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Abstract
Genomic experiments produce multiple views of biological systems, among them DNA sequence
and copy number variation, mRNA and protein abundance. Understanding these systems requires
integrated bioinformatic analysis. Public databases such as Ensembl provide relationships and
mappings between the relevant sets of probe and target molecules. However, the relationships can
be biologically complex and the content of the databases is dynamic. We demonstrate how to use
the computational environment R to integrate and jointly analyse experimental datasets, employing
BioMart web services to provide the molecule mappings. We also discuss typical problems that are
encountered in making gene to transcript to protein mappings. The approach provides a flexible,
programmable and reproducible basis for state-of-the-art bioinformatic data integration.
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INTRODUCTION
As it becomes possible to investigate biological systems in ever more detail with respect to
different aspects, such as DNA sequence variation and copy number, epigenetic modifications
of DNA and chromatin, RNA expression and protein abundance, and the interaction of proteins
with nucleic acids and metabolites, it becomes necessary to analyse the data in an integrative
manner. Researchers then need to address two main challenges: firstly, each technology
requires specific preprocessing, error modeling, normalization and statistical data analysis
methods; secondly, and typically for good scientific reasons, a variety of systems of identifiers
and coordinate systems are used for the DNA, RNA and protein molecules targeted in these
experiments, for the probing reagents (such as DNA probes on microarrays or siRNAs).
Identifiers are also needed for the annotation of genomes, genes and gene products in public
databases with information regarding, for instance, sequences, gene ontology, assignment to
pathways, known interactions, and assocations with diseases and other phenotypes.

The open source programming environment R1 (http://www.r-project.org) provides
mathematical, statistical and graphical facilities that are used in many different fields of science
for data analysis or development of new analysis methods. The Bioconductor Project2
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(http://www.bioconductor.org) is an open source and open development software project
geared towards the development of tools for the analysis of genomic datasets. It consists of a
variety of R packages and interfaces to other software systems, each tackling specific
bioinformatic data manipulation and analysis needs. R and Bioconductor together provide a
comprehensive and powerful set of tools to address the first challenge mentioned above.
Furthermore, they provide data structures for the different types of experimental data that can
be flexibly manipulated, combined and mined for relationships.

How to address the second challenge, constructing proper transformations between different
identifier systems and obtaining the needed annotations? Public bioinformatics service
providers, such as NCBI (National Center for Biotechnology Information,
http://www.ncbi.nlm.nih.gov), EBI (European Bioinformatics Institute,
http://www.ebi.ac.uk) and UCSC (University California Santa Cruz, http://genome.ucsc.edu),
as well as many instrument and reagent vendors have websites on which users can look up
relevant information. However, manual lookup does not perform well for genome-scale
experiments. Typically, these websites therefore also provide files with bulk annotation and
mappings. Traditionally, a bioinformatician would download these files, parse them, subset
the relevant information, and load it into appropriate data structures in their programme.
However, this process is tedious, error-prone, needs to be repeated each time a new version of
such files is released, and does not provide assistance with dealing with contradictory
information.

The query oriented data management system and web service BioMart3, developed by the
Ontario Institute for Cancer Research and the European Bioinformatics Institute, provides
access to mappings, relationships and annotation from several biological databases such as
Ensembl4 and Wormbase5. Besides genome annotation databases, several other biological
databases are served via the BioMart system. For example, Reactome6 is a knowledgebase of
human biological pathways and processes. The Bioconductor package biomaRt7,8 provides an
Application Programming Interface (API) to BioMart web services and enables the
programmable construction and subsequent analysis of large and complex queries to BioMart
services from R. It allows the seamless embedding of identifier matching and annotation in
statistical data analysis procedures. We have been using it in many of our data analysis
projects9,10, and it is widely used by others (for example, it is currently the most frequently
used client platform for accessing the Ensembl BioMart webservices).

The strength of the biomaRt package in querying online web services can also be a limitation:
internet access is required, performance of repeated queries can be slower than with the bulk
download paradigm, and “freezing” the results at a particular version of the underlying
databases requires additional attention and is not always easy. For some of the tasks, the
precompiled Bioconductor annotation packages11 offer an excellent alternative, however, their
thematic scope is more limited.

The vast majority of human gene loci are annotated consistently in the different databases. For
these loci, one can start from an Ensembl Gene identifier, get a single and unique corresponding
EntrezGene identifier and in many cases a HGNC symbol, and the reverse mapping from
EntrezGene to Ensembl is equivalently unambiguous.

However, there is a smaller, but appreciable set of cases that are more complicated. This is due
to differences in annotation methodology or in the data underlying the annotation. The three
groups, NCBI12, Ensembl and HGNC13 (HUGO Gene Nomenclature), are actively working
on reconciling differences in annotation along with other groups
(http://www.ncbi.nlm.nih.gov/projects/CCDS). Many of these cases reflect unusual biological
complexity. Here, a current goal of genome annotators is to provide further qualifiers, so that
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at the very least a user can know when instances reflect real complexity rather than only seeing
a tangle of relationships and wondering whether there was a database error.

A case in point is the PCDHG gene locus. A query in Ensembl version 52 for the gene symbol
PCDHGA12 results in four EntrezGene identifiers: 5098, 26025, 56097, 56098. The locus has
one Ensembl gene identifier (ENSG00000081853), and four Ensembl transcript identifiers. At
NCBI however, each of the four EntrezGene identifiers is mapped to a different HGNC symbol,
PCDHGC3, PCDHGA12, PCDHGC5, PCDHGC4, respectively. This gene locus is part of the
protocadherin gamma gene cluster, which like some other loci in the human genome, such as
the Ig locus, has a complex organization, and cannot be easily fitted into the canonical view
of a gene. In this cluster, 22 variable region exons are followed by a constant region of 3 exons
shared by all genes in the cluster. The protocadherin community argued that the best
representation of this biology mapped to the gene locus concept was for separate HGNC names
for different transcripts. However, considering the agreed single locus nature of this region
with a limited number of transcripts and related functions, a single locus with multiple
transcripts (as represented in Ensembl) is more consistent for many genomics interpretations
of data in this region. For such complex loci there will never be a clear set of criteria which
one can apply in a consistent manner and which can satisfy all users of the information. Rather,
the best scenario is a careful flagging with a qualifier, thus alerting the end user of the
information that special consideration of a complex biological scenario may be needed.

As genome annotation is still work in progress, data and analysis results published a few years
ago have to be treated with caution. Microarray data, for instance, are prone to probe-to-gene
mapping changes due to improved genome annotations, making it often difficult to map
published results from the past to the present. Updated probe to genome annotation mappings
are provided by array manufacturers and by databases such as Ensembl, and alternatively one
can compute one’s own alignments. Integrating data from different experiments, using different
sets of probes is often biologically complex, and the choice on how to do this should depend
on context and judgement. As long as our understanding of biology improves, such mappings
will remain dynamic and hence, it is important that genome annotation resources are updated
regularly, and that these updates can find an easy way to enter into bespoke algorithms and
software for the data analysis tasks. The BioMart data warehouses and the biomaRt R/
Bioconductor interface are powerful and effective tools for doing so.

To ensure the scientific value and impact of such analyses, we recommend that publications
quote the version number of any database used and that software scripts are provided in
supplemental information for complete clarity and reproducibility of the analysis.

MATERIALS
EQUIPMENT SETUP

R/Bioconductor—The current release of R can be downloaded from
http://www.r-project.org.

The required add-on packages can be installed from Bioconductor by starting R and giving the
following instructions to the R interpreter.

source(‘http://www.bioconductor.org/biocLite.R')
biocLite(c(‘biomaRt’, ‘affy’, ’gplots’, ’lattice’))

Data—As an example of how to use this protocol, in the Procedure we use data produced from
a panel of 51 breast cell lines14. The dataset consists of mRNA expression measurements, array
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CGH measurements of DNA copy number, and protein quantifications from Western blots.
mRNA expression was measured using the Affymetrix U133a platform, and the CEL files are
available at the ArrayExpress database15 with the accession number E-TABM-157. The
arrayCGH data and protein quantification data can be downloaded as Excel files from
http://cancer.lbl.gov/breastcancer. A ZIP archive with all data files is provided in
Supplementary Data 1 (E-TABM-157.zip). Unpack it on your computer and set R’s working
directory to the location of the files.

setwd(‘C:/Documents and Settings/MyUserID/MyData’)

The protocol can be adapted to other datasets with a similar experimental design; all
intermediate results should be carefully checked. For datasets that use different array
technologies or additional types of assays, the adaptation will require further effort.

biomaRt—The following commands load the biomaRt package and open an editor window
in which a file with the programme code for this protocol can be viewed. We recommend that
readers use this file to reproduce the analysis shown here.

library(‘biomaRt’)
NP2009code()

PROCEDURE
1. Load the required add-on packages.

library(‘affy’)
library(‘gplots’)
library(‘lattice’)

2. The tabulator-delimited text file E-TABM-157.txt has one row for each microarray,
and three columns: Array.Data.File contains the names of the raw (CEL) data files;
Source.Name contains the name of the cell line from which the cDNA was extracted;
and CancerType indicates the type of breast cancer that the cell line represents (basal
A, basal B or luminal, according to Table 1 in reference14). Import the sample
annotation into R using the read.AnnotatedDataFrame function and import the CEL
files using the ReadAffy function:

sampleAnnot = read.AnnotatedDataFrame(‘E-TABM-157.txt’,
     row.names = ‘Array.Data.File’)
mRNAraw = ReadAffy(phenoData = sampleAnnot,
        sampleNames = sampleAnnot$Source.Name)

3. Normalize the Affymetrix data using RMA16.

mRNA = rma(mRNAraw)

4. To undertake principal component analysis using the mRNA profiles of the 200 most
variable probesets (see Fig. 1), first compute the variance of all probesets; The
apply function applies the var function, to compute the variance, to each row of the
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expression matrix. The order of the variances from high to low is computed using the
order function, and the indices of the top 200 probesets are stored in the vector ord.
Next, perform a principal component analysis using these top 200 probesets. To do
this, the matrix needs to be transposed by the t function in order to meet the format
expect by the prcomp function, which computes the principal component
decomposition. Finally, plot the samples according to the first two principal
components (pca$x[, 1:2]), which represent the largest and second largest variance
components in the data. Color the samples by sample type using the colors specified
in the typeColors vector. From this plot, we can learn that the mRNA expression
profiles cluster the samples according to cancer type:

probesetvar = apply(exprs(mRNA), 1, var)
ord = order(probesetvar, decreasing=TRUE)[1:200]
pca = prcomp(t(exprs(mRNA)[ord,]), scale=TRUE)
typeColors = c(‘Lu’=’firebrick1’, ‘BaA’=’dodgerblue2’, 
‘BaB’=’darkblue’)
plot(pca$x[, 1:2], pch=16, col=typeColors[as.character(mRNA
$CancerType)],
   xlab=’PC1’, ylab=’PC2’, asp=1)
legend(‘topleft’, c(‘luminal’, ‘basal A’, ‘basal B’), 
fill=typeColors)

5. Read the (already normalized) CGH data from the aCGH.csv file. Create an object
cgh of class ExpressionSet, which is Bioconductor’s standard container for
microarray-like data. The intensity data matrix is filled with columns 4 to 56 of the
data file, while columns 1 to 3 provide metadata for the microarray probes:

cghData = read.csv(‘aCGH.csv’, header=TRUE, row.names=1)
cgh = new(‘ExpressionSet’, exprs = as.matrix(cghData[,4:56]))
featureData(cgh) = as(cghData[,1:3], ‘AnnotatedDataFrame’)

6. Plot the arrayCGH data of chromosome 1 for three cell lines; extract the indices of
the corresponding probes into the chr1 vector using the which function. Next, use the
indices in chr1 to select the log-ratio values for these probes and the three cell lines,
and store them in the vector logRatio. The chr1 indices are also used to select the
chromosomal positions of these probes; since we need them for each of the three
samples, repeat them three times using the rep function before storing them in the
vector kb. The vector clName contains the cell line name for each element in the
logRatio vector. Pass these values to the xyplot function, whose result is shown in
Figure 2:

chr1 = which(featureData(cgh)$Chrom == 1)
clColors = c(‘MCF10A’ = ‘dodgerblue3’, ‘BT483’ = ‘orange’, ‘BT549’ =
           ‘olivedrab’)
logRatio = exprs(cgh)[chr1, names(clColors)]
kb = rep(featureData(cgh)$kb[chr1], times=ncol(logRatio))
clName = rep(names(clColors), each=nrow(logRatio))
print(xyplot(
            logRatio ~ kb | clName,
            pch=16, layout=c(1,3), ylim=c(−0.5, 1.1),
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            panel=function(…){
      panel.xyplot(…,col=clColors[panel.number()])
      panel.abline(h=0, col=’firebrick2’)
            }))

7. Determine the genomic coordinates for the genes on chromosome 1 probed by the
mRNA expression data of Steps 2–4; establish a connection with the Ensembl
BioMart webservice using the useMart function, and select the dataset by setting the
dataset argument to hsapiens_gene_ensembl. getBM is the main query function of
biomaRt. In BioMart systems, attributes specify the features we wish to retrieve from
the database, while the set of records to be selected is defined by the filters and
values arguments: Comprehensive documentation of the biomaRt software can be
found in the vignette that comes with the package.

ensembl = useMart(‘ensembl’, dataset=’hsapiens_gene_ensembl’)
probes = getBM(attributes = c(‘affy_hg_u133a’, ‘start_position’),
      filters = c(‘chromosome_name’, ‘with_affy_hg_u133a’),
      values = list(1, TRUE), mart = ensembl)

8. Extract the expression values for BT483 and BT549 and make a scatterplot (see Fig.
3) that distinguishes, by point color, between probes in- and outside the region
amplified in BT483:

xpr = exprs(mRNA)[probes[,’affy_hg_u133a’], c(‘BT549’,’BT483’)]
pos = probes[,’start_position’]
plot(xpr, pch=16, cex=0.5, col=ifelse(pos>140e6, ‘red’, ‘darkgrey’))

9. t-test whether the log-ratios between BT483 and BT549 are systematically different
between the amplified and unamplified regions. Note that console text preceeded by
‘#’ is the printed output of the t.test function:

logRatios = xpr[,2] − xpr[,1]
t.test(logRatios ~ (pos>140e6))
   # Welch Two Sample t-test
   # data: logRatios by pos > 1.4e+08
   # t = −14.1299, df = 2044.034, p-value < 2.2e-16
   # alternative hypothesis: true difference in means is not equal to 
0
   # 95 percent confidence interval: 
   # −0.6179031 −0.4672868
   # sample estimates: 
   # mean in group FALSE mean in group TRUE
   #          −0.2036218          0.3389731

10. Read the protein quantification data from the mmc6.csv file. Analogous to Step 5, we
create an object protein of class ExpressionSet:

proteinData = read.csv(‘mmc6.csv’, header=TRUE, row.names=1)
protein = new(‘ExpressionSet’, exprs = as.matrix(proteinData))
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11. Determine each protein’s maximum expression value; we will use this to scale the
colors in the heatmap (see Fig. 4). The apply function applies the max function to each
row of the protein abundance matrix. In the call to the barplot function, set the las
argument to 2 so that the axis labels are drawn perpendicular to the axis. From the
barplot we can learn that a wide variation in expression values exists between the
different proteins, and that scaling of the expression matrix will improve visualization
of the heatmap in Step 12:

prmax = apply(exprs(protein), 1, max)
barplot(prmax, las=2)

12. Compute a hierachical clustering of protein quantification data and display in a
heatmap (see Fig. 5). Create a gradient from white to dark blue using the
colorRampPalette function. The sideColors vector assigns a color to each sample
according to its cancer type. This information can be added to the heatmap as a colour
sidebar for the columns by using the ColSideColors argument. The heatmap function
first performs a hierachical clustering of the data and then plots a heatmap of a matrix
with correspondingly re-ordered rows and columns. In this function the trace
argument is set to none so no trace line is drawn in the heatmap. It is evident from the
heatmap that the protein expression data clusters samples broadly according to cancer
type:

hmColors = colorRampPalette(c(‘white’, ‘darkblue’))(256)
sideColors = typeColors[as.character(pData(mRNA)[ sampleNames
(protein),
            ‘CancerType’])]
sideColors[is.na(sideColors)] = ‘grey’
heatmap.2(exprs(protein)/prmax, col=hmColors, trace=’none’,
   ColSideColors = sideColors)

13. Select samples common to mRNA, cgh and protein datasets:

samples = intersect(sampleNames(protein), sampleNames(mRNA))
samples = intersect(samples, sampleNames(cgh))
mRNA = mRNA[,samples]
protein = protein[,samples]
cgh = cgh[,samples]

14. Map between HGNC symbols, by which the protein antibodies were annotated, to
Ensembl gene and Affymetrix U133a identifiers. Note that console text preceded by
‘#’ is the printed output:

map = getBM(attributes = c(‘ensembl_gene_id’, ‘affy_hg_u133a’, 
‘hgnc_symbol’),
    filters = c(‘hgnc_symbol’, ‘with_hgnc’, ‘with_affy_hg_u133a’),
    values = list(featureNames(protein), TRUE, TRUE),
    mart = ensembl)
head(map)
  # ensembl_gene_id affy_hg_u133a hgnc_symbol
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  # 1 ENSG00000177885 215075_s_at GRB2
  # 2 ENSG00000169047 204686_at IRS1
  # 3 ENSG00000178568 206794_at ERBB4
  # 4 ENSG00000178568 214053_at ERBB4
  # 5 ENSG00000091831 211234_x_at ESR1
  # 6 ENSG00000091831 211233_x_at ESR1

15. Determine the multiplicity of the mapping. Ideally, there would be exactly one
perfectly specific and sensitive probeset for each target gene. Due to alternative
splicing, gene overlap and families of genes with similar sequence, this can be a
difficult objective, and the array manufacturer has in many cases provided several
probesets per gene, targeting different regions, and varying in their sequence
specificity. To explore this, the following table gives the number of times that the
same gene is targeted by 1, 2, … probesets. Note that console text preceded by ‘#’ is
the printed output:

geneProbesetsAll = split(map$affy_hg_u133a, map$hgnc_symbol)
table(listLen(geneProbesetsAll))
  # 1 2 3 4 5 6
  # 13 12 8 3 1 2

16. Determine an mRNA expression profile for each HGNC symbol. If there are multiple
probesets for the same gene, we take here the simplistic approach to prefer the
probesets with the extension _at, and among these, to take the average signal:

geneProbesets = lapply(geneProbesetsAll,
  function(x) {
     good = grep(‘[0–9]._at’, x)
     if (length(good)>0) x[good] else x
   })
  summaries = lapply(geneProbesets,
    function(i) {
     colMeans(exprs(mRNA)[i,,drop=FALSE])
     })
summarized_mRNA = do.call(rbind, summaries)

17. Plot mRNA expression and protein levels of the AURKA gene over all samples (see
Fig. 6):

colors = c(‘orange’,’olivedrab’)
correlation = cor(summarized_mRNA[‘AURKA’,],
         exprs(protein)[‘AURKA’,],
         method=’spearman’)
matplot(cbind(
summarized_mRNA[‘AURKA’, ],
log2(exprs(protein)[‘AURKA’, ])),
type=’l’, col=colors, lwd=2, lty=1,
ylab=’mRNA and protein expression levels’,
xlab=’cell lines’,
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main=bquote(rho==.(round(correlation, 3))))
legend(‘bottomright’, c(‘mRNA’,’protein’), fill=colors)

18. Plot mRNA expression versus protein expression levels for all genes, in four cell lines
(see Fig. 7):

samples = sampleNames(protein)[c(5,11,16,24)]
v_mRNA = as.vector(summarized_mRNA[,samples])
v_protein = as.vector(exprs(protein)[ rownames(summarized_mRNA), 
samples])
xyplot(
  v_protein ~ v_mRNA | rep(samples, each = nrow(summarized_mRNA)),
  pch=16, xlab = ‘mRNA level’, scales=list(y=list(log=TRUE)),
  ylab=’protein level’)

19. Use the sessionInfo() function to record the versions of R and Bioconductor packages

 sessionInfo()
# R version 2.9.0 (2009-04-17)
# powerpc-apple-darwin8.11.1
# locale:
# C
# attached base packages:
# [1] grid stats graphics grDevices utils datasets methods base
# other attached packages:
# [1] lattice_0.17-22 gplots_2.7.0 caTools_1.9 bitops_1.0-4.1 
gdata_2.4.2
# [6] gtools_2.5.0-1 affy_1.22.0 Biobase_2.4.1 biomaRt_2.0.0
# loaded via a namespace (and not attached):
# [1] RCurl_0.94-1 XML_2.3-0 affyio_1.12.0
# [4] preprocessCore_1.6.0 tools_2.9.0

20. Use the listMarts function to record the version of the Ensembl database used in the
analysis.

 listMarts()[1:3,]
# biomart version
# 1 ensembl ENSEMBL 53 GENES (SANGER UK)
# 2 snp ENSEMBL 53 VARIATION (SANGER UK)
# 3 vega VEGA 34 (SANGER UK)

TIMING
The protocol described above should take less than 1 hour to walk through. When used with
data other than the example dataset, this protocol might take substantially more time as
additional adaptations to the code might be needed.

TROUBLESHOOTING
1. biomaRt requires the libcurl system library, which on some Linux and OS X systems

is not installed by default; it can be obtained from public package repositories or from
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http://curl.haxx.se. On Windows installation of libcurl is not necessary as the RCurl
package for Windows includes this library.

2. Normalization using RMA will require the Chip Definition File (CDF) to be
accessible. This CDF file comes as an R package and will be automatically
downloaded from Bioconductor by the rma function when needed.

3. Bioconductor has an active user community, and problems or questions related to
Bioconductor packages can be posted on the Bioconductor mailing list, via
http://www.bioconductor.org/docs/mailList.html. It is recommended to follow the
posting guide. This protocol provides a guideline and when the user encounters
problems, we refer to the Bioconductor mailing list for help.

ANTICIPATED RESULTS
We use software from the R and Bioconductor projects to process and integrate data from
different biological experiments and use the biomaRt package to retrieve annotation
information and identifier cross-references from Ensembl. Starting from Affymetrix CEL files,
we use the normalization methods implemented in the affy package to obtain normalized
expression data. We applied a principal component analysis to determine if the mRNA levels
divide the breast cell line samples into different subclasses (Fig. 1). We then imported array
CGH data obtained from the same set of cell lines and visualized an amplification on the q-
arm of MCF10A and BT483 (Fig. 2). We showed that the mRNA levels correlate with the
amplifications measured by arrayCGH (Fig. 3): there is a shift to higher expression levels for
genes located in the amplified region. We then added protein quantification data from the same
set of samples to this integration exercise. Fig. 6 and Fig. 7 show that for a subset of genes the
mRNA and protein quantification data correlate well, however overall this correlation is
modest. The main focus of this protocol is to demonstrate the seamless combination of
statistical data analysis and bioinformatic annotation retrieval allowed by R, Bioconductor and
BioMart.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Principal component analysis using the mRNA profiles of the 200 most variable probesets.
Note how the first principal component (PC1) clearly separates the luminal type (red) from the
basal A (lightblue) and basal B (darkblue) types, between which the variation is more
continuous.
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Figure 2.
The CGH log-ratios of chromosome I for three cell lines (MCF10A, BT549 and BT483).
Chromosomal coordinates vary along the x-axis. Note how MCF10A and BT483 have
amplifications on the q-arm of the chromosome, which is the right hand half of the plot as the
region with no values in the middle of each plot is the centromere.
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Figure 3.
Expression data of probes mapping to chromosome 1 for the two cell lines BT483 and BT549.
The probesets mapping to the region amplified in BT483 (genomic coordinate > 140 MB) are
shown by red dots, the other probesets in grey. The expression difference is significant with a
t-test p-value of 2.2e-16.
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Figure 4.
Barplot showing the maximum protein expression levels over all cell lines for each of the
quantified proteins.
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Figure 5.
Heatmap showing a hierarchical clustering of the proteins (down right hand side) and samples
(along the bottom) based on the protein expression measurements. A colour sidebar for the
samples indicates to which cancer type the cell line belongs: basal A (blue), basal B (darkblue),
luminal (red) and unknown (grey). The inset key shows on the x-axis the color scale of the
protein expression matrix, from white (normalized expression value of 0) to dark blue
(normalized expression value of 1). On the y-axis is the histogram count of number of points
in the heatmap that have the corresponding normalized protein expression value as indicated
by the lightblue line.
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Figure 6.
Expression profiles of AURKA over the cell lines (along the x-axis) for mRNA (orange) and
protein (green) levels. The correlation coefficient (ρ) between these profiles is 0.686.
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Figure 7.
Scatterplots of protein expression levels versus mRNA expression levels in four cell lines. Note
that there is only a modest correlation between these two methods of gene expression
measurements. Differences may be due to technical reasons as well as to regulation of mRNA
translation.
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