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ABSTRACT

Motivation: Loss of heterozygosity (LOH) is one of the most
important mechanisms in the tumor evolution. LOH can be
detected from the genotypes of the tumor samples with or
without paired normal samples. In paired sample cases, LOH
detection for informative single nucleotide polymorphisms (SNPs) is
straightforward if there is no genotyping error. But genotyping errors
are always unavoidable, and there are about 70% non-informative
SNPs whose LOH status can only be inferred from the neighboring
informative SNPs.
Results: This article presents a novel LOH inference and
segmentation algorithm based on the conditional random pattern
(CRP) model. The new model explicitly considers the distance
between two neighboring SNPs, as well as the genotyping error
rate and the heterozygous rate. This new method is tested on the
simulated and real data of the Affymetrix Human Mapping 500K
SNP arrays. The experimental results show that the CRP method
outperforms the conventional methods based on the hidden Markov
model (HMM).
Availability: Software is available upon request.
Contact: xzhou@tmhs.org
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
Loss of heterozygosity (LOH) refers to the loss of genetic
information inherited from one parent in some chromosomal
regions, which is often resulted from copy-loss events such as
hemizygous deletions, as well as copy-neutral events such as
chromosomal duplications (Huang et al., 2004; McEvoy et al.,
2003). LOH of chromosomal regions with tumor suppressors is
one of the key mechanisms in the tumor evolution (Albertson
and Pinkel, 2003; Knudson, 2001). Therefore, in addition to copy
number (CN) variation, identification of LOH regions will facilitate
mapping susceptibility loci for cancers and disorders (Eeles
et al., 2008; Gudmundsson et al., 2008). The single nucleotide
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polymorphism (SNP) is the most common form of genetic variation
in the human genome; therefore the best high-resolution genetic
marker for detection of genome variations. Millions of human
SNPs have been discovered in the past decade. This, together with
the advance of high-throughput SNP array techniques makes SNPs
the best tool for high-resolution LOH analysis (Beroukhim et al.,
2006; Lindblad-Toh et al., 2000).

Currently, there are mainly two ways for LOH inference: one uses
both tumor and normal samples from the same individual (paired
samples), while the other only uses the tumor samples (unpaired
samples). In unpaired cases, the occurrence of LOH is inferred
from the decreased heterozygous rate in certain regions of the
tumor samples. For example, a hidden Markov model (HMM) was
developed (Beroukhim et al., 2006) to infer LOH from unpaired
tumor samples using 10K and 100K SNP arrays. In many cancer
studies, both tumor and normal cells of the same individual are
genotyped. Therefore, LOH can be detected by comparing the
genotypes of the tumor sample and its normal counterpart of the
same individual. The utilization of the genotypes of normal samples
makes the inference of LOH more accurate and reliable. In this
article, we will focus on the paired sample LOH inference and
segmentation, but the proposed method can be adapted to the
unpaired case.

Indentifying the LOH status is straightforward when there is
no error in genotypes of tumor and normal samples (Table 1).
But, whichever SNP arrays and genotyping algorithms are used,
the genotyping errors are unavoidable. For example, estimation of
the genotyping error rate based on SNP array data derived from the
analysis of HapMap samples is 2% using the Affymetrix Human
Mapping 500K SNP arrays with BRLMM genotyping algorithm
(Affymetrix, 2007). One of LOH inference’s main tasks is how
to detect these genotyping errors by borrowing the information of
neighboring SNPs.

On the other hand, the naive method in Table 1 can only give the
LOH status of SNPs that are heterozygous in normal samples. On
average, 30% of SNPs in an individual sample are heterozygous. In
other words, 70% of SNPs are non-informative and their LOH status
cannot be detected directly. Some LOH inference methods ignore
the non-informative SNPs (Affymetrix, 2007). In the literature,
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Table 1. Identifying single loci LOH status based on the genotypes of paired
normal and tumor samples from the same individual

Genotypes Tumor

AA AB BB NoCall

Normal AA No-info Mutation Mutation No-info
AB LOH RET LOH No-info
BB Mutation Mutation No-info No-info
NoCall No-info RET No-info No-info

LOH: loss of heterozygosity, RET: retention, No-info: Non-informative.

some simple methods were developed to infer the LOH status
of non-informative SNPs from the neighboring SNPs. Lindblad-
Toh et al. (2000) used a simple extension method that does not
consider the relative distances between neighboring SNPs. Lin
et al. (2004) introduced the ‘Nearest Neighbor’ and ‘Regions with
Same Boundary’ methods in their software dChip to infer the LOH
status of non-informative SNPs. The ‘Nearest Neighbor’ method
infers the LOH status of a non-informative SNP as the LOH
status of the nearest informative SNP within 1 Mb distance. The
‘Regions with Same Boundary’ method infers the LOH status of
all non-informative SNPs bounded by two informative SNPs with
the same LOH status as the LOH status of the boundaries. Both
methods consider the distances between the non-informative SNPs
and informative SNPs in a very simple way, i.e. only the SNPs within
given distance from the nearest informative SNP are inferred. The
LOH inference models based on HMM consider the SNP distance
and heterozygosity rate in a more complex way (Affymetrix, 2007;
Beroukhim et al., 2006; Lin et al., 2004).

In this article, a novel LOH inference and segmentation algorithm
based on the conditional random pattern (CRP) model is proposed.
The new algorithm explicitly considers the distance between two
neighboring SNPs, as well as the genotyping error rate, and the
heterozygous rate. CRP is developed based on the conditional
random field (CRF) (Lafferty et al., 2001; Lafferty et al., 2004),
which is a probabilistic framework most often used for labeling and
segmenting sequential data. CRF is a generalization of HMM and
relaxes the independence assumptions required by HMM in order
to ensure tractable inference, which is its primary advantage over
HMM. Recently, CRF is reported outperforming HMM on a number
of real-world sequence labeling tasks (Lafferty et al., 2001; Lafferty
et al., 2004; Pinto et al., 2003; Sha and Pereira, 2003).

The rest of this article is organized as follows. Section 2 describes
the CRP model in detail. The results of computational experiments
are shown in Section 3 to illustrate the effectiveness of the CRP
method. Finally, the conclusion is made in Section 4.

2 METHODS

2.1 CRP Model
In this section, we describe the CRP method for LOH inference
problem. This method borrows the contextual information to
suppress the noise in the genotype calls. Figure 1 presents the
partial graph structure of the CRP model, which is constituted
by the directly connected hidden states yi and the corresponding
observations xi. The current hidden state yt is not only determined

 

Fig. 1. Partial graph structure of the CRP model, where x denotes the
observations and y denotes hidden LOH states.

by its immediate previous and next hidden states, yt−1 and yt+1,
but also by several previous and subsequent observations, e.g. xt−2,
xt−1, xt , xt+1 and xt+2. In the CRP model, we call the links between
the hidden state and observations as local evidences, and the edges
between the hidden states as the transition potentials, as shown in
Figure 1.

In the CRP model, we define the conditional probability, p(y|x),
as follows:

p(y|x)= eψ(y,x)
∑
z∈S

eψ(z,x)
(1)

where y is the vector of hidden LOH states, S is the set of all possible
vectors of hidden LOH states and x is the vector of observations.
The function ψ(y,x) is the sum of transition potentials and local
evidences. In detail, the function is defined as follows:

ψ(y,x)=
T−1∑
t=1

fTP(yt,yt+1)+
T∑

t=1

fLE (yt,x) (2)

where fTP(yt,yt+1) is the transition potential function, fLE (yt,x) is
the local evidence function and T is the number of SNPs. Next we
will discuss the details of the two functions.

2.2 Transition potential
The transition potential function is selected so that the greater the
distance between two neighboring SNPs, the greater the probability
that the LOH status changes from one hidden state to the other.
Here, we borrow the Haldane’s map function (Lange, 2002) from
the genetic recombination theory to model the relationship between
transition probabilities and SNP distances. Mathematically, the
transition function is defined as follows:

fTP(yt,yt+1)=




(
1−θ)+θρ yt =yt+1 =LOSS,

(1−θ )+θ (
1−ρ)

yt =yt+1 =RET,
θ
(
1−ρ)

yt =LOSS,yt+1 =RET
θρ yt =RET,yt+1 =LOSS

(3)

where θ=1−e−2d/β , and d is the distance between two SNPs, β is
the transition decay parameter and ρ is the estimated LOH rate. The
transition function is similar to that used in HMM methods for LOH
inference (Affymetrix, 2007; Beroukhim et al., 2006). The function
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Table 2. Definition of observation states

Observation states Tumor

Homozygous Heterozygous NoCall

Normal Homozygous S1 S4 S5
Heterozygous S2 S3 S6
NoCall S7 S8 S9

can be interpreted as the conditional probability of yt+1 when the
state of yt is known, and θ is the probability that yt+1 is not impacted
by yt . A larger β implies a slower transition from the current hidden
state to a different hidden state and vice versa. In our experiments,
β is empirically set as 10M bp as in Affymetrix (2007). The LOH
rate ρ is estimated from the observations sequence.

2.3 Local evidence
The local evidence for one hidden state yt is the maximal support
of the K consecutive neighboring observations. Mathematically, the
local evidence is defined as follows:

fLE (yt,x)= K
max
i=1







K∏
j=1

p(xt−i+j|yt)




1/K



(4)

where p(xj|yt) is the emission probability that we observe xj at locus
j, while the hidden state in locus j is yt . The detail of emission
probability is defined below. The underlying assumptions are that
the hidden state yt holds on at least K consecutive loci nearby and the
observations are independent. Therefore, the conditional probability
that xt−i+1, xt−i+2,…, xt−i+K are emitted from same hidden states
as yt , can be calculated as follows,

p(xt−i+1,xt−i+2,...,xt−i+K |yt)=
K∏

j=1

p(xt−i+j|yt) (5)

This can be regarded as the support (likelihood) that the hidden state
in locus t is yt when xt−i+1, xt−i+2,…, xt−i+K are observed. The
local evidence function looks for the best support for yt from all
observations around locus t in x (Fig. 1, where K =5).

The local evidence is one of the major differences between
CRP and HMM. It can be considered as an adapted emission
probability which smoothes the noise by integrating the information
of neighboring SNPs and enforces that K consecutive probes have
to have same state. Generally, the model with large K is expected
robust to the errors, while smaller K is better for detecting small
LOH regions in high quality data. In our experiments, K is set as 5
if not explicitly state. It should be noted that the CRP model with
K =1 is not exactly equivalent to HMM, although they are very
similar.

2.4 Emission probability
In the CRP model for the LOH inference problem, the hidden states
are: loss of heterozygosity (LOSS) and retention (RET). There
are nine observation states as defined in the Table 2, which are
combinations of the genotypes in the normal and tumor samples.

Table 3. Emission probability

Emission
probability

Hidden states

LOSS RET

Observation
states

S1 (1-e1)(1-e2)(1-h) +e1(1-e2)h (1-e1)(1-e2)(1-h)+e1e2h

S2 (1-e1)(1-e2)h +e1(1-e2)(1-h) (1-e1)e2h+e1(1-e2)(1-h)
S3 (1-e1)e2h+e1e2(1-h) (1-e1)(1-e2)h+e1e2(1-h)
S4 (1-e1)e2(1-h)+e1e2h (1-e1)e2(1-h)+e1(1-e2)h
S5 (1-e1)(1-h)+e1h (1-e1)(1-h)+e1h
S6 (1-e1)h+e1(1-h) (1-e1)h+e1(1-h)
S7 (1-e2) (1-e2)(1-h)+e2h
S8 e2 (1-e2)h+e2(1-h)
S9 1 1

The observations are obtained from the genotypes of tumor
samples and normal reference samples of same patient. The emission
probabilities p(xt |yt) used for the calculation of local evidences are
given according to the quality of data and genotyping calls. In order
to simplify the model, we assume that the genotyping errors in tumor
samples and normal samples are independent and the heterozygous
rate is constant over the whole genome. Additionly, this simple error
model only considers the error that the homozygous SNP is called as
heterozygous genotype or vice versa. The error that the homozygous
SNP is called as another homozygous genotype is rare and omitted
in the model.

Table 3 shows how the emission probabilities work out. Here, e1
is the genotyping error rate in normal samples, e2 is the genotyping
error rate in tumor samples and h is the heterozygous rate of the
normal samples. The heterozygous rate, h, is calculated from the
genotype calls of normal samples. The genotyping error rate e1
and e2 is chosen empirically according to the output of genotyping
software. Typically, we set e=0.02 which is also used in the LOH
inference software of Affymetrix (2007). The value of e2 is set as 2e1
since the tumor samples often have a considerably higher genotyping
error rate than normal samples.

The simple probability model is illustrated in Figure 2. The proba-
bility of certain observation state (i.e. combination of genotypes in
normal and tumor) is calculated from the conditional probabilities
on the errors. For example, when the hidden state is LOSS, the
emission probability of S1 (homozygous in both samples) is:

p(S1|LOSS)= (1−e1)(1−e2)×(1−h)+
(1−e1)e2 ×0+e1(1−e2)×h+e1e2 ×0

(6)

Since NoCall means the SNP is either homozygous or heterozygous,
the probabilities of states with NoCall are the sum of the
corresponding probabilities by replacing NoCall with homozygous
or heterozygous. For example, when the hidden state is LOSS, the
emission probability of S7 (NoCall in normal while homozygous in
tumor) is:

p(S7|LOSS)=p(S1|LOSS)+p(S2|LOSS) (7)

The emission probability model is another major difference between
CRP and existing HMM methods.
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Fig. 2. Emission probability model. The tables show the conditional
probabilities of each combination of genotypes on the different error modes
whose probabilities are shown above the arrows. Here, e1 is the genotyping
error rate in normal samples, e2 is the genotyping error rate in tumor samples
and h is the heterozygous rate of the normal samples.

2.5 LOH inference
Given observation sequence x, the hidden LOH status is inferred as:

ŷ=argmax y p
(
y|x) (8)

which can be solved using Viterbi algorithm (Rabiner, 1989; Viterbi,
2006). In terms of computational complexity, the CRF algorithms
have same asymptotic running times as HMM. Some well-developed
software for CRF exists. In our experiments, a CRF toolbox for
Matlab, CRFall,1 written by Kevin Murphy, is used to solve the
CRP model.

3 RESULTS
Several simulated and real tumor data are used to evaluate the
developed CRP method. Both simulated and real data are from the
Affymetrix Human Mapping 500K SNP arrays. The performance
of CRP method is compared with to widely used HMM methods
(Affymetrix, 2007; Beroukhim et al., 2006; Lin et al., 2004). We
use two well-known implementations of HMM for LOH inference.
One is the Affymetrix Genotyping Console (GTC) 2.0 software
(Affymetrix, 2007) and the other is dChip (Lin et al., 2004). The
genotype calls of GTC, which use BRLMM algorithm (Affymetrix,
2006), the official genotyping algorithm for the 500K SNP arrays,
are used to generate the input of CRP method as well as HMM
methods.

3.1 Data
The simulated data is based on the real 500K SNP arrays of HapMap
samples provided in the Affymetrix website. The simulation is in the
probe level and the simulated data are saved as Affymetrix’s CEL
files so that all software can process. Three samples are randomly

1http://www.cs.ubc.ca/∼murphyk/Software/CRF/crf.html

selected as the normal reference samples: NA10851, NA12812 and
NA18605. For each original normal sample and certain noise level,
two simulated samples are generated: one for copy-loss LOH and the
other for copy-neutral LOH. In each simulated sample, there are 50
LOH regions, including several whole chromosome LOH regions,
several large LOH regions ranging from hundreds of SNPs to more
than 10 000 of SNPs and several small LOH regions ranging from 20
SNPs to 100 SNPs. The mismatch probes are used as the background
to calculate the simulated intensities of the corresponding perfect
match probes in the LOH regions. The probes outside the LOH
regions are unchanged. The noises are then simulated and added to
all probes. The noise is assumed following a Gaussian distribution
N(0,σ ) where the SD of noise σ is proportional to the probe intensity
y. The signal to noise ratio SNR=y

/
σ is changed from 5, 2 to

1.25 to simulate different noise levels. In total, 18 LOH samples are
simulated from 3 normal samples, 6 (2 LOH types and 3 noise levels)
for each normal sample. The simulated data can be downloaded from
our website.2

There are two real datasets in the computational experiments.
The first dataset is the nine tumor/normal pairs provided in
the Affymetrix website, which are derived from human cancer
cell lines. These include primary ductal carcinoma, non-small
cell lung carcinoma and adenocarcinoma. The second is the
myelodysplastic syndromes (MDS) samples in our laboratory. There
are 20 patients in this dataset and three samples for each patient:
one normal sample (lymphoid) and two tumor samples (blast and
erythroid).

3.2 Results on simulated data
The call rates of the BRLMM algorithm for the simulated arrays
range from 87.05% to 99.24% (Supplementary Table S1). The call
rates decrease when the noise increases. The average call rates for
the samples with SNR = 5, 2 and 1.25 are 98.23%, 93.62% and
89.16% respectively. When other conditions are the same, the call
rates for copy-less LOH samples are smaller than the copy-neutral
LOH samples.

The results of CRP method are compared with that of HMM
methods implemented in GTC 2.0 and dChip. The results of the
SNPs that are heterozygous in the normal sample are shown in
Table 4. Two HMM implements show different bias: GTC tends
to minimize the false positive rate (FPR), while dChip prioritizes
the high true positive rate (TRP). This observation is confirmed
by the receiver operating characteristic (ROC) graphs in Figure 3.
Compared to GTC, CRP obtains significantly higher TPR while
maintaining the same low FPR. Compared to dChip, CRP had much
lower FPR and slightly better TPR. The P-values of the differences
between the ROC curves of CRP and other methods are calculated by
using the approach described by DeLong et al. (1988). All P-values
are smaller than 10−200 (Supplementary Table S2) which means
the differences between CRP and other methods are statistically
significant.

As shown in Table 4 and Figure 3, the TPR of HMM methods
for the copy-less samples are significantly lower than that of copy-
neutral cases. We believe that it is due to the genotyping algorithm
which produces more errors in the copy-less regions than the copy-
neutral regions. In other words, HMM method in GTC is not robust

2http://zhangroup.aporc.org/bioinfo/LOHcrp/
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Table 4. Results of simulated data for informative SNPs

SNR Samples LOH
type

CRP HMM(GTC) HMM (dChip)

TPR FPR TPR FPR TPR FPR

5.00 NA10851 CN = 1 0.9984 0.0003 0.9736 0.0003 0.9907 0.0103
CN = 2 0.9982 0.0003 0.9842 0.0003 0.9906 0.0106

NA12812 CN = 1 0.9984 0.0004 0.9645 0.0003 0.9905 0.0108
CN = 2 0.9982 0.0002 0.9801 0.0003 0.9905 0.0103

NA18605 CN = 1 0.9979 0.0004 0.9728 0.0002 0.9904 0.0118
CN = 2 0.9980 0.0004 0.9852 0.0002 0.9904 0.0120

2.00 NA10851 CN = 1 0.9984 0.0031 0.9353 0.0085 0.9922 0.0183
CN = 2 0.9987 0.0048 0.9724 0.0076 0.9914 0.0184

NA12812 CN = 1 0.9991 0.0055 0.9227 0.0159 0.9917 0.0268
CN = 2 0.9990 0.0041 0.9622 0.0109 0.9914 0.0214

NA18605 CN = 1 0.9991 0.0088 0.9364 0.0110 0.9926 0.0231
CN = 2 0.9988 0.0050 0.9720 0.0105 0.9918 0.0212

1.25 NA10851 CN = 1 0.9991 0.1798 0.8878 0.2002 0.9954 0.2531
CN = 2 0.9996 0.1322 0.9387 0.1672 0.9951 0.2096

NA12812 CN = 1 0.9989 0.2592 0.8731 0.2875 0.9962 0.3700
CN = 2 0.9999 0.2291 0.9251 0.2453 0.9966 0.3149

NA18605 CN = 1 0.9987 0.1876 0.8860 0.2211 0.9959 0.2875
CN = 2 0.9991 0.1671 0.9381 0.1936 0.9954 0.2536

when the genotyping error rate is relatively large in the copy-less
LOH regions.

One of the important goals of the LOH inference is to predict
the LOH status of non-informative SNPs. The inference capability
of the CRP method on the non-informative SNPs is illustrated in
Table 5. Since GTC only infer the LOH status for the heterozygous
SNPs of the normal sample, the results are only compared between
CRP and dChip. The TPR and FPR of CRP method are very close
to informative SNPs. The high TRP and low FPR show that CRP
method can precisely reveal the LOH status for non-informative
SNPs as well as informative SNPs. Compared with dChip, the TPR
of CRP are slightly better, but the FPR are 10-fold smaller than dChip
in low-noise cases (SNR = 5) and 2-fold smaller in high-noise cases
(SNR = 1.25).

The CRP method reports more compact LOH segments, i.e. less
over-segmentation than other methods (Supplementary Table S3).
Extensive experiments with a range of parameters show that the
CRP method is robust to the changes of parameters (Supplementary
Figs S1–S3).

3.3 Results on Affymetrix’s tumor data
The Affymetrix’s data is obtained from high-quality control
experiments. The call rates of BRLMM algorithm range from
93.32% to 99.21%, and the average call rate is 97.41%. The LOH
inference results of three methods are very similar except for several
small regions. Figure 4 shows an example of the whole-genome
results of the paired tumor/normal samples CCL-256D/CCL-256.1D.

3.4 Results on MDS data
The qualities of SNP arrays for MDS samples are varied and
not high as that of Affymetrix’s data. The call rates of BRLMM
algorithm range from 85.4% to 98.41%. The average call rate is
94.89%. Therefore, the LOH inference algorithm tends to make more

Fig. 3. ROC curves of the CRP and HMM methods for informative
SNPs. Left are copy-less LOH simulations, while right are copy-neutral LOH
(UPD) cases. The highlighted points are default outputs of algorithms.

Table 5. Results of simulated data for non-informative SNPs

SNR Samples LOH type CRP HMM (dChip)

TPR FPR TPR FPR

5.00 NA10851 CN = 1 0.9943 0.0013 0.9925 0.0256
CN = 2 0.9939 0.0014 0.9924 0.0230

NA12812 CN = 1 0.9943 0.0013 0.9920 0.0248
CN = 2 0.9940 0.0003 0.9921 0.0228

NA18605 CN = 1 0.9925 0.0008 0.9917 0.0258
CN = 2 0.9925 0.0008 0.9916 0.0249

2.00 NA10851 CN = 1 0.9906 0.0026 0.9936 0.0555
CN = 2 0.9950 0.0041 0.9932 0.0506

NA12812 CN = 1 0.9955 0.0053 0.9932 0.0573
CN = 2 0.9952 0.0035 0.9930 0.0543

NA18605 CN = 1 0.9956 0.0070 0.9935 0.0515
CN = 2 0.9939 0.0043 0.9929 0.0509

1.25 NA10851 CN = 1 0.9939 0.1469 0.9959 0.2790
CN = 2 0.9967 0.1054 0.9958 0.2414

NA12812 CN = 1 0.9963 0.2312 0.9967 0.4088
CN = 2 0.9991 0.1997 0.9975 0.3614

NA18605 CN = 1 0.9940 0.1662 0.9967 0.3145
CN = 2 0.9960 0.1431 0.9953 0.2707
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Fig. 4. The results of CRP and HMM methods, on Affymetrix’s
tumor/normal sample pair CCL-256D/CCL-256.1D. The horizontal axis is
the ordered SNPs in whole genome, and the vertical bar indicates the LOH.

Fig. 5. The results of CRP and HMM methods, on blast and erythroid
samples of patient MDS-8. The horizontal axis is the ordered SNPs in whole
genome, and the vertical bar indicates the LOH. From top to bottom: CRP
result of blast, HMM (GTC) result of blast, HMM (dChip) result of blast,
CRP result of erythroid, HMM (GTC) result of erythroid and HMM (dChip)
result of erythroid.

false predictions. As in the Affymetrix’s tumor data, the CRP method
and HMM methods produce similar results in large LOH regions.

The result of one patient MDS-8 is shown in Figure 5. All methods
predict that the chromosome 7 is LOH in blast and erythroid samples,
which is confirmed by CN analysis. But the inferences of small LOH
regions are different. Since the blast and erythroid samples are from
the same individual, we expect to observe the same (or similar) LOH
patterns in the two samples. Overall, the results of CRP method are
more consistent between the two tumor samples. The consistency
statistics between the results of two tumor samples by several
methods are drawn in Figure 6. More than 80% of the inferred
LOH SNPs in two samples by CRP are overlapped. However, for
HMM, there are only 65% and 76% overlaps, respectively. Another
result of the patient MDS-6 is shown in Figures 7 and 8. Again, the

Fig. 6. Numbers and percentages of inferred LOH SNPs in two tumor
samples from same patient MDS-8.

Fig. 7. The results of CRP and HMM methods, on blast and erythroid
samples of patient MDS-6. The horizontal axis is the ordered SNPs in whole
genome, and the vertical bar indicates the LOH. From top to bottom: CRP
result of blast, HMM (GTC) result of blast, HMM (dChip) result of blast,
CRP result of erythroid, HMM (GTC) result of erythroid and HMM (dChip)
result of erythroid.

CRP method produces more common inferred LOH SNPs between
two tumor samples in terms of both percentage and number. The
results of other patients are similar. Since the tumor may gain or
lose LOH regions as it progresses, the consistency between different
fractions may not be a good measurement for the accuracy of
LOH inference methods. Nevertheless, the common LOH regions
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Fig. 8. Numbers and percentages of inferred LOH SNPs in two tumor
samples from same patient MDS-6.

of different samples may have a higher value for the downstream
analysis such as identification of disease SNPs and genes.

4 CONCLUSION
In this article, a novel LOH inference and segmentation algorithm
based on CRP model is presented. The algorithm explores more
contextual information from neighboring SNPs by considering the
genotyping error rate, the heterozygosity rate and the distances
between SNPs. There are two major differences between the CRP
method and the existing HMM methods. One is the local evidence
exploiting the information of neighboring SNPs. The other is the
new emission probability model. For informative SNPs, the CRP
method can recover the mistakes due to genotyping error, as
shown in the experiments with simulated data. The CRP method
can also reliably infer the LOH status for non-informative SNPs.
The new method infers the LOH status for those SNPs with no
genotype calls as well, which is not considered in the existing
literature. The experiments of simulated and real data show that
the CRP method is effective and reliable for LOH inference and
segmentation.

The proposed CRP method works well for the paired
tumor/normal samples from the same individual. Although the CRP
model can be adapted to the unpaired case, the LOH inference for
the unpaired tumor samples is a different problem. Due to the lack
of normal reference, the FPR will be very high if the LOH inference
is only based on the genotype calls of tumor samples (Beroukhim
et al., 2006). Therefore, the extension of CRP method to analyze
unpaired tumor samples should consider additional information

such as SNP-specific heterozygosity rates, haplotype structures and
recombination rates. This is one of our ongoing studies. Another
future research direction is to integrate the CN variation analysis into
the CRP model. By directly modeling the hybridization intensity, the
LOH inference method may be more powerful and less dependent
on the accuracy of genotyping algorithm.
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