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ABSTRACT

Deficiency in Artemis is associated with lack of
V(D)J recombination, sensitivity to radiation and
radiomimetic drugs, and failure to repair a subset
of DNA double-strand breaks (DSBs). Artemis
harbors an endonuclease activity that trims both
5'- and 3'-ends of DSBs. To examine whether endo-
nucleolytic trimming of terminally blocked DSBs by
Artemis is a biologically relevant function, Artemis-
deficient fibroblasts were stably complemented
with either wild-type Artemis or an endonuclease-
deficient D166N mutant. Wild-type Artemis com-
pletely restored resistance to y-rays, bleomycin
and neocarzinostatin, and also restored DSB-repair
proficiency in GO/G1 phase as measured by pulsed-
field gel electrophoresis and repair focus resolution.
In contrast, cells expressing the D165N mutant,
even at very high levels, remained as chemo/
radiosensitive and repair deficient as the parental
cells, as evidenced by persistent y-H2AX, 53BP1
and Mrei1 foci that slowly increased in size and
ultimately became juxtaposed with promyelocytic
leukemia protein nuclear bodies. In normal fibro-
blasts, overexpression of wild-type Artemis incr-
eased radioresistance, while D165N overexpression
conferred partial repair deficiency following high-
dose radiation. Restoration of chemo/radioresist-
ance by wild-type, but not D165N Artemis suggests
that the lack of endonucleolytic trimming of DNA
ends is the principal cause of sensitivity to double-
strand cleaving agents in Artemis-deficient cells.

INTRODUCTION

Artemis nuclease is a phosphoprotein that has been shown
to play a role in hairpin opening in V(D)J recombination
(1,2) and more recently in the regulation of G2/M, and S
phase cell cycle checkpoints (3,4). Artemis is also required
for the repair of a subset of chemo/radiotherapy-induced
DNA double-strand breaks (DSBs) that are rejoined very
slowly in normal cells. These DSBs may largely overlap
the fraction of DSBs whose repair requires ATM- and
53BP1-dependent phosphorylation of the heterochroma-
tin maintenance protein KAP-1 (5-7). Previous in vitro
studies with oligomeric substrates have shown that
Artemis nuclease activity is DNA-PK-dependent at
DNA ends and that this activity can remove 3'-PG
blocking lesions commonly found at DSB termini (8,9).
Thus, it is reasonable to propose that lack of such
endonucleolytic trimming accounts for both the repair de-
ficiency and the increased cytotoxicity of radiation and
radiomimetic agents toward Artemis-deficient cells. Yet,
the resulting repair deficiency is subtle, affecting only
10-20% of DSBs, raising the question of whether cell
cycle or other regulatory functions of Artemis might be
equally or more important determinants of chemo/
radiosensitivity.

Artemis belongs to SNM1 family of nucleases and
possesses metallo-B-lactamase and B-CASP domains at
its amino terminus. Mutation of an aspartic acid residue
to asparagine (D165N) selectively abrogates the
endonucleolytic function of Artemis without affecting its
exonuclease activity or phosphorylation status (8,10).
Though D165 is not found in sequences of the available
metallo-B-lactamase crystal structures, the abrogation of
endonucleolytic activity by this mutation suggests that it
may be located in the active site of Artemis (10).
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To investigate whether the endonucleolytic activity of
Artemis functions in chemo/radioresistance, patient-
derived CJ179 cells defective for Artemis were comple-
mented with lentiviral vectors expressing wild-type or
DI65N Artemis. The DI65N mutation eliminates
Artemis-mediated endonucleolytic processing of 3'-PG
DSB ends in vitro (8). To establish the role of Artemis
nuclease activity in DNA repair and cellular survival
after DNA damage, clonogenic and DSB-repair assays
were carried out with these cells, following treatment
with radiation or radiomimetic drugs. Earlier studies
(5,6) investigating complementation of Artemis defect by
exogenous protein expression were carried out with tran-
siently expressing cell lines due to difficulties in expressing
Artemis in cells (11). In contrast to these studies, we
have been successful in stably complementing Artemis-
deficient fibroblasts with wild-type or DI165N mutant
Artemis, allowing us to explore the effect of such expres-
sion on the critical endpoint of survival following radi-
ation or genotoxic chemical treatment. In the current
study, low-level Artemis expression was found to be suf-
ficient for complementing the survival/repair defect of
Artemis-deficient cells while even high levels of the
D165N Artemis failed to do so. Moreover, the residual
DNA DSBs that remained unrejoined due to Artemis de-
ficiency juxtaposed with promyelocytic leukemia (PML)
nuclear bodies. Taken together, these results indicate
that the endonucleolytic end-processing activity of
Artemis is essential for promoting DSB repair and cell
survival.

MATERIALS AND METHODS
Cell lines and complementation

Normal 48BR and patient-derived Artemis-deficient
CJ179 hTERT-immortalized human fibroblasts originally
from Dr Penny Jeggo, were obtained from Dr Lynn
Harrison, Louisiana State University, and were cultured
in minimum essential medium (MEM-a) supplemented
with 10% fetal bovine serum and antibiotics (GIBCO).
Cells were constantly maintained at 37°C in 5% CO,
and a humidified atmosphere. Normal Epstein—Barr
virus-transformed human lymphoblastoid cells (patient
1646) were from Dr James Lupski, Baylor College of
Medicine (12).

Lentiviral constructs were prepared in the 693-2
lentiviral backbone harboring the hygromycin resistance
gene (13) carrying either wild-type or D165N mutant
Artemis ¢cDNA fused to a c-myc epitope tag on the
carboxyl terminus. Artemis wild-type, D165N and empty
lentivector DNAs were transfected along with packaging
plasmids, pLP1, pLP2 and pLP-VSVG into 293FT cells
with Lipofectamine 2000 (Invitrogen). Medium containing
packaged lentivirus was collected 48 h post transfection,
and centrifuged Smin at 1200 rpm in a clinical centrifuge
at room temperature. The supernatant was filtered
through 0.45um filters (Novagen), then ultracentrifuged
at 20000rpm for 2.5h at 4°C in a SW28 rotor
(Beckman). Resulting viral pellets were resuspended with
200 pl of Hanks balanced salt solution and stored in 50 ul
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aliquots at —80°C. The 48BR and CJ179 cell lines were
seeded at ~75% confluence in 25 cm? dishes and incu-
bated for 24 h, then infected with 5 ul of concentrated lenti-
virus with 4 pg/ml polybrene in 1 ml medium without
serum for 8 h, then fed with fresh medium and incubated
for 48h. Cells were then selected in medium containing
100 pg/ml hygromycin for 7 days. Cells were expanded
under selection to produce cryogenic stocks and
2.5 % 10° cell aliquots harvested and stored at —80°C as
cell pellets for western analysis.

Selection of clones

From each derivative cell line, approximately 20 clones
were isolated. Total RNA was extracted from each clone
using Qiagen RNeasy minikit and converted to cDNA
using high-capacity RNA to cDNA kit (Applied
Biosystems) following the protocols provided by the manu-
facturer. Amplification of cDNA was performed on an
ABI 7900HT Real time q-PCR instrument using SYBR
green detection (Applied biosystems). Relative Artemis
levels were determined after normalizing to B-actin
levels using SDS 2.2.2 software. The primers used were
5-ACAGAGCCTCGCCTTTGCCG-3, 5-CACCATCA
CGCCCTGGTGCC-3 for B-actin and 5-AGTACGGA
GCCAAAGTATAAACCACT-3, 5-TCCGGGTATGG
AACTTTGTGC-3" for Artemis cDNA amplification
(Synthesized by IDT). Highest and lowest Artemis ex-
pressing clones among those screened were identified and
the protein levels were confirmed by western as described
below. The selected clones were further used in survival/
repair assays.

Western blots

Direct western blotting of cell lysates was attempted with a
variety of antibodies to Artemis but was found to be in-
sufficiently sensitive and specific for Artemis detection;
therefore, an immunoprecipitation (IP) step was added
as previously described (14). Briefly, ~2.5 million cells
were harvested and sonicated on ice with three 30-s
pulses in 750 ul of TBST [25 mM Tris-HCL pH 7.4,
130mM NaCl, 3mM KCIl, 0.1% (v/v) Tween-20] supple-
mented with 1 uM leupeptin, 1 uM pepstatin A and 1 uM
aprotinin protease inhibitors.

Lysates were cleared by centrifugation at 14 000 rpm for
15min at 4°C and incubated with equilibrated protein A/
G beads (Protein A/G UltraLink Resin, Thermo
Scientific) for 1h, then the extract was transferred to a
new tube. Extracts were incubated with 1pl of
SCIDA1024 rabbit antiserum (14) for 1h at 4°C, then
20 pl of equilibrated A/G beads were added and tumbled
overnight at 4°C. The A/G beads were pelleted in a micro-
fuge at 5000 rpm for 30 sec at 4°C and washed three times
with 500 pl extract buffer. Fifty micro-liter Laemmli buffer
(2% SDS, 10% glycerol, 5% 2-mercaptoethanol, 0.004%
bromphenol blue, 0.125M Tris—HCI pH 6.8) was added to
the washed beads and heated for 10min at 98°C and
centrifuged at 14000 rpm for 15min. Approximately one
million cell equivalents (20 ul) was loaded onto 8% SDS-
PAGE gels and resolved at 150V and transferred to a
nitrocellulose membrane with 100V for 90min in
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methanol transfer buffer, then incubated in TBST, 10%
(w/v) powdered milk (blocking buffer), 1 h at 22°C, with
rocking. Membranes were probed with chicken IgY
anti-human Artemis antibody (Abcam, abl14289) at a
1:2000 dilution in 8 ml blocking buffer overnight at 4°C
with tumbling, then washed in TBST 10min x 3, and
incubated in peroxidase-conjugated donkey anti-chicken
IgY (H+L) (Gallus Immunotech Inc.,) at 1:5000 dilution
in 8-ml blocking buffer, 1h, RT, tumbling then washed
in TBST 10min x 3 and developed with ECL plus (GE
Healthcare).

Cell survival assays

Confluent cells were further maintained in 0.5% serum for
5 days. The cells were then irradiated [MDS Nordion
Gammacell 40 research irradiator (ON, Canada), with a
137Cs source delivering a dose rate of 1.05Gy/min] or
treated with either bleomycin or neocarzinostatin (NCS)
for 4h. Following treatment, cells were washed with PBS
and 500-20 000 cells were seeded into 10-cm dishes in fresh
medium. Cells were then incubated for 12 days before they
were fixed with methanol (100%) and stained with 1%
crystal violet, rinsed with water and air-dried. Visible
colonies were counted manually.

Immunofluorescence

Cells were grown to confluence on tissue culture-treated
4-well chamber slides (Nunc lab tek) and further main-
tained at 0.5% serum for 24 h. Cells were then either
irradiated (2 or 4 Gy) or treated with NCS (6 nM) for
1h. After treatment, cells were fixed with 3%
paraformaldehyde and permeabilized with 0.5% Triton
X-100/PBS. Blocking was done using Casein blocker
(Bio-Rad). Primary antibodies used for immunostaining
were anti-y-H2AX (Upstate), anti-53BP1 (gift of Dr
David Gewirtz, Virginia Commonwealth University,
originally from Dr Thanos Halazonetis, University of
Geneva) at 1:500 dilution, anti-PML (PG-M3, Santacruz
biotech) at 1:200 dilution, anti-y-H2AX rabbit polyclonal
(Novus biologicals) at 1:400 dilution and anti-hMrell
rabbit polyclonal (Novus biologicals) 1:200 dilution. The
secondary antibodies were Alexa Fluor 488/568 goat
anti-mouse/anti-rabbit (Invitrogen Molecular Probes) at
1:500 dilutions. Slides were mounted with Vectashield
mounting medium containing DAPI (4,6 diamidino-
2-phenylindole). Images were captured using Olympus
fluoview 500 confocal microscope, using a 430nm diode
laser with a 605nm band pass filter, a 510nm laser with a
530nm band pass filter and a 660-nm laser with 605-nm
band pass filter. Foci from approximately 100 cells were
scored for each time point in 2-3 independent experiments
for each cell line. Focus diameter for the five largest foci in
each cell was measured in one direction parallel to the
equatorial plane of the image field.

Fraction of activity released DSB-repair assay

Pulsed-field gel electrophoresis (PFGE) was used to
quantify DSB repair as described previously (15) with
minor variations. Briefly, subconfluent cells were cultured
on a 150cm dish and labeled for 24h with 0.2 uCi/ml

[methyl-*H]thymidine (20 Ci/mmol, Perkin-Elmer).
Confluence-arrested cells were serum starved (0.5%) for
24 h prior to irradiation. After irradiation samples were
incubated for noted repair times and then trypsinized
and resuspended in L buffer (0.1M EDTA, 0.01M
Tris=Cl, 0.02M NaCl) at a concentration of 2 x 10’
cells/ml. Of this suspension, 250ul was mixed with
250 ul of 2% low-melting agarose (Nusieve GTG) in a
15ml conical tube maintained at 45°C. About 60 pl of cell
agarose mixture was transferred to a sample CHEF dis-
posable plug mold (Bio-Rad) and allowed to solidify at
4°C. The plugs were removed and incubated in the di-
gestion mixture (0.1 M EDTA, 0.01M Tris—Cl, 0.02M
NaCl, 1% w/v Sarkosyl, 0.1 mg/ml proteinase K). The
plugs were incubated for 24h at 50°C with a change of
digestion mixture after 3h. They were then washed with
TE (Tris=EDTA) over a period of 3h. The plugs were
further incubated with 40 ug/ml PMSF for 30min at
50°C followed by three washes over a period of 3h.
The plugs were inserted into the wells of a 1% agarose
gel (Bioline, DNA type grade) and run in 0.5 x TBE for
65h at 1.5V/ecm with switch times varying between 60
and 3600s. The temperature was maintained at 14°C
throughout the run. Each lane of the plug was cut into
five equal slices and the fraction of radioactivity released
fraction of activity released (FAR) from the plugs and re-
maining in the plugs was measured by liquid scintillation.

RESULTS

D165N mutant Artemis fails to rescue chemo/
radiosensitivity

Previous in vitro studies have shown that in the presence
of DNA-PK, Artemis has endonucleolytic activity toward
both the 3’ and 5 termini of DNA ends (2,8), which may
participate in the slow processing of 3’-PG-terminated
DSBs (9). To investigate the biological relevance of
Artemis endonucleolytic activity, wild-type and D165N
mutant Artemis were expressed in patient-derived CJ179
cells, as well as in normal 48BR cells, using lentiviral
vectors. In the absence of recombinant DNA vectors,
the CJ179 cells are Artemis-null and fail to express any
Artemis transcript (5).

Artemis expression levels were first evaluated by western
blots of Artemis immunoprecipitated from extracts of
the complemented and mock-complemented lines
(Figure 1A). In cells harboring Artemis-encoding viral
constructs, levels of wild-type and D165N Artemis were
comparable, and were much greater than the level of
native Artemis in normal fibroblasts, which was below
the level of detection. However, the presence of an
Artemis transcript in normal 48BR cells was verified by
gel electrophoresis following real-time q-PCR, which
showed a product of the expected size that was not evident
in the Artemis-deficient CJ179 cells (Supplementary
Figure 1).

Radiation, bleomycin and NCS are known to induce
free radical-mediated DSBs of diverse structure, many
of which bear 3’-PG termini (16-18). The toxicity of
these agents was therefore evaluated in Artemis-deficient
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Figure 1. Chemo/radiosensitivity of Artemis deficient and D165N Artemis mutant fibroblasts. (A) Expression levels of wild-type and D165N mutant
Artemis in complemented Artemis-deficient CJ179 cells (CJ Arte™, CJ Endo ™), and in 48BR normal fibroblasts (48BR Arte™, 4BR Endo ™). CJ Vect
and 48BR Vect are the respective empty-vector-infected cell lines. Artemis was immunoprecipitated using rabbit polyclonal anti-hArtemis antibody
and immunoblotted using chicken polyclonal IgY anti-hArtemis (Abcam). Endogenous Artemis in 48BR cells is below the level of detection. (B-D)
Clonogenic survival assays were performed on confluence-arrested serum-starved cells treated with radiation (B), bleomycin (C) or NCS (D). Error

bars show SEM from at least three independent experiments.

CJ179 cells carrying integrated viral constructs expressing
wild-type Artemis, D165N mutant Artemis or no protein.
The Artemis-deficient CJ179 fibroblasts showed signifi-
cant hypersensitivity to all three agents (Figure 1B-D),
as reported previously for other, unrclated Artemis-
deficient cell lines (9). Complementation with wild-type
Artemis but not D165N mutant Artemis rescued this
sensitivity. Furthermore, this overexpression of wild-type
Artemis increased the chemo/radioresistance of normal
48BR cells, as compared to that of 48BR cells carrying
the empty vector. Taken together, these results suggest a
direct role of Artemis endonucleolytic activity in survival
following radiation or radiomimetic drug treatment.

Endonucleolytic activity of Artemis is essential for DNA
DSB rejoining in cells

To more directly assess the role of Artemis’ endonuclease
activity in DSB repair, y-H2AX and 53BP1 foci were
quantified as surrogate markers for residual DNA DSBs
in Artemis-deficient/proficient cell lines following irradiation
or NCS treatment. These assays were performed using
non-replicating GO/G1 cells (Supplementary Figure S2)

to avoid spontaneous focus formation at stalled replica-
tion forks. The formation and loss of y-H2AX and 53BP1
foci was similar in all cell lines at 30min and 2h
post-irradiation. However, at 6-18 h, a significant fraction
of foci were seen to persist in Artemis-deficient CJ179
fibroblasts, while nearly all of the foci resolved in
normal 48BR cells (Figure 2A and B and Supplementary
Figure S3). Stable complementation of CJ179 with
wild-type Artemis corrected this defect, resulting in
wild-type focus levels, while the D165N mutant Artemis
completely failed to rescue the DSB repair defect,
indicating that resolution of y-H2AX and 53BP1 foci fol-
lowing radiation requires Artemis endonucleolytic
activity. Essentially identical complementation results
were obtained in cells treated with NCS (Figure 2C).
Although the kinetics of y-H2AX and 53BP1 foci were
nearly identical, a higher radiation dose was required to
induce a comparable number of 53BP1 foci. Staining with
a mouse monoclonal antibody to y-H2AX (data not
shown) confirmed that some y-H2AX foci did not
contain detectable 53BPl, as has been previously
reported (19).
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Figure 2. Dependence of cellular DSB rejoining on Artemis endonucleolytic activity. (A) y-H2AX foci were scored in confluence-arrested
serum-starved cells following 2 Gy v irradiation, and the results plotted as the number of foci/cell. (B) 53BP1 foci were scored following 4 Gy y
irradiation. (C) y-H2AX foci were scored as in (A) following treatment with 6 nM NCS for 1 h. Error bars represent the SEM from three independent
experiments except for (B), which shows data from two experiments. (D) PFGE was performed on DNA from confluence-arrested serum-starved
normal (48BR) or Artemis-deficient (CJ179) cells that were complemented with wild-type or D165N mutant Artemis. Cells were irradiated and then
incubated for the indicated times (in hour) to allow repair before analysis by PFGE. (E) FAR values were plotted after subtraction of the FAR value
for unirradiated cells. Fluoromicrographs of a typical repair focus experiment are shown in Supplementary Figure S1. PFGE experiments with NCS

were precluded by the large amount of drug required.

The above results were confirmed by a PFGE assay that
measures DSBs directly but requires use of higher doses of
radiation (40 Gy, Figure 2D and E). Consistent with the
repair focus studies above, 10-20% of the DSBs remained
unrejoined in Artemis deficient and DI165N mutant-
complemented CJ179 cells. Taken together, these data
show that repair of this subset of DNA DSBs requires
Artemis endonucleolytic activity at both low and high
doses.

Low-level Artemis expression is sufficient to restore
radiosurvival

A possible confounding factor in interpreting these
studies, as well as other studies using transient expression
(6), is the elevated level of Artemis transgene expression,
which is much higher than endogenous levels in normal
fibroblasts. To address this concern, clonal isolates having
various levels of Artemis expression were derived from

cultures of 48BR and CJ179 cells transduced with
vectors encoding wild-type or DI65N Artemis.

Relative Artemis expression levels were first evaluated
by real-time q-PCR and then confirmed by IP/western. All
transgene-expressing clones produced detectable levels of
Artemis protein, which in all cases correlated with Artemis
mRNA levels. While the Artemis levels in all clones
were still higher than the undetectable level in 48BR
cells, they were comparable to and in some cases lower
than the endogenous level in normal lymphoblastoid cells
(Figure 3A and B). Moreover, the CJ179 clone expressing
the lowest level of wild-type Artemis was as radioresistant
(Figure 3D) and as repair-proficient (Figure 3E) as the
highest expressing clone (showing 7-fold higher expression
by q-PCR), and both were more radioresistant than
normal 48BR Vect cells. In contrast, even high levels of
Artemis D165N expression (~8-fold higher than the level
in CJ Arte+ clone 1 by q-PCR; Figure 3A) conferred no
detectable radioresistance (Figure 3D).
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Figure 3. Effect of wild-type/D165N Artemis expression levels on radiosurvival and repair. (A) Artemis cDNA was amplified using real time q-PCR
and the relative quantities of Artemis expression for indicated clones (cln) using normal lymphoblastoid cells as calibrator sample and B-actin as
endogenous control are plotted. Error bars indicate SEM for 3 independent experiments. All 20 isolated CJ Endo™ clones had similar levels of
expression. (B) Artemis protein level for selected clones was verified by IP/Western blot. JRL2 = normal lymphoblastoid cells. (C and D) Clonogenic
survival assays were performed on confluence-arrested serum-starved clones following exposure to radiation. The data points for CJ Vect and 48BR
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serum-starved high/low wild-type Artemis expressing CJ179 cells. Error bars represent standard deviation for two independent experiments.

Overall, these results show that a relatively modest
amount of wild-type Artemis is sufficient to correct the
repair defect in Artemis-deficient cells and increase
radioresistance, and suggest that the restoration of
radioresistance is dependent on endonuclease activity
and is not an artifact of overexpression.

Persistent radiation-induced foci in Artemis-deficient cells
grow larger with time and juxtapose with PML-nuclear
bodies

In addition to a larger number of persistent foci, cells
lacking functional Artemis showed a significant time-
dependent increase in the average diameter of the
residual foci, from ~0.8pum at 30min to 1.4pum at
12-18 h (Figure 4). This increase was seen for both
53BP1 and y-H2AX foci, and for both Artemis-deficient

and Artemis D165N-complemented cells. These results are
consistent with hypersensitivity in these cells being due to
defective repair processes. Moreover, these data suggest
that the unrepaired DSBs promote persistent ATM acti-
vation and continued accumulation of repair factors such
as Mrel1 in the vicinity of the break site (Supplementary
Figure S4).

PML protein is a tumor suppressor that along with
Daxx, SP100 and CBP has been identified as the main
constituent protein within sub-nuclear compartments
also referred to as nuclear bodies (20,21). PML is
phosphorylated by ATM (22) and PML-NBs have also
been shown to co-localize with Mrell and p53 at the
sites of radiation-induced foci specifically at later time
points (21).

To investigate whether PML NBs and associated
proteins may be recruited to the residual DNA DSBs,
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mutant-complemented CJ179 fibroblasts, showing increase in the size of y-H2AX foci that persist 1218 h post-irradiation. (B) Average size of 53BP1
(upper panel, dose of 4 Gy) or y-H2AX (lower panel, dose of 2 Gy) foci. Focus diameter on fluoromicrographs (A) was measured in one direction
parallel to the equatorial plane of the image field. The error bars represent SEM for 35 foci. The arrows are pointing toward large foci.

PML and y-H2AX interaction was analyzed in cells by
double immunostaining and confocal microscopy. As
shown in Figure 5 and Supplemental Figure S5, a subset
PML NBs were found to be juxtaposed to the persisting
DNA DSBs in Artemis-deficient cell lines 12-18 h after
irradiation. These results indicate that such positioning
occurs even at relatively low levels of initial DNA
damage, and suggest that the determining factor for
co-localization is the persistence of a significant number
of unresolved DSBs.

Overexpression of D165N mutant Artemis renders normal
cells repair deficient

If, as proposed, the primary role of Artemis in chemo/
radioresistance is endonucleolytic trimming of DSB
ends, then overexpression of mutant Artemis might be
expected to displace the normal enzyme and prevent
such trimming. At 2 Gy, or at equally toxic concentrations
of bleomycin or NCS, no such dominant-negative effect
was seen, as DI165N-overexpressing 48BR cells were
as chemo/radioresistant as empty-vector controls
(Figure 6C and Supplementary Figure S6), and were
fully competent in resolution of repair foci (Figure 6A).
However, in FAR assays, overexpression of DI165N
mutant Artemis conferred upon normal fibroblasts a
slight repair defect at high doses of y-radiation (40 Gy,
Figure 6B). Conversely, overexpression of wild-type
Artemis rendered normal cells more radioresistant
(Figure 6C), but did not produce a detectable change in
repair, with all measurable DSBs being rejoined within
12h according to both focus formation (Figure 6A) and
FAR assays (Figure 6B).

DISCUSSION

Artemis deficiency has pleiotropic effects in human cells
following exposure to DNA damaging agents, including
defects in regulation of cell cycle checkpoints (3,4) and in
apoptotic DNA fragmentation (23). However, other
studies suggest that Artemis is epistatic with ATM in
promoting radiosurvival and DSB repair, even in
growth-arrested cells that should not be subject to cell
cycle effects (5). Specifically, in ATM- or Artemis-
deficient cells a small fraction of DSBs (10-20%)
remains unrejoined, even after several days (5,14).

Experiments using defined substrates and purified
enzymes have shown that in the presence of DNA-PK,
Artemis gains an endonucleolytic activity toward DNA
ends that is inherently capable of resolving DSBs
bearing terminal blocking groups such as 3-PGs (8-
10,24,25). PFGE as well as focus-formation assays in
noncycling contact-arrested fibroblasts (Figure 2) show
that wild-type but not endonuclease-deficient Artemis
completely restores DSB-repair proficiency, in agreement
with recent observations in G2 cells where Artemis was
expressed transiently (6). Taken together, these results
strongly suggest that the primary function of Artemis in
DSB repair is the endonucleolytic processing of DNA
ends.

More importantly, survival assays with stably comple-
mented Artemis cell lines (Figure 1) show that only
endonuclease-proficient Artemis is able to restore
chemo/radioresistance. These data suggest that lack of
endonucleolytic activity, and by inference DSB end pro-
cessing, is the principal cause of chemo/radiosensitivity in
Artemis-deficient fibroblasts. Although an effect of the
D165N mutation on recruitment to damaged DNA (26),
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Figure 6. Overexpression of DI65N mutant Artemis confers high-dose DSB-repair deficiency. (A) y-H2AX focus assay was performed after 2 Gy y
irradiation. (B) PFGE analysis of normal fibroblasts overexpressing wild-type or D165N mutant Artemis after exposure to 40 Gy y-rays. The panel
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for Vect versus Endo™ P> 0.3 at all doses). The data for 48BR Vect and 48BR Arte' are same as shown in Figures 1 and 2, and are shown here
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(A), which shows data from two experiments.

or on other unknown functions of Artemis, cannot be
strictly excluded, the mutant enzyme retains its 5— 3’ exo-
nuclease activity (8), and is phosphorylated by DNA-PK
as efficiently as the wild-type protein (10). These data
suggest that D165N Artemis has intact secondary struc-
ture and retains proficiency in assembling with DNA-PK
at DNA ends. Recently, it was shown that most (but not
all) of the exonuclease activity in Hisg-affinity-purified
Artemis could be eliminated by ion-exchange chromatog-
raphy, suggesting that the exonuclease might be a contam-
inant (27). However, other studies showed that extensively

purified Artemis protein retained exonuclease activity
(28), and that antibodies raised against Artemis pro-
tein gel-purified from Escherichia coli inactivate the exo-
nuclease, suggesting that this exonuclease activity is
intrinsic (8).

The finding that endonuclease-deficient Artemis, even
when overexpressed, has no effect at all on chemo/
radiosurvival (Figure 1), combined with evidence that
Artemis-deficient fibroblasts retain functional G1 and
G2 checkpoints (14,29), would also appear to exclude a
checkpoint defect as a major contributor to the chemo/
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radiosensitivity of Artemis-deficient fibroblasts. Although
checkpoint deficiencies have been reported for tumor cells
in which Artemis expression has been knocked down with
siRNA (3.4), there is no evidence that these deficiencies
account for radiosensitivity.

Previous studies have shown that a small number of
DSBs remain unrejoined in irradiated cells lacking
Artemis (5,14), but the exact nature of these repair-
resistant breaks remains incompletely defined. The three
DNA-damaging agents used here, (radiation, NCS and
bleomycin) all generate 3’-PG-terminated DNA DSBs,
but in different contexts. Bleomycin treatment gives rise
to DSBs having either blunt ends or single-base 5'-over-
hangs, with 5'-phosphate and 3’-PG termini at both ends
of the break. NCS-induced DSBs have at one end a
5-phosphate and a 3’-phosphate on a 2-base 3’
overhang. The opposite end has a 5-aldehyde and either
a 3-PG (~20%) or a 3'-phosphate (~80%) on a one-base
3’ overhang (17,18). Radiation induces 3’-PG-terminated
DNA DSBs in various contexts, presumably with random
stagger between breaks in opposite strands and with the
fraction of 3’-PG ends estimated at anywhere from 10% to
50% (16,30). Because the endonucleolytic activities of
Artemis/DNA-PK do not require a specific structure at
either the 5 or the 3’ ends and can bypass terminal
moieties (8), these activities could serve to remove chem-
ically modified termini such as 3’-PGs and 5-aldehydes. It
is highly unlikely that Artemis’ exonucleolytic activity can
resolve such blocked ends, because it acts only at &
termini and requires a 5'-phosphate, and also because it
is suppressed by DNA-PK (8,28), which is expected to be
bound to all DNA ends during DSB repair in G1. Thus,
deficiency in endonuclease activity of the D165N mutant
Artemis likely causes a failure to process a subset of DSB
termini induced by NCS, bleomycin and radiation, thus
conferring the same chemo/radiosensitivity as complete
lack of Artemis.

However, even in Artemis-deficient and Artemis-mutant
cells, at least 80% of radiation- and NCS-induced DSBs
are quickly repaired (Figure 2), raising the question of
why a small fraction of breaks seems to require
endonucleolytic trimming by Artemis while the majority
does not. At least for NCS-induced DSBs, the repair-
resistant, Artemis-requiring fraction cannot be a subset
of complex DSBs with accompanying base damage, as
neither NCS nor bleomycin produces such lesions
(17,18). It is also unlikely that there is a one-to-one cor-
respondence between 3’-PG DSBs and DSBs requiring
Artemis for repair, as in that case Artemis-deficient cells
should be much more sensitive to bleomycin, which forms
DSBs that have almost exclusively 3'-PG termini at both
ends, than to any of the other agents. If the unrepaired
DSBs are those in heterochromatin, as has been proposed
for DSBs that require ATM for repair (31), then there
must be alternative enzyme(s) [e.g. TDP1; (12,32)] that
are biochemically competent to resolve the damaged
ends, but are specifically excluded from heterochromatic
DSBs. Alternatively, the repair focus-associated protein
complexes that are recruited to unrepaired DSBs may ef-
fectively shield the breaks from most enzymatic process-
ing, so that any breaks which fail to repair within 1-2h

(including those in heterochromatin) can only be pro-
cessed by Artemis, due to its close association with
DNA-PK (2,24). A recent study of repair joints from a
site-specific HO endonuclease-induced DSB in mouse
mammary cells has raised yet another alternative: that in
heterochromatin Artemis may excise a whole DSB-
containing nucleosome, exposing internucleosomal DNA
at both ends of the break that can then be more easily
joined (33). A final possibility is that a fraction of the
initial DSBs may be processed into derivative structures
that only Artemis can resolve, for example, hairpins
resulting from single-strand resection at inverted repeat
sequences, as suggested previously (9).

In both Artemis-deficient and Artemis endonuclease-
mutant cell lines, a time-dependent increase in the size of
residual y-H2AX and 53BP1 foci was observed 6-18h
after irradiation (Figure 4). A similar slow increase in
focus size has been previously reported for cells exposed
to high linear energy transfer radiation (34), which induces
complex DSBs that are relatively resistant to repair. One
study that followed foci along a-particle tracks in 3D,
showed that these foci often coalesce into a few larger
foci (35). Exposure to high salt immediately after yirradi-
ation can also promote increased focus size, an effect
attributed to inhibition of repair, due to chromatin com-
paction (36). Thus, in several contexts, persistent
unrejoined DSBs appear to promote further H2AX phos-
phorylation and further aggregation of repair factors, sug-
gesting continued ATM/DNA-PK activation (37) and a
gradual spreading of decondensation over larger areas of
chromatin (38). Moreover, these persistent breaks were
seen to juxtapose with PML-NBs (Figure 5). PML is a
known tumor suppressor (22,39) and is a key constituent
of PML-NBs along with Daxx, SP100 and CBP. PML ™/~
cells and mice have been shown to be resistant to lethal
effects of y-radiation. Cdsl/Chk2-mediated phosphoryl-
ation of PML triggers apoptosis (39) probably through
recruitment of Daxx to nuclear bodies (40). PML is
phosphorylated by several DNA damage activated kinases
such as ATM and ATR (22) and associates with hMrell
and p53 at 12-24h following irradiation (21). Our results
that PML NBs partially juxtapose with late repair foci in
Artemis-deficient cells suggest that these foci represent
highly persistent unrepaired DSBs that continue to
recruit additional DNA-repair machinery for their reso-
lution. Repair-focus expansion may also reflect a search
for additional DNA end(s) that can be resolved into a
ligatable substrate. However, if repair fails, then the con-
stituent proapoptotic proteins of PML bodies may drive
cells toward death.

Our data also show that an overexpression of wild-type
Artemis in normal cells adds to the survival advantage of
these cells (Figure 6). Although no effects on repair
(PFGE or foci) were detected, it is possible that in the
presence of excess Artemis, some breaks which can be
repaired by multiple redundant pathways may be chan-
neled through an Artemis-dependent pathway. If that
pathway were less error-prone than the alternative(s),
then the higher fidelity might lead to increased survival
without necessarily affecting measurements of DSB rejoin-
ing. However, this increase in survival is limited such that



once a critical level of Artemis expression is reached in
cells, additional Artemis confers no added survival advan-
tage (Figure 3). This result suggests that in the Artemis
transgene-expressing cells, the concentration of Artemis at
DSBs is no longer a limiting factor in repair.

Conversely, overexpression of D165N mutant Artemis
in normal cells made them slightly repair deficient as
judged by PFGE (Figure 6), suggesting that the mutant
Artemis can effectively compete with endogenous Artemis
for DNA binding. The defect in repair appears to be ex-
pressed only when the repair system is saturated by very
high levels of DNA damage. Although there was a slight
trend toward greater radiosensitivity when very high levels
of mutant Artemis were expressed in normal cells, it was
not statistically significant (Figure 3C). Nevertheless, the
dominant-negative effect on repair as well as the increase
in radioresistance with overexpression of Artemis is most
consistent with Artemis functioning directly in the repair
process.

Taken together, the results suggest that a fraction of
DSBs with chemically modified termini strictly require
Artemis endonuclease activity for repair in Gl. The
complete failure of endonuclease-deficient Artemis to
improve survival suggests that lack of end processing by
this endonuclease can fully account for the chemo/
radiosensitivity conferred by Artemis deficiency.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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