Skip to main content
. 2011 May 18;1:6. doi: 10.1186/2191-0855-1-6

Table 4.

Thermal properties of PHA containing 3H4MV synthesized by the mutant 1F2 using leucine as a 3H4MV precursor, P(3HB-co-3HV), and P(3HB-co-3HHx)

PHA composition a Thermal property Molecular weight



Polymer Leucine (g/L) 3HV (mol%) 3H4MV (mol%) 3HHx (mol%) Total b (mol%) Tm (°C) Tg (°C) ΔHm (J/g) Mn (×103) Mw/Mn
P(3HB-co-3HV-co-3H4MV)c 0 1.6 0.8 0 2.4 146, 159 3 42 250 1.9
P(3HB-co-3HV-co-3H4MV)c 5 2.3 1.0 0 3.3 142, 154 3 40 251 1.8
P(3HB-co-3HV-co-3H4MV)c 10 1.2 3.1 0 4.3 137, 151 3 42 98 1.6
P(3HB) d - 0 0 0 0 172 4 77 224 2.1
P(3HB-co-3HV) e - 8 0 0 8 170 - 70 - -
P(3HB-co-3HHx) f - 0 0 5 5 151 0 69 100 1.9

Mn, number-average molecular weight; Mw, weight-average molecular weight; Mw/Mn; polydispersity index; Tm, melting temperature; Tg, glass-transition temperature; ΔHm, enthalpy of fusion.

a PHA compositions of purified copolymer samples were determined by GC. Copolymer compositions other than 3HB are shown.

b 3HV plus 3H4MV plus 3HHx fraction.

c PHA synthesized by mutant 1F2 from fructose (20 g/L) and leucine (0, 5, 10 g/L).

d P(3HB) homopolymer synthesized by R. eutropha H16.

e (Scandola et al. 1992).

f (Doi et al. 1995).