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Accurate assessment of cutaneous tissue oxygenation and vascular function is important for appropriate detection, staging, and treatment of

many health disorders such as chronic wounds. We report the development of a dual-mode imaging system for non-invasive and non-contact
imaging of cutaneous tissue oxygenation and vascular function. The imaging system integrated an infrared camera, a CCD camera, a liquid crystal
tunable filter and a high intensity fiber light source. A Labview interface was programmed for equipment control, synchronization, image acquisition,
processing, and visualization. Multispectral images captured by the CCD camera were used to reconstruct the tissue oxygenation map. Dynamic
thermographic images captured by the infrared camera were used to reconstruct the vascular function map. Cutaneous tissue oxygenation and
vascular function images were co-registered through fiduciary markers. The performance characteristics of the dual-mode image system were
tested in humans.

Video Link

The video component of this article can be found at http://www.jove.com/video/2095/

Protocol

1. Mapping tissue oxygenation by multispectral imaging

A Comprehensive Wound Center (CWC) dual-mode imaging system, henceforth referred to as the CWC system, was developed at the Ohio
State University for multispectral imaging of cutaneous tissue oxygenation and thermographic imaging of vascular function. The wide gap second
derivative spectroscopic technique was used to reconstruct tissue oxygenation maps based on multispectral images ' In this study, a healthy
subject sat with the left forearm resting on a countertop. A portion of the forearm within the field of view of the CWC system was painted with
India ink (1% dissolved in ethanol) to mimic different skin colors. Multispectral images were acquired and an oxygenation map was reconstructed
based on the wide gap second derivative spectrum. The reconstructed oxygenation map was compared with that acquired by a commercial
Hypermed OxyVu hyperspectral tissue oxygenation measurement system.

Tissue oxygen responses to vascular occlusion were studied on the same subject following a protocol of post-occlusive reactive hyperemia
(PORH) 2, Before the PORH test, the subject's systolic and diastolic blood pressures were recorded by a pressure cuff placed on the left upper
arm. The PORH protocol consisted of a pre-occlusive baseline period of two minutes, a suprasystolic occlusion (systolic + 50 mm Hg) period

of two minutes, and a reactive hyperemia period of two minutes. Multispectral images were acquired at four wavelengths (i.e., 530nm, 550nm,
570nm, and 590nm) during the PORH test at the sampling rate of 0.75 seconds per wavelength. Deep tissue oxygen saturation and cutaneous
tissue oxygen tension on the same arm were simultaneously recorded by an OxiplexTS tissue spectrophotometer (ISS Inc., Urbana Champaign,
IL) and a TCM transcutaneous oxygen monitor (Radiometer, Denmark) respectively.

2. Mapping vascular function by dynamic thermographic imaging

Dynamic thermographic imaging was demonstrated on a healthy subject using the same CWC system. The subject comfortably lied on a table
in supine position, with the left arm resting on a countertop and the dorsum of the left hand facing up toward the infrared camera unit of the CWC
system. A laser Doppler probe was placed on the finger tip of the same hand for continuous monitoring of finger skin perfusion. A pressure cuff
was placed on the left upper arm to produce different levels of occlusion. Before the experiment, the subject was asked to rest for at least 10
minutes, with the systolic and diastolic pressures recorded by the pressure cuff. Dynamic thermographic images were captured at the following
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cuff pressure levels: no occlusion, 0.5 x diastolic blood pressure, 0.5 x (diastolic blood pressure + systolic blood pressure), and 1.5 x systolic
blood pressure. At each cuff pressure level, a thermal stimulation was introduced by placing a water bag of room temperature (25°C) on the left
hand for 30 seconds. Immediately after the removal of the thermal stimulation, the left hand thermographic images were acquired at a rate of 2
frames/second and the finger skin perfusion was recorded by the laser Doppler probe at the sampling rate of 10 Hz. The time interval between
tests was 10 min. The position of the left hand was marked in advance so that the subsequent measurements were at the same position. Tissue
vascular functions at different occlusion levels were evaluated by calculating both the temperature response and the vascular function index. The
vascular function index was defined as the ratio between the square root of the time after thermal stimulation and the corresponding temperature
change.

3. Co-registration between tissue oxygenation and vascular function maps

The map of cutaneous tissue vascular function acquired by dynamic thermographic imaging and the map of cutaneous tissue oxygenation
acquired by multispectral imaging were co-registered by an advanced imaging algorithm. Four fiduciary markers, with simultaneous thermal and
optical contrasts, were placed on the biological tissue to facilitate image co-registration. Currently the protocol for co-registering the optical image
(and the oxygenation map) with the thermal image (and the vascular function map) includes the following key steps: 1) transform all the images
to gray scale and normalize the pixel intensity values between 0 and 1; 2) for the optical photo, identify the foreground (skin) region which has
high pixel intensity values than the an empirical global threshold (0.8 times the mean intensity value of the whole image); the small holes in the
foreground region were filled using the morphological close operation; 3) identify the fiduciary marker regions as darker regions in the foreground
whose intensity values are below both the global threshold and the adaptive local threshold defined by the mean pixel values in the 20-by-20
pixel neighborhood. The adaptive local threshold allowed us to accommodate the illumination variation; 4) refine the fiduciary marker regions
using morphological operations to remove noise and spikes; the centroids of the four regions were selected as control points in the optical photo;
5) repeat similar steps to identify marker regions in the thermal image; 6) match the two sets of control points based on proximity (given that the
two cameras were closely positioned); 7) compute an affine transformation between the two images with the thermal image as the reference

and transform the optical photo and the oxygen map (which is obtained from the same camera as the optical photo) correspondingly; 8) finally
generate the overlaid images for visualization.

4. Representative Results:

The representative results for the oxygenation protocol (i.e., #1) are cutaneous tissue oxygenation maps reconstructed based on wide gap
second derivative spectroscopy. The method of wide gap second derivative spectroscopy effectively reduced the measurement artifacts caused
by tissue background absorption so that the cutaneous oxygenation measurement was less affected by the simulated skin color changes. We
also demonstrated a PORH protocol where the cutaneous tissue oxygenation map, the deep tissue oxygenation, and the cutaneous tissue
oxygen tension were simultaneously recorded.

The representative results for the vascular function protocol (i.e., #2) include the cutaneous tissue temperature distributions, the cutaneous
tissue temperature changes in response to external thermal stimulation, and the cutaneous tissue vascular index maps derived from dynamic
thermographic imaging. Correlations were observed between the thermographic imaging of cutaneous tissue vascular index and the laser
Doppler measurement of skin tissue perfusion.

The representative results for the co-registration protocol (i.e., #3) include the tissue oxygenation map, the vascular index map, and the image
fusion among photographic, oxygenation, and vascular index images co-registered by multi-contrast fiduciary markers.

Thermal camera

lllumination —

light source CCD camera

Liquid crystal tunable

Figure 1. CWC dual-mode system setup for non-contact imaging of tissue oxygenation and vascular function. The system was installed
on a mobile cart. It consisted of an infrared thermal camera, a CCD camera, a liquid crystal tunable filter, and a broadband light source. A
computer was used to synchronize the tasks of data collection, analysis, and display.
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Figure 2. Software interface for the CWC system. The software interface was programmed in the Labview environment. On the top left of the

interface is the control panel for hardware configuration and system calibration. On the right of the interface is the real-time display of the tissue
temperature map acquired by the infrared camera. On the bottom of the interface are laser Doppler measurements of skin tissue perfusion.
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Figure 3. Software interface for the CWC system (Cont.). This is a pop-up window to show tissue oxygenation parameters. On the left is the
tissue oxygenation map reconstructed from the multispectral images. The right side of the interface displays the following tissue oxygenation
parameters from top down: (1) cutaneous tissue oxygenation averaged from a selected region of interest (ROI) in the tissue oxygenation

map; (2) deep tissue oxygenation monitored by an OxplexTS tissue oximeter; (3) cutaneous tissue oxygen tension monitored by a TCM
transcutaneous oxygen monitor.
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Figure 4. Cutaneous tissue oxygenation imaging by an OxyVu imaging system. The left figure is a grayscale image of the skin tissue. A
layer of ink was painted on the skin to simulate the skin color. The map of cutaneous tissue oxygenation acquired by the OxyVu system is shown
on the right. Two square-shaped regions of interest (ROls) were selected within and outside the ink-painted area respectively. For the ROI within
the ink-painted area, the averaged cutaneous tissue oxygenation was 62.8+11.0%. For the ROI outside the ink-painted area, the averaged
cutaneous tissue oxygenation was 44.0+11.0%. A difference of 18.8% was observed for the cutaneous tissue oxygenation measurements within
and outside the ink-painted skin area.
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Figure 5. Cutaneous tissue oxygenation imaging by the CWC system. The multispectral images were captured by the CWC system at the
same skin location on the same subject as that in Figure 4. The left figure is the single wavelength image of the skin tissue and the right figure is
the reconstructed cutaneous tissue oxygenation map. A layer of ink was painted on the skin with the ink concentration the same as that in Figure
4. . Two square-shaped regions of interest (ROIs) were selected within and outside the ink-painted area respectively. For the ROI within the ink-
painted area, the averaged cutaneous tissue oxygenation was 60.916.9%. For the ROI outside the ink-painted area, the averaged cutaneous
tissue oxygenation was 65.845.5%. A difference of 4.9% was observed for the cutaneous tissue oxygenation measurements within and outside
the ink-painted skin area.
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Figure 6. The effect of simulated skin color changes on the reliability of cutaneous tissue oxygenation measurements. Statistic analysis
was carried out to determine the significance of the simulated skin color changes to oxygenation measurements for both the OxyVu and the
CWC imaging systems. For each imaging system, the averaged cutaneous tissue oxygenations were calculated within and outside the ink-
painted skin areas by randomly selecting 10 regions of interest (ROIs) in each area. Our null hypothesis is that the change of skin color will not
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affect the cutaneous tissue oxygenation measurement. This null hypothesis was tested using oxygenation maps in Figure 4 (i.e., the OxyVu
measurements) and Figure 5 (i.e., the CWC measurements) respectively. Student's t-tests show that the p value for the OxyVu measurements
is much less than 0.001, implying that the null hypothesis is rejected. Therefore, the change of skin color does affect the cutaneous tissue
oxygenation measurements in an OxyVu imaging system. In contrast, the p value for the CWC measurements is 0.728, implying the likelihood
that the change of skin color does not affect the cutaneous tissue oxygenation measurements in a CWC imaging system.
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Figure 7. Cutaneous tissue oxygenation images obtained from the CWC system during post-occlusive reactive hyperemia (PORH).
The PORH test was carried out on the forearm of a healthy subject following #1. (a). Single wavelength gray scale image of the arm with four
fiduciary markers placed for image co-registration. (b) The baseline cutaneous tissue oxygenation map acquired before vascular occlusion.
(c) The cutaneous tissue oxygenation map after vascular occlusion (systolic pressure + 50mmHg) for 2 minutes. (d) The cutaneous tissue
oxygenation map after reactive hyperemia. Significant changes in cutaneous tissue oxygenation were observed before, during, and after
vascular occlusion.
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Figure 8. Tissue oxygen parameters continuously monitored during a PORH test. The test protocol in (a) shows a period of pre-occlusion
baseline, followed by a suprasystolic occlusion period, and end with a reactive hyperemia period. The history of cutaneous tissue oxygenation
duration the PORH procedure is plotted in (b). It was obtained by averaging a selected region of interest (ROI) in the CWC cutaneous
oxygenation map. We also monitored the deep tissue oxygenation by an OxiplexTS tissue oximeter, as plotted in (c). The transcutaneous tissue
oxygen tension was also monitored by a TCM device and plotted in (d). The CWC measurements of cutaneous tissue oxygenation coincide well
with other oxygen parameters during the PORH procedure.
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Figure 9. Cutaneous tissue responses at different vascular occlusion pressures. Thermographic images were acquired immediately after
the thermal stimulation (i.e., a water bag at room temperature 25°C) was removed from the subject's left hand. The horizontal axis corresponds
to the different time spots after the thermal stimulation was removed. The vertical axis corresponds to the following 4 levels of vascular occlusion
pressures: 0 (No occlusion), 0.5DBP, 0.5(DBP+SBP), 1.5SBP, where DBP is the diastolic blood pressure and SBP is the systolic blood pressure.
For this specific subject, the DBP is 69mmHg and the SBP is 123mmHg. The test results indicate that the tissue temperature response to the
external thermal stimulation is correlated with the level of vascular occlusion. Increasing the occlusion pressure reduces the thermal response
rate.
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Figure 10. Reconstructed vascular index maps at different vascular occlusion pressures. Vascular function index (v) at each pixel of the
thermographic images was derived by regressing the cutaneous tissue temperature change (AT) against the square root of the time after the
thermal stimulation (Vt): A Vt + K + € , where ¢ is the random error and K is a constant. Vascular function index maps from left to right correspond
to the following occlusion conditions: (a) no occlusion, (b) 0.5DBP, (c) 0.5 (DBP+SBP), (d) 1.5SBP. For this specific subject, the diastolic blood
pressure (DBP) is 69mmHg and the systolic blood pressure (SBP) is 123mmHg.
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Figure 11. Correlation between the vascular function index and the skin tissue perfusion. The finger tip vascular function index at each
occlusion pressure in #2 was calculated by averaging five regions of interest (ROIs) in the tissue vascular index map. The skin tissue perfusion
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was measured by a laser Doppler device at one of the finger tip. The finger tip vascular index correlated with the laser Doppler measurement,
indicating the potential of using the dynamic thermographic method for quantitative assessment of tissue vascular function.
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Figure 12. The image co-registration process. In the first row, we show: (a) the normalized photo, (b) the segmented foreground region,

and (c) the segmented markers in the photo image. In the second row, we show: (d) the normalized perfusion map, (e) the segmented
foreground region, and (f) the segmented markers in the perfusion map. The affine transformation between the two sets of marker positions was
calculated. The co-registered images (g and h) were obtained by transforming the photo image and the oxygen map using this recovered affine
transformation.

(a) Co-registration (b) Co-registration result with
result inverted vascular function map

Figure 13. The co-registration results. The transformed photo and oxygen map, together with the perfusion map were co-registered and
displayed in as a heat map. The heat map in (a) was presented with 100% of transformed photo image in the red channel, 100% of transformed
oxygen image in the green channel and 50% of the perfusion map in the blue channel. In order to visualize the vessels better, we present
another version of the co-registration result as in (b). The heat map was composed of 100% of transformed photo image in the red channel, 50%
of transformed oxygen image in green channel, and 50% of changed perfusion map in the blue channel, where the vascular index map was
inverted and only the information within the foreground region was kept.

Oxygen exists in biological tissue in multiple forms such as hemoglobin or myoglobin bound oxygen, dissolved oxygen, and reactive oxygen
species. Oxygen transport plays a critical role in maintaining tissue viability and normal metabolic processes %, Acute mild to moderate
hypoxia will initiate metabolic adaptation, vascular regulation, and angiogenic responses 4 Extreme hypoxia and anoxia will lead to insufficient
angiogenesis and cell death. The imbalance between limited oxygen supply and increased oxygen demand is one of major causative factors
for many disorders such as chronic wounds ®. In the case of ischemic wounds, oxygen supply is limited by lack of perfusion and cannot meet
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the metabolic need of the healing process and compromising respiratory burst function aimed at fighting infection. Simultaneous assessment of
cutaneous tissue oxygenation and vascular function has clinical significance in chronic wound management.

The hyperspectral imaging technique estimates cutaneous tissue oxygenation by illuminating tissue and detect tissue reflectance at different
wavelengths € One major advantage of hyperspectral imaging is non-invasive and non-contact detection of tissue functional properties.
However, the oxygen measurement reliability for many hyperspectral imaging systems is affected by skin color and other background absorption
variations. Wide gap second derivative spectroscopy was developed previously for tissue oxygenation measurement with minimal effect of
scattering and skin pigmentation T we applied the principle of the second derivative spectroscopy to multispectral imaging and demonstrated the
consistent measurement of cutaneous tissue oxygenation independent with the simulated skin color changes.

Tissue perfusion was previously studied by measuring tissue thermal diffusivity A single hood method was developed to introduce thermal
stimulation and image tissue dynamic responses in order to estimate the skin tissue thermal inertia distribution 8, Experiments on human
forearm skin subjected to arterial cuff occlusion demonstrated linear relationship between thermal inertia and blood perfusion measured by

a laser Doppler imager before and during blood flow occlusion & A lumped bioheat model was also used to estimate the finger tip vascular
reactivity during venous occlusion plethysmography °. Despite the above efforts, quantifying skin blood perfusion from skin temperature
measurements is challenging because of the lack of sensitivity, the dependence on subcutaneous fat thickness, and other contributing factors
such as vasoconstriction, vasodilation, and motion artifacts 107 In this protocol, we used an infrared camera to capture tissue temperature
dynamics in response to a thermal stimulation at room temperature. The thermal stimulation was selected so that the effect of vasoconstriction
and vasodilation was minimized. Further modeling and measurement efforts are necessary in order to delineate a reliable quantitative correlation
between the vascular function index and the skin tissue perfusion.

In #3, we used the affine transformation for the co-registration tasks. However, given that the two cameras are positioned with different angles in
the 3D space, it is potentially more accurate to apply a transformation related to the 3D transformation between the two cameras. Currently we
are exploring in that direction which involve extrinsic calibration of the cameras in 3D space using epipolar geometry.
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