted to myocytes in the heart, and in striated muscle. Native FLNs are homodimers
with a relative molecular mass of about 280 kDa. At the N-terminus of each subunit, there is
an actin-binding domain. FLNs bind and organize actin filaments creating an orthogonal
actin network, which is important for maintaining cell morphology, membrane integrity,
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cell–cell and cell–matrix interactions. After the actin-binding domain, there are 24 β-sheets
immunoglobulin-like domains. Between domains 15 and 16 and domains 23 and 24, there
are two hinge regions, which permit high-angle branching of the actin filaments. Domain 24
is the self-association domain (Figure 1). The three FLNs share a high degree of homology,
and have similar function in binding and organizing actin filaments. However, each FLN
also has its unique binding partners. The functional diversity of the three FLNs is vividly
illustrated in individuals with mutations in FLNA, FLNB or FLNC (Krakow et al., 2004;
Robertson, 2005; Kley et al., 2007). Mutation in each gene has distinct phenotypes.

FLNA
In this review we focus on FLNA. FLNA is located on the X chromosome. In male, FLNA
deficiency due to a null mutation is embryonic lethal. In female, it causes ventricular
heterotopia, a disease of abnormal neuronal migration (Fox et al., 1998; Lu and Sheen,
2005; Robertson, 2005). On the other hand, point mutations in the same gene cause a
spectrum of diseases in multiple organ systems, such as skeletal and connective tissues
(Robertson, 2005). In the genetically engineered mouse model, Flna deficiency (Flna−/−) is
embryonic lethal. The embryo shows severe structural defects in the heart, and widespread
vascular anomalies (Feng et al., 2006; Hart et al., 2006).

As a cytolinker protein, FLNA interacts with a plethora of proteins with diverse functions.
These proteins include, cell surface receptors, cytoplasmic adapter proteins, signal
transducing molecules and transcription factors (Stossel et al., 2001; Feng and Walsh, 2004;
Robertson, 2005). Binding of FLNA regulates the transit, internalization or trafficking of
many cell surface glycoproteins, such as glycoprotein Ibα (Williamson et al., 2002),
dopamine D2 and D3 receptors (Lin et al., 2001; Li et al., 2002), furin (Liu et al., 1997),
opioid receptor (Onoprishvili et al., 2003), calcitonin receptor (Seck et al., 2003), calcium-
sensing receptor (Awata et al., 2001), cystic fibrosis transmembrane conductance regulator
(Thelin et al., 2007) and caveolin-1 (Sverdlov et al., 2009).

Integrin is one of the best-characterized binding partners of FLNA (Sharma et al., 1995;
Glogauer et al., 1998; Loo et al., 1998; Kiema et al., 2006). Integrins are bidirectional,
allosteric cell surface molecules that are important in sensing and responding to the
extracellular cues (Hynes, 2002; Ginsberg et al., 2005; Luo et al., 2007). Binding of FLNA
to integrin β chain regulates cell spreading, migration and survival (Calderwood et al., 2001;
Kim et al., 2008). FLNA modulates cell spreading and migration by competing with talin for
integrin binding; an increase in FLNA binding inhibits cell migration (Calderwood et al.,
2001). The function of FLNA is further fine-tuned by an auto-inhibitory domain on FLNA,
which modulates the binding of FLNA to its ligands (Lad et al., 2007). FLNA also serves as
a platform for the assembly of adapter and signaling molecules, such as Trio, Ral, Lnk, Ror
2, TRAF2 and SMADs. These molecules are important in many signal-transducing
pathways. (Ohta et al., 1999; Bellanger et al., 2000; He et al., 2000; Leonardi et al., 2000;
Sasaki et al., 2001; Nomachi et al., 2008).

FLNA function is also regulated by post-translational modifications, such as proteolytic
cleavage and phosphorylation. FLNA fragments have been detected in the nucleus (Loy et
al., 2003). In androgen-dependent prostate cancer cell lines, a small 90 kDa FLNA fragment
is translocated into the nucleus where it binds the androgen receptor, and modulates its
activity (Wang et al., 2007). Phosphorylation of FLNA by Ca2+/calmodulin-dependent
protein kinase II causes cytoskeletal reorganization and endothelial barrier dysfunction
(Borbiev et al., 2001). FLNA is also a substrate of PKCα (Tigges et al., 2003).
Phosphorylation of FLNA by PKA renders FLNA more resistant to cleavage by calpain
(Gorlin et al., 1990). Cyclin B1/Cdk-1 phosphorylates FLNA and regulates its ability to bind
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actin (Cukier et al., 2007). In response to EGF, FLNA is phosphorylated by ribosomal S6
kinase (Woo et al., 2004); phosphorylation is required for membrane ruffling (Vadlamudi et
al., 2002). FLNA is also phosphorylated in a caveolin- and PI3 kinase-dependent manner to
promote cell migration (Ravid et al., 2008). In lymphocytes, p56lck controls phosphorylation
of FLNA and regulates focal adhesion kinase (Goldmann, 2002).

FLNA in cancer
Whether FLNA anomaly contributes to tumorigenesis has not been studied in detail. In
prostate cancer, cancer metastasis correlates with cytoplasmic localization of FLNA
(Bedolla et al., 2009). In melanoma cells, FLNA regulates the intracellular trafficking and
degradation of the EGF receptor (Herlyn, 2006; Fiori et al., 2009). Immunohistochemical
staining of melanoma biopsies show that in the dermis there are more FLNA positive tumor
cells than in the epidermis (Bouffard et al., 1994). More recently, it is reported that FLNA is
cleaved by Wnt5a-activated calpain 1, which then causes cytoskeleton remodeling, and
enhances melanoma cell motility (O’Connell et al., 2009). FLNA is required for an efficient
recombination DNA double strand break repair, suggesting that FLNA has a role in the
maintenance of genomic stability (Yue et al., 2009). FLNA is upregulated in lung cancer
cells undergoing epithelial-mesenchymal transition (Keshamouni et al., 2006). Squamous-
cell carcinoma during cancer-stromal cell interaction also express a higher level of FLNA
(Kamochi et al., 2008). These processes are important in tumor growth and metastasis.

Uhlen et al. (2005) compared the expression pattern of FLNA in different cancer tissues
with their corresponding normal tissues by immunohistochemcial staining. Some noticeable
differences were observed. For example, FLNA was undetectable in normal colon glandular
cells, but ~50% of the colorectal cancer had moderate to high levels of FLNA. In normal
pancreas, exocrine ductal cells had low to moderate levels of FLNA, the expression of
FLNA was increased in pancreatic cancer.

A secreted variant of FLNA was detected in the plasma of patients with breast carcinoma
and high-grade astrocytoma (Alper et al., 2009). FLNA was also overexpressed in peripheral
cholangiocarcinomas (Guedj et al., 2009). In gene profiling studies, FLNA was
overexpressed in human glioblastomas (Sun et al., 2006), salivary gland adenoid cystic
carcinoma (Frierson et al., 2002) and in pancreatic cancer (Logsdon et al., 2003). On the
other hand, FLNA was under expressed in human bladder cancer (Sanchez-Carbayo et al.,
2006), gliomas (Bredel et al., 2005), colon adenocarcinoma (Notterman et al., 2001), lung
carcinomas (Bhattacharjee et al., 2001) and renal carcinomas (Yusenko et al., 2009).

Despite its involvement in many cellular activities, FLNA is dispensable for cell-
autonomous survival. Many cell types in Flna−/− mouse are able to migrate and function
properly (Feng et al., 2006; Hart et al., 2006). Some human melanoma cell lines, such as M2
and M3 do not express FLNA. These cells lack actin fiber bundles and are less mobile in
vitro (Byers et al., 1991). This phenotype is reversed in the A7 cells, which are derived from
M2 cells after the transfection of an expression plasmid that encodes human FLNA
(Cunningham et al., 1992). Since then this pair of isogenic cell lines has been used
extensively to study the functionality of FLNA. Biological responses, such as cell spreading
and migration, signal transduction and apoptosis observed in A7 cells, but not in M2 cells,
have been attributed solely to FLNA function (Liu et al., 1997; Leonardi et al., 2000; Awata
et al., 2001; Feng et al., 2003; He et al., 2003; Thelin et al., 2007; Zhu et al., 2007).

It is unlikely that anomaly in FLNA can initiate tumorigenesis. Patients with FLNA
mutations do not have a higher incidence of cancers. On the other hand, disrupted FLNA
function may contribute to the biology of cancers; modulating the functionality of growth
factor receptors or signal transducing molecules, and provides the tumor cells with a growth
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advantage. Anomaly in FLNA may also modulate the functionality of adhesion molecules,
which then facilitate the spreading and migration of cancer cells, giving rise to more
aggressive cancers.

From scrapie, Creutzfeldt-Jakob disease, and kuru to prion
Scrapie is a form of transmissible spongiform encephalopathy (TSE) in sheep and goats, and
is endemic in United Kingdom ever since the 1750s (Greig, 1950). First reported in 1920,
Creutzfeldt-Jakob disease is a subacute spongiform encephalopathy in human (Creutzfeldt,
1920). Over the years and because of its rarity, Creutzfeldt-Jakob disease received little
attention until the 1957 when Gajdusek and Zigas (1957) reported a new disease, Kuru.
Kuru means to tremble in the Fore language of the East Highlanders of Papua New Guinea.
Thus, the word Kuru describes vividly the clinical symptoms of the disease. A major
advance in the understanding of Kuru was the serendipitous discovery that the spongiform
histopathology, as seen in the brain of Kuru affected patients, was very similar to those
found in scrapie. Subsequently, Gajdusek (2008) demonstrated that Creutzfeldt-Jakob
disease and kuru are TSE in humans. It was thought that Kuru is transmitted because of the
practice of cannibalism.

For decades, the etiology of the TSE remained elusive until 1982, when Prusiner (1982)
isolated and characterized the infectious pathogen. They named the pathogen proteinaceous
infectious particle or scrapie prion (PrPSc; Bolton et al., 1982; Prusiner, 1982).
Subsequently, it was found that PrPSc was an aberrant, misfolded isoform of a highly
conserved, and widely expressed normal cellular protein (Basler et al., 1986). Based on this
finding, Prusiner proposed that the central event in the pathogenesis of prion disease is the
conversion of a normal cellular prion protein, PrP, into an abnormal, pathogenic conformer,
PrPSc (Prusiner, 1998). The accumulation of PrPSc then causes pathology in the brain. A
familiar form of human TSE was later found to be caused by a mutation in the prion gene,
PRNP (Hsiao and Prusiner, 1990; Goldfarb et al., 1994). Since then the term prion disease
has been used synonymously with TSE. The next advance in prion research came from
findings, which showed that mice, genetically engineered to lack the normal PrP, Prnp−/−,
were resistant to PrPSc infection (Bueler et al., 1993), adding important support for the
concept of prion pathogenesis.

PrP
PrP is a relatively small glycoprotein and is tethered to the outer membrane leaflet using a
glycosylphosphatidylinositol (GPI) anchor. The synthesis, processing and transit of PrP to
the cell surface are multifaceted, cell-context dependent, and not completely understood
(Hegde and Rane, 2003; Campana et al., 2005). PrP is synthesized as a pre-pro-PrP
polypeptide of 253 amino acids (Figure 2). Residues 1–22 at the N-terminus are the leader
peptide sequence. The last 22 amino acids at the C-terminus, from residues 232 to 253 are
the GPI anchor peptide signal sequence (GPI-PSS). Both sequences are removed in the
endoplasmic reticulum, and thus are absent from the mature PrP. Nuclear magnetic
resonance studies reveal that the N-terminal half of the PrP is flexible and lacks noticeable
secondary structure. On the other hand, the C-terminal region contains a well-defined
globular domain with two β-sheets and three short α-helixes (Donne et al., 1997). This
region also has two potential N-linked glycosylation sites and a disulfide bridge.

At the N-terminal end of PrP there is a highly conserved glycosaminoglycan binding motif,
KKRPK (Caughey et al., 1994; Pan et al., 2002). Glycosaminoglycan participates in cell
migration and adhesion, and serves as a coreceptor for growth factors. At the N-terminus
there is also a highly conserved octapeptide repeat region, which binds divalent cations, such
as Cu2+ and Zn2+ (Millhauser, 2007; Davies and Brown, 2008). PrP also has a large number
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of other binding partners. Some of these molecules are: laminin receptor (Simoneau et al.,
2003), selectins (Li et al., 2007), glypican-1 (Mani et al., 2003), caveolin-1 (Mouillet-
Richard et al., 2000), N-CAM (Schmitt-Ulms et al., 2001), dystroglycan (Keshet et al.,
2000), heat shock proteins (Edenhofer et al., 1996), stress-inducible protein (Zanata et al.,
2002) and Grb2 (Spielhaupter and Schatzl, 2001). PrP also binds to lipids (Mahfoud et al.,
2002) and nucleic acids (Gabus et al., 2001). It is difficult to conceive how a relatively small
protein can interacts with so many partners, and mediates diverse cellular processes that take
place in different cellular compartments.

To identify proteins that are physically close to PrP in a more physiological setting, Schmitt-
Ulms et al. (2004) carry out an in vivo crosslinking experiment followed by next-neighbor
chemical analysis. It is found that in a normal mouse brain PrP is located in a
submicrodomain on the cell membrane. Many of the PrP neighboring proteins are also GPI-
anchored proteins, such as contactin-1 and LSAMP. Other neighboring proteins have
immunoglobulin or fibronectin type III-like motifs. These proteins include N-CAM-2,
MOG, L1cam and PGRL. As these proteins are adhesion molecules, it is postulated that PrP
may participate in regulating cell–cell interaction in vivo. Consistent with this view is the
recent finding that PrP is important in organizing the epithelial cell junctions in the small
intestine (Morel et al., 2008).

On the cell surface PrP resides in lipid rafts and participates in signal transduction (Mouillet-
Richard et al., 2000; Taylor and Hooper, 2006). PrP has a role in apoptosis in a cell context,
as well as pathway-dependent manner. In some cell types, PrP functions as a pro-apoptotic
mediator (Paitel et al., 2004). In other cell types, PrP functions as an anti-apoptotic mediator
(Kuwahara et al., 1999; Bounhar et al., 2001; Chiarini et al., 2002). A recent study suggests
that whether PrP is neuro-protective depends on the underlying pathogenesis (Steele et al.,
2009). PrP has a pro-apoptotic role during endoplasmic reticulum stress, and an anti-
apoptotic role during oxidative stress-induced cell death (Anantharam et al., 2008). PrP is
also detected in the cytoplasm, nucleus, and is present in blood as well as other body fluids,
such as milk (Franscini et al., 2006) and urine (Narang et al., 2005). Despite all the
functions that are attributed to PrP, Prnp−/− mouse is apparently normal without overt
aberrant phenotype (Bueler et al., 1993).

The GPI anchor
In mammalian cells, there are more than 100 GPI-anchored proteins with diverse functions
(Ikezawa, 2002; Sharom and Lehto, 2002). It is not known why some proteins are GPI
anchored whereas others are not; some proteins can exist either as a GPI anchored protein or
a transmembrane protein. The biosynthesis of the GPI anchors and their attachment to
proteins are intricate, protein-context and cell-context dependent (Maeda et al., 2006;
Kinoshita et al., 2008). At least 25 genes are important in this pathway. The common core
structure of the GPI anchor is synthesized in a stepped mechanism in the ER. The first step
is the transfer of N-acetyl-glucosamine (GlcNAc) from UDP-GlcNAc to
phosphatidylinositol to yield GlcNAc-phosphatidylinositol. This reaction is catalyzed by
α1-6 GlcNAc transferase complex. The second step is the de-N-acetylation and generation
of GlcN-phosphatidylinositol. Three mannose residues are then added sequentially. The last
step in the GPI anchor modification pathway is the attachment of the already assembled GPI
structure en bloc to the newly synthesized pro-protein in a transamidase reaction. This
reaction is mediated by a protein oligomer comprising of five highly conserved proteins.
The site of the proteolytic cleavage is referred to the ω site. The ω residue for mammalian
proteins is confined to the amino acids glycine, serine, cysteine, alaine, aspartic acid and
asparagine (Maeda et al., 2006; Kinoshita et al., 2008). Other than the ω residue, there is no
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other obvious motif in the GPI-PSS that signals the transamidase reaction; any hydrophobic
sequences can function as a substrate in the transamidation reaction.

In general, the GPI-PSS contains 15–25 small hydrophobic amino acids, similar to a typical
transmembrane domain. It is interesting that substitution of a single amino acid at the ω site
of Qa2, a normally GPI-anchored protein, prevents its GPI anchor modification (Waneck et
al., 1988). Nonetheless, Qa2 is still present on the cell surface as an integral membrane
protein using the GPI-PSS as a surrogate transmembrane domain.

Does the GPI-PSS simply function as an inert substrate for the transamidase reaction, so that
the protein is GPI-anchored? Stanners and colleagues do not think so. They propose that the
GPI-PSS contains cryptic biological information that specifies the addition of a particular
functional GPI-anchor, which ultimately regulates the functionality of the mature protein.
This hypothesis is based on the finding that exchanging the GPI-PSS of N-CAM for the
GPI-PSS of carcinoembryonic antigen (CEA) generates a mature protein with a N-CAM
external domain, but with CEA-like biological properties (Screaton et al., 2000;
Naghibalhossaini et al., 2007; Nicholson and Stanners, 2007). Different GPI-PSSs also
affected the oligomerization of GPI-anchored proteins and their placement on either the
basal side or epical side of the membrane (Paladino et al., 2008). Interestingly, although the
coding region of the human PRNP and other mammalian Prnp is about 85% conserved, their
GPI-PSS is almost 100% conserved (Table 1). On the other hand, their N-terminal peptide
sequence, which is also discarded before maturation, is much less conserved. The
significance of this conservation is not known.

As GPI-anchored proteins are involved in different cellular activities, any malfunction in the
GPI-anchored modification pathway is likely to contribute to tumorigenesis. Some
components of the transamidase complex, such as PIG-T, PIG-U, PIG-S and GPAA1 are
upregulated in bladder, breast, head and neck cancers (Jiang et al., 2007; Nagpal et al.,
2008). Increased GPAA1 expression is also associated with hepatocarcinoma’s poor cellular
differentiation and poor prognosis (Ho et al., 2006). However, the underlying mechanisms
by which aberrant expressions of these genes contribute to tumorigenesis are not known.
Worthy of note is the fact that many of the genes essential for GPI anchor modification are
located in chromosomal regions, which are reported to be linked to, amplified, deleted or
mutated in different human cancers (Table 2). Amplification or deletion in these regions
may have impacted the integrity of the genes essential for the GPI-modification pathway.
Aberrant expression of any one of these genes potentially can alter the physiology of many
of the GPI-anchored proteins, and thus can have global impact on cellular physiology.

Pancreatic cancer and prion
Because PrP is associated with cellular survival, proliferation and differentiation, aberrant
PrP function may also contribute to tumorigenesis. PrP is overexpressed in human gastric
cancers and contributes to resistance to chemotherapeutic agents (Liang et al., 2009).
Expression microarray studies find that PRNP is overexpressed in human colorectal cancers
(Antonacopoulou et al., 2008). PRNP is 1 of the 25 genes that is overexpressed in a panel of
human pancreatic ductal adenocarcinoma (PDAC) cell lines (Han et al., 2002). However,
the mechanism by which PrP overexpression promotes tumorigenesis is not clear. We have
been studying the normal biology of PrP (Zanusso et al., 1998; Li et al., 2000). Based on an
earlier report, which showed that PRNP is overexpressed in PDAC cell lines (Han et al.,
2002), we investigated whether PrP was expressed in PDAC cell lines.

PDAC is the fourth leading cause of cancer deaths in the US and is one of the cancers with
the poorest prognosis (Jemal et al., 2007). The overall median survival for all PDAC is 6
months and the 5-year survival rate is <5%. This bleak outcome reflects the aggressiveness
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and highly metastatic nature of the tumor, the lack of an early diagnostic marker, as well as
the inefficacy of the treatment regimens. Pervasive genomewide aberrations impede the
identification of the culprit genes in the etiology of human PDAC. Nonetheless, over the last
two decades, there is significant progress in elucidating the molecular mechanisms
underlying PDAC carcinogenesis. Many oncogenes, tumor suppressor genes and DNA
mismatch repair genes are implicated in the etiology of PDAC (Li et al., 2004; Hezel et al.,
2006; Hruban and Zamboni, 2009). The most common genetic lesions in human PDAC are
mutations in KRAS, TP53, DPC4 (SMAD4) and CDNK2A (p16ink4a). It is now generally
accepted that the KRAS mutation is one of the earliest and critical genetic lesion in the
development of PDAC; about 90% of the PDAC cases have mutation in KRAS. In all, ~90%
of the PDAC cases also have inactivation of CDNK2A. On the other hand, about half of the
PDAC cases have mutations in TP53 or DPC4 (Hezel et al., 2006; Shi et al., 2008). The
contribution of these genes to human PDAC development is supported by transgenic animal
studies, which show that involvement by more than one of these genes is essential for the
initiation and progression of PDAC (Hezel et al., 2006; Hruban et al., 2006; Wescott and
Rustgi, 2008; Ottenhof et al., 2009). In addition, other growth factor genes, signal
transducing molecules, transcription factors, as well as cell adhesion molecules are also
implicated in the progression of human PDAC.

Garcea et al. (2005) examined evidence from published reports focused on molecular
markers in PDAC, their correlation with tumor stage and grade, response to chemotherapy
and long-term survival. The investigated markers included p53, p21, p16, p27, SMAD4, K-
ras, cyclin D1, Bax, Bcl-2, epidermal growth factor receptor, epidermal growth factor, c-
erbB2, HB-EGF, transforming growth factor-β, FGF, MMP, uPA, cathepsin, heparanase, E-
cadherin, laminins, integrins, TMSF, CD44, cytokines, angiogenesis, vascular endothelial
growth factor, interleukin-8 and β-catenin. These markers were previously reported as
important in the pathogenesis of human PDAC. These authors concluded that for the most
part, the evidence regarding the application of this panel of markers as prognostic indicators
in PDAC was conflicting. Therefore, we need to continue the search for individual marker(s)
or a group of markers that distinguish aggressive from less aggressive PDAC.

Fatal attraction between pro-PrP and FLNA
All PDAC cell lines (n = 7) studied express varying levels of PrP (Li et al., 2009). Further
biochemical studies reveal that in contrast to PrP in normal cells, the PrP in the PDAC cell
lines is unglycosylated, and exists as pro-PrP, retaining its normally cleaved GPI-PSS
(Figure 2). This conclusion is based on the following findings: (1) PrP in the PDAC cell
lines has a relative molecular mass of 26 kDa, a normal glycosylated, and GPI-anchored PrP
has a relative molecular mass of 33–39 kDa; (2) treatment of PrP from PDAC cell lines with
N-link glycosidase does not change its mobility in SDS–polyacrylamide gel electrophoresis,
indicating that it does not contain N-linked glycan; (3) PrP from the PDAC cell lines is
resistant to phopsholipase C, which cleaves the GPI anchor, indicating that the PrP from
PDAC cell lines lacks the GPI-anchor; (4) the GPI-anchor protects a GPI-anchored protein
from carboxypeptidase digestion, but PrP from the PDAC cell lines is susceptible to
carboxypeptidase, indicating that the C-terminal of PrP lacks the GPI-anchor; (5) GPI-
anchored PrP is normally find in lipid rafts, a micro-domain on the cell surface. However,
PrP in the PDAC cell lines is not longer present in lipid raft; (6) a polyclonal antiserum that
is specific for the GPI-PSS of PrP reacts with pro-PrP in the PDAC cell lines. Additional
studies reveal that pro-PrP is readily detected on the cell surface of the PDAC cell line,
using the GPI-PSS as a surrogate transmembrane domain (Figure 3).

Unexpectedly, we found that the GPI-PSS of pro-PrP has a FLNA binding motif. It is
interesting to note that despite the fact that the GPI-PSS is discarded after the attachment of
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the GPI anchor, the FLNA binding motif on pro-PrP is highly conserved among mammalian
PrPs (Table 1). Each immunoglobulin-like domain of FLNA has seven β-sheet strands (A–
G). Most of the FLNA binding partners interact with the C and D strands of FLNA (Kiema
et al., 2006; Nakamura et al., 2006, 2007). The atomic structure of the interface between the
FLNA immunoglobulin-like domain and some of the common FLNA binding partners have
been resolved (Kiema et al., 2006; Nakamura et al., 2006, 2007). These FLNA binding
partners share a conserved hydrophobic amino-acid motif, consisting of multiple
hydrophobic, nonpolar amino acids contacting residues.

First, binding of FLNA to pro-PrP is demonstrated by in vitro pull-down assays using
recombinant FLNA and recombinant pro-PrP. FLNA only binds recombinant pro-PrP, but
not mature PrP that lacks the GPI-PSS. Second, by co-immunoprecipitation, PrP copurifies
with FLNA and vice versa in the PDAC cell lysates. Third, by immuno-fluorescent staining
and confocal microscopic analysis, PrP and FLNA colocalize in the PDAC cell lines.
Fourth, the co-immunoprecipitation of PrP and FLNA in PDAC cell lysate is competitively
inhibited with a synthetic peptide corresponding to the GPI-PSS of PrP.

More recent studies using recombinant pro-PrP and FLNA individual domains reveal that
pro-PrP binds to multiple domains, such as 10, 16, 17, 18, 20, 21 or 23, but not domains, 1–
8, 11, 19, 22 or 24 of FLNA (Li et al., 2010). However, whether in vivo one FLNA dimer
can simultaneously bind more than one pro-PrP is not known.

The GPI-PSS of PrP is comprised of 22 amino acids. Site-specific mutagenesis studies
further reveal that the last five residues of the GPI-PSS are essential in binding FLNA.
Therefore, the GPI-PSS is long enough to traverse the cell membrane. Furthermore,
replacing residues 246 (Phe) and 250 (Leu) of the GPI-PSS to polar amino acids, such as
tryptophan or tyrosine, completely eliminate the FLNA binding activity (Li et al., 2010).
These results are consistent with earlier findings, which showed that the FLNA binding
pocket could accommodate seven to nine amino acids and that nonpolar amino acids are
important in the binding (Kiema et al., 2006; Nakamura et al., 2006, 2007).

The FLNA binding motif is present only on the GPI-PSS of PrP because it is absent in 14
other GPI-anchored proteins. Pro-PrP is undetectable in cells with normal GPI-anchored
PrP, indicating the transit from pro-PrP to PrP is either very rapid or the removal of the pro-
PrP is very efficient in these cells. Worthy of note is that it is reported that carbonic
anhydrase, a normally GPI-anchored protein also exists as a pro-protein in a PDAC cell line
(Fanjul et al., 2004, 2007). As the FLNA binding motif is absent on the GPI-PSS of
carbonic anhydrase, therefore, even if carbonic anhydrase exists as pro-protein it will not be
able to bind FLNA. On the other hand, there are more than one hundred GPI-anchored
proteins, we cannot rule out the possibility that some other pro-proteins may be able to bind
FLNA. A few GPI-anchored proteins, such as glypican-1 and CD24, have been reported to
be important in tumorigenesis (Kayed et al., 2006; Fang et al., 2010). However, in these
cases, it is not clear whether it is the protein portion of the molecule, the GPI anchor, or both
that are critical. It is almost certain that GPI anchored proteins can contribute to tumor
biology by numerous ways.

The reason the PrP GPI-PSS is not removed in the PDAC cell line is not because of a global
defect in the GPI anchor modification machinery in the PDAC cell lines. Another GPI-
anchored protein, CD55, is GPI-anchored in the PDAC cell lines. It is also not because of a
mutation in the PRNP. We sequenced six of the seven PDAC cell lines and did not detect
any mutation in the coding region of PRNP. Worthy of note is that the GPI-PSS of PrP is
intrinsically inefficient in accepting the lipid anchor (Chen et al., 2001). In an in vitro GPI
anchor modification assay comparing the efficiency of nine different GPI-PSSs, the GPI-
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PSS of PrP is by far the least efficient in accepting the GPI anchor—14% for pro-PrP versus
50% for pro-CD50 (Chen et al., 2001). Hence, a slight defect in the GPI assembly pathway
will have a more dramatic effect on PrP than other GPI-anchored protein, such as CD55. As
has been discussed earlier some of the genes that are essential in the GPI anchor
modification pathways may contribute to human cancers, including pancreatic cancer (Table
1). Any defect in these genes will cause the accumulation of pro-PrP. In addition, slight
defects in the ER quality control system or in the proteasome degradation pathway may also
contribute to the accumulation of pro-PrP in these cells. On the other hand, as not all GPI
anchored proteins are affected in the PDAC cell lines, these defects have to be somewhat
restricted.

FLNA is an integrator of mechanical and chemical signaling events. Binding of pro-PrP to
FLNA is likely to have widespread effects on the PDAC cells. Binding to pro-PrP may
physically relocate FLNA from its normal environment, rendering it unable to interact with
its regular binding partners. Alternatively, binding of pro-PrP may also compete for binding
sites on FLNA that are normally reserved for other molecules. To study the effects of pro-
PrP expression, we used small hairpin RNA to downregulate the expression of PrP in the
PDAC cells. Although downregulation of PrP in the PDAC cell lines does not alter the
expression levels of FLNA, it does alter the spatial distribution of FLNA in these cells. In
control cells, FLNA is present just underneath the inner membrane leaflets. In PrP
downregulated cells, it appears that FLNA is disconnected from the inner membrane leaflets
and is more concentrated in the cytosol (Figure 3). This interpretation is further supported by
biochemical approaches. In PrP downregulated cells, much less FLNA is copurified with
membrane bound pro-PrP.

Downregulation of PrP in the PDAC cell lines also drastically alters the organization of
actin filaments. Accordingly, the levels of proteins that are important in regulating actin
polymerization and depolymerization, such as p-cofilin, LIMK-1 and LIMK-2 are also
affected. These biochemical changes result in behavior changes of the PDAC cells.
Compared with control cells, PrP downregulated PDAC cell lines have reduced in vitro
proliferation and invasiveness. When the level of PrP is reduced, the growth of the PDAC
cell lines as xenograft in nude mice is also greatly reduced. Collectively, these results
suggest that the expression of pro-PrP modulates the functions of FLNA, and provides the
PDAC cells with a growth advantage.

Interaction between pro-PrP and FLNA in melanoma cell line A7
As discussed earlier human melanoma cell lines, such as M2 and M3 cells do not express
FLNA. These cells lack actin fiber bundles and are less mobile in vitro when compared with
cells with FLNA. The deficiency is restored in A7 cell, which was derived from M2 cell by
transfection of a plasmid encoding human FLNA. We posit if this pair of tumor cell lines
expresses pro-PrP, it will provide an excellent model system to further study the interacting
between pro-PrP and FLNA.

We find that both M2 and A7 cells express comparable levels of PrP. Furthermore, as in the
PDAC cell lines, the PrP exists as pro-PrP (Li et al., 2010). In A7 cells, pro-PrP copurifies
and colocalizes with FLNA. Binding of cell surface pro-PrP to FLNA in A7 cells provides
stability to cell surface pro-PrP. Pro-PrP on the cell surface of A7 cells has a much longer
half-life than PrP on the cell surface of M2 cells, which lack FLNA.

As in PDAC cells, reducing PrP expression in A7 cells also does not change the expression
level of FLNA, but the spatial distribution of FLNA is noticeably altered. In control cells,
FLNA concentrates at the leading edges. In PrP downregulated A7 cells, FLNA is retracted
from the inner membrane leaflet. In control A7 cells, the actin filaments are well organized.
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In PrP downregulated A7 cells, the actin filaments are dis-organized. Accordingly, the levels
of p-cofilin and LIMK1 are reduced in PrP downregulated A7 cells, but not in similarly
downregulated M2 cells. These results suggest that the effect of reduced p-cofilin in PrP
downregulated cells depends on the binding of pro-PrP to FLNA. If the effects were simply
due to a reduction in PrP, we would have observed reduced p-cofilin level in PrP
downregulated M2 cells.

A7 cells are used to demonstrate the role FLNA has in cell spreading and migration
(Cunningham et al., 1992). We find that reducing PrP expression greatly diminishes the
spreading and migration of A7 cells. Therefore, the enhanced cell spreading and migration
observed in A7 cells are because of the binding of pro-PrP to FLNA.

One of the best-characterized FLNA binding partners is the integrin β chain, such as β1 and
β7. Integrins regulate cell spreading and migration (Hynes, 2002; Ginsberg et al., 2005; Luo
et al., 2007). Therefore, in A7 cells, PrP, FLNA and integrin β1 may coexist in a trimeric
complex. We find that in A7 cells, Although FLNA copurifies with PrP, and integrin β1
copurifies with FLNA, integrin β1 does not copurify with PrP. Therefore, in A7 cells,
FLNA/PrP and FLNA/integrin β1 exist in two distinct complex, one containing FLNA and
PrP, the other containing FLNA and integrin β1 (Figure 4). However, these two complexes
appear to be functionally linked, because of the fact that the amount of FLNA copurified
with integrin β1 is greatly reduced in PrP downregulated A7 cells. In PrP downregulated A7
cells, FLNA is dissociated from the inner membrane leaflets. This spatial change may be the
reason that less integrin β1 is bound to FLNA in PrP downregulated A7 cells. Results of
immunofluorescent staining of integrin β1 and FLNA in PrP downregulated A7 cells are
consistent with this hypothesis. In control cells, integrin β1 and FLNA colocalize at the
leading edges. In PrP downregulated A7 cells, cell surface integrin β1 is no longer
associated with FLNA. FLNA appears to retract from the inner membrane leaflet. It is
known that the motif on integrin β1 that binds FLNA is located at the N-terminus, proximal
to the inner membrane leaflet (Loo et al., 1998). We propose that in A7 cells pro-PrP pulls
FLNA closer to the inner membrane leaflet, enabling FLNA to bind to the short cytoplasmic
tail of integrin β1 more effectively. We further propose that when PrP is downregulated,
FLNA dissociates from the inner membrane leaflet, moving away from the β-chain (Figure
4). This disconnect is likely to affect the bidirectional functionality of integrin β1.

Focal adhesion kinase is a critical component of the integrin-signaling cascade, and a
regulator human melanoma cell migration (Akasaka et al., 1995; Tomar and Schlaepfer,
2009). Our finding that downregulation of PrP in A7 cells also reduces the levels of p-focal
adhesion kinase is consistent with the view that less p-focal adhesion kinase correlates with
reduced cell migration. Integrin signaling is complicated, a much more detailed biochemical
analysis will be needed to further identify the upstream and downstream molecules that are
altered in PrP downregulated A7 cells.

Although our studies on M2 and A7 cells suggest that binding of pro-PrP interferes with the
interaction between FLNA and integrin β1, it remains to be determined whether this
association also occurs in other cancers that express pro-PrP, FLNA and integrin.
Furthermore, much more detailed biochemical study is required to identify the altered
downstream and upstream signaling events as a consequence of binding of pro-PrP to
FLNA.
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Prevention of binding of pro-PrP to FLNA modulates cell spreading and
migration

To further support our hypothesis that binding of pro-PrP to FLNA is important in cell
migration, we took advantage of a recent finding. We found that a pentapeptide, KKRPK,
had cell penetrating capacity (Yin et al., 2008). We hypothesized that if we added a KKRPK
motif to the N-terminus of the PrP GPI-PSS, the peptide might be able to enter cells, and
competed for the binding of pro-PrP to FLNA.

The KKRPK-GPI-PSS peptide is not toxic. It does not alter the expression of PrP, FLNA or
integrin β1 in A7 cells. However, when A7 cells are incubated with the peptide, their
spreading and migration are significantly reduced. Thus, binding of pro-PrP to FLNA indeed
occurs in living cells, is important for A7 cell spreading and migration, and can be inhibited
by the KKRPK-GPI-PSS. Although the synthetic peptide also blocks the copurification of
FLNA and pro-PrP in cell lysate, it is possible that in a live cell the peptide may also
interfere with other cellular processes that are unrelated to the binding of FLNA to pro-PrP.
Nonetheless, our finding provides ‘proof of principle’ that interaction between pro-PrP and
FLNA may be a potential target for therapeutic intervention in tumor cells that express both
pro-PrP and FLNA.

Expression of pro-PrP in the PDAC correlates with shorter survival
To investigate whether our findings in cell lines have clinical implications, we determine
whether PrP is expressed in normal human pancreas, in pancreas with pancreatitis, in
pancreas with pre-neoplastic lesions, such as PanIN-1, -2, and -3, or in pancreas with PDAC.
In normal human pancreas, only islet cells show PrP immunoreactivity. Neither acinar nor
ductal epithelial cells stain for PrP. PrP is also undetectable in the duct cells in chronic
pancreatitis, PanIN-1, and PanIN-2. About 13% PanIN-3 specimens show weak PrP
staining. Among the 83 PDAC cases examined, 34 show strong PrP staining. The PDAC
tumor cells also react with the anti-GPI-PSS antiserum indicating the presence of the GPI-
PSS. Thus, as in the PDAC cell lines, PrP exists as pro-PrP in human PDAC lesions (Li et
al., 2009).

Most importantly, the expression of PrP is associated with poorer clinical outcome. Patients
with intra-tumoral PrP have a median survival time of 360 days, whereas patients without
PrP expression in their tumors have a mean survival time of >1000 days. This association is
independent of other factors, such as age and gender of the patient, as well as the size or
differentiation stage of the tumor. Therefore, expression of PrP divides the PDAC patients
into two groups with drastic difference in their survival rates. PrP expression is not essential
for PDAC initiation because only 41% of the PDAC cases have detectable PrP. However,
the presence of PrP is associated with poorer clinical outcome. Therefore, similar to PDAC
cell lines, PDAC tumors with PrP have a growth advantage and are more aggressive.

Although all PDAC cell lines (n = 7) express PrP, only 41% of the tumor biopsies have PrP.
One possibility is that during in vitro culture PrP bearing tumor cells are preferentially
expanded. This view is consistent with our finding that PrP positive cells have growth
advantage. So far, we have only studied the expression of PrP in resectable PDAC, if we
examine PrP expression in nonresectable or in autopsies pancreatic cancer tissues we would
observe a high proportion of the tumors that have PrP.

In normal pancreas only islet cells express detectable PrP; neither ductal cells nor acinar
cells have detectable PrP. However, we can’t rule out the possibility that these cells may
express PrP, but at a level that is beyond the detection limit of immunohistochemcial
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staining. As the anti-PrP GPI-PSS does not react with normal islet cells, therefore, the PrP in
islet cell is a normal GPI-anchored PrP. It is interesting to note that in contrast to PrP, FLNA
is undetectable in islet cells, but is detectable in low level in ductal cells, and the level is
upregulated in PDAC (Uhlen et al., 2005). This finding is also consistent with an early
report, which shows that FLNA is upregulated in human PDAC (Logsdon et al., 2003). At
present time, the underlying mechanisms that cause the upregulation of PrP, FLNA and
accumulation of pro-PrP in pancreatic ductal cells are not known.

Relationship between PrP expression and other genetic lesions in human
PDAC

The four most extensively studied genetic lesions in human PDAC were mutations in K-
RAS, SMAD4, TP53 and inactivation of CDNK2A (Li et al., 2004; Hezel et al., 2006;
Hruban and Zamboni, 2009). Recently, we investigated whether there was a correlation
between the expression of PrP and TP53 mutation. In normal pancreas, p53 was
undetectable. Mutations in the TP53 caused the accumulation of p53, and thus p53 became
detectable (Boschman et al., 1994). When stained with anti-PrP mAb, most of the
immunoreactivity in tumor cells was detected in the cytosol, and the nucleus was by and
large negative. In contrast, when stained with the anti-p53 mAb, most of the p53
immunoreactivity was detected in the nucleus (not shown). Two-color staining clearly
showed the colocalization of PrP and p53 in the same tumor cells. Interestingly, in the 34
PrP positive tumor samples, 22 of the tumors (65%) also had detectable p53. On the other
hand, in PrP negative tumors, only 12 out of the 49 (24%) PrP negative tumors had p53.
These results suggested that tumor cells with TP53 mutations preferentially expressed PrP.
Alternatively, expression of PrP might favor the accumulation of p53. So far, we have
shown a correlation between PrP expression and TP53 mutation. The underlying
mechanisms that link TP53 mutation and pro-PrP expression still need to be investigated.
Mutation in p53 can result in gain of novel functions, which then affects numerous cellular
pathways (Brosh and Rotter, 2009). A recent study finds that mutant p53 regulates cellular
invasion by promoting integrin recycling (Muller et al., 2009).

Expression of pro-PrP in human melanoma
The progression from melanocyte to melanoma is complex and not completely understood
(Herlyn, 2006). By immunohistochemical staining, normal human melanocytes do not react
with either the anti-PrP mAb or the anti-PrP GPI-PSS specific antibody, indicating that
normal melanocytes do not express PrP (Li et al., 2010). In contrast, both the anti-PrP mAb
and anti-PrP GPI-PSS antibody react with melanoma in situ and invasive melanoma in the
dermal component express the highest levels of PrP. These results suggest that expression of
PrP may be important in the neoplastic transformation of melanocyte and invasion of human
melanoma. However, whether expression of pro-PrP has diagnostic or prognostic value will
require studying a much larger cohort of melanoma patients.

Future directions
It is a certainty that interaction between pro-PrP and FLNA does not occur in all tumor cells.
Human neuroblastoma cell lines (n = 2) express neither PrP nor FLNA (not shown). Small-
cell lung carcinoma cell lines (n = 3) express FLNA, but not PrP (not shown). On the other
hand, leukemia cell lines, such as Jurket express a normal GPI-anchored PrP (Li et al.,
2003). In addition to melanoma and PDAC, human hepatocarcinoma cell lines (n = 5)
express both pro-PrP and FLNA. It is not known why some tumor cell lines express pro-PrP
and FLNA although others do not. The current concept divides genes involved in
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tumorigenesis into driver genes and passenger genes (Liu, 2008). PrP is clearly not a driver,
but more likely a passenger with deadly potential.

Over the last two decades, cancer biologists have focused on oncogenes and tumor
suppressor genes. Recently, metabolic enzymes involved in diverse physiological functions,
such as circadian clock regulation, intermediate metabolism, fucosylation or lipid synthesis,
have emerged as critical factors in tumorigenesis (Deberardinis et al., 2008; Miyoshi et al.,
2008; Sahar and Sassone-Corsi, 2009; Yan et al., 2009; Nomura et al., 2010). Enzymes
involved in the GPI-anchor modification pathway may also have a role in the tumorigenesis
of some human cancers (Table 2).

To fully elucidate the contributions of PrP to tumor biology some additional questions need
to be addressed. For example, what is the mechanism that causes the upregulation of PrP in
some tumor cells, but not all? What are the mechanisms that cause the failure to remove the
GPI-PSS on PrP, or the accumulation of pro-PrP? Finally, as for the FLNA binding site on
the GPI-PSS of PrP—is this by design or it is just an unfortunate blunder?
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Figure 1.
Drawing of a dimeric FLNA: each monomeric FLNa contains an actin-binding domain
(ABD) followed by 24 β-sheet immunoglobulin-linked domains, intersperse between these
are two hinge regions, domain 24 is a self-association, dimerization domain.
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Figure 2.
Diagrammatic drawings of PrP and its processing from pre-pro-PrP to pro-PrP and to a
mature, N-glycosylated and GPI-anchored PrP. Residues 1–22 contain the leader peptide
sequence. Residues 232–253 contain the GPI-peptide signal sequence.
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Figure 3.
(a) Normal glycosylated and GPI anchored PrP on the cell surface; (b) pro-PrP on the cell
surface using the GPI-PSS as a surrogate transmembrane domain and binds to FLNA just
underneath the inner membrane leaflet. The sizes of the PrP and FLNA are not proportional.
The size of PrP is approximately corresponding to two FLNA immunoglobulin domains.
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Figure 4.
A minimum drawing model on the interplay between pro-PrP, FLNA and integrin β1 in A7
cells. Presence of pro-PrP pulls FLNA closer to the inner membrane leaflet, allowing it to
interact with integrin β1. When the level of pro-PrP is reduced, FLNA is retracted from the
inner membrane leaflet rendering it unable to bind integrin β1. γ and δ are proteins that are
normally associated with either FLNA or integrins.
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