Role of von Willebrand factor in the haemostasis
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von Willebrand factor (VWF) is an adhesive and
multimeric glycoprotein that found its historical origin
in 1924, when the Finnish physician Erik von Willebrand
first reported a family with a serious hereditary bleeding
affecting consanguineous families'. The proband was a
five years old girl with severe bleeding since birth. Three
sisters had died before the age of four, one living sister,
aged three, also was severely affected. von Willebrand
had thought that it was a disorder of platelet function
or a vascular defect as a possible cause of the bleeding.

Since the original observations by Erik von
Willebrand, the disease has been extensively studied
and it was shown in the mid 1950s that impaired
haemostasis was because of lack or an abnormality of a
plasmatic factor - the von Willebrand factor - necessary
for normal hemostasis®>.

Molecular biology of von Willebrand factor
The advent of modern molecular techniques led to
the cloning of the VWF gene in 1985 using endothelial
cell cDNA libraries*®. The gene is located on the short
arm of chromosome 12 at the locus 12p13.37 and spans
178 kilobases. The human VWF gene contains 52 exons
and the exon 28 is the largest, its length is 1.4 kb®. The
VWEF gene is transcribed into a 9 kb mRNA which is
translated into a protein of 2813 amino acids with an
estimated M, of 310,000 daltons. Comparison of the
available protein sequence of the plasma VWF
polypeptide subunit with the redicted sequence from
the cDNA established the pre-propolypeptide nature
of VWE. Pre-propolypeptide VWF contains a 22 amino
acids signal peptide, a 741 amino acids pro-polypeptide
and the mature subunit®!°. Cleavage of the 741 amino
acids propolypeptide from the aminoterminus results
in the mature VWF subunit of 2050 amino acids. A
partial, highly homologous, VWF pseudogene,
encompassing exons 23-34 of the functional gene,
resides on chromosome 22!!. Ninety-seven percent
sequence homology with the authentic VWF gene on

chromosome 12 suggests a recent evolutionary origin
of the pseudogene!2. The homologous nature of the
pseudogene may complicate analysis of the VWF gene
when examining genomic DNA.

Analysis of the amino acid sequence shows
extensive repetition which defines four distinct domains
that are repeated from two to four times each. There are
three A-domains, three B-domains, two C-domains and
four D-domains. The A-domains correspond to the
Cysteine-poor region of VWE. The B-domains are small
and contain 25 to 35 amino acid residues, while the
duplicated C-domains contain 116 to 119 residues. The
four D-domains contain 351 to 376 residues present in
four copies. These are arrange in the sequence: D1-D2-
D'-D3-A1-A2-A3-D4-B1-B2-B3-C1-C2-CK. The
protein is remarkably rich in cysteine, which comprises
234 of the 2813 residues in pre-pro-VWE. In the secreted
protein, all cysteine residues appear to be paired in
disulfide bonds. The VWF subunit comprises domains
of which specific functions have been identified. The
D'-D3 domains exhibit a binding site for factor VIII
(FVIII) and for heparin. In addition, the D'-D3 domains
are possible binding sites for P-selectin, which has been
found to anchor newly released ultra-large VWF to the
surface of activated endothelial cells and thus present
the VWF cleavage site to ADAMTS-13, a disintegrin-
like and metalloprotease with thrombospondin type 1
(TSP1) motif'*'*. The A1 domain is the only known
binding site for the platelet receptor glycoprotein (GP)
Iba, and contains additional binding site for heparin,
sulphated glycolipids and the snake venum botrocetin.
Although controversially discussed, the A1 domain
also seems to provide a binding site for collagen.
The A2 domain contains the cleavage site for the
metalloprotease ADAMTS-13. The A3 domain is the
binding site for fibrillar collagen type I and III. The C1
domain which comprises the RGD sequence, is the
binding site for the integrin ollIbf3.

In vivo biosynthesis of VWF is limited to
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endothelial cells and megakaryocytes!> ¢, Endothelial
cells synthesize VWF as a pre-pro-VWE, a signal
peptide, the pro-peptide and the mature VWF subunit.
After synthesis into the endoplasmic reticulum, the
signal peptide is cleaved, and 12 N-linked high-
mannose containing oligosaccharide chains are
added to each VWF molecule. N-linked glycosylation
refers to the linkage of carbohydrate structures to
the terminal amide-group of Asn-residues present in
the motif Asn-XXX-Ser/Thr/Cys, where X is any
amino acid except Pro. Following glycosylation,
dimerisation of pro-VWF occurs through inter-
subunit carboxyl termini disulphide bond formation'’.
This "tail-to-tail" dimerisation function requires only
sequences within the last 150 residues. The carboxyl-
terminal 90 residues comprise the "CK" domain that
is homologous to the "cystine knot" superfamily of
protein. These family members share a tendency to
dimerise, through disulfide bonds. Alignment of the
VWEF "CK" domain with its nearest homologous
shows the cysteine that forms an interchain disulfide
and suggests that Cys2010 of the mature VWF
subunit may contribute to dimerisation of pro-VWF
in the endoplasmic reticulum. This conclusion is
supported by the phenotype of patients with
Cys2010Arg mutations, who cannot form large VWF
multimers'®. In the Golgi apparatus, the N-linked
oligosaccharide chains of VWF are further modified
by a series of glycosidases and glycosyltransferases
to produce complex type carbohydrates. In addition,
10 O-linked oligosaccharide chains are also added to
each monomer. O-linked glycosylation involves the
attachment of N-acetyl-galactosamine moieties to
Serine and Threonine residues, a process that occurs
at a later stage during synthesis. Finally,
multimerisation of pro-VWF dimers takes place in the
post-Golgi involving another round of disulphide
bond formation near the amino-termini of the
subunits. As a result, mature VWF exits in the plasma
as a series of oligomers containing a variable numbers
of subunits, ranging from a minimum of two to a
maximum 40, with the largest multimers having
molecular weights in excess of 20,000 kDa'®.
Additional modifications in the trans-Golgi network
include the proteolytic removal of the large VWF
propeptide and multimer formation follow sulfatation.
The VWF propeptide plays an essential role in the
assembly of multimers. Deletion of the propeptide
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abolished the multimerisation. The propeptide
structure has suggested a possible mechanism for
its function. The D1-D2 domains of the VWF
propeptide contain CXXC sequences, where C is
cysteine residues, that resemble the functional sites
of thiol: disulfide oxidoreductases. Insertion of an
extra glycine into these sequence was compatible with
dimmer formation in the endoplasmic reticulum, but
the dimers were transported to the Golgi and secreted
without forming multimers®.

However, the VWF synthesised within endothelial
cells is either directly released into the plasma through
a constitutive secretory pathway, or tubulised and
stored into organelles known as Weibel-Palade bodies
(WPBs), rod-shaped organelles unique to endothelial
cells. VWF is not only stored in WPBs but it also
drives the formation of these vesicles. Although the
expression of VWF is necessary, it is not sufficient to
drive the formation of WPBs. Expression of VWF in
some cell lines, including COS (monkey kidney cells)
does not result in the formation of pseudo-WPBs. And
the porcine aortic endothelial cells lack WPBs
although they do express VWF. The tubular storage
is supposed to compact VWF by 100-fold and
determine the unique shape of WPBs. The elongated
shape of WPBs may be essential to the physiological
function of VWF because the haemostatic function
of this protein relies on its storage format as highly
compacted tubules?®. The twisted tubular striations
observed by tomographic analysis indicate these
tubules may be assembled by a "spring-loading
mechanism". Upon exocytosis, it allows a rapid
unfolding of VWF tubules into ultralong strings (up
to 100 um) docking on the endothelial cells to adhere
the platelets?!. It is generally assumed that VWF stored
within WPBs is composed of the largest multimeric
species!”?2, ultra-large VWEF, usually not observed in
the blood of normal individuals?’. In response to
several agonists of physiological relevance, such as
histamine, oestrogens, thrombin and fibrin, regulated
secretion of stored VWF from endothelial cells
occurs**. VWF multimers and the VWF propeptide
are secreted together in 1:1 stoichiometric amounts,
but subsequently have different fates. After secretion,
the propeptide dissociates from VWF multimers and
circulates independently as a non-covalent homodimer
with a very short half life of ~2 hours. The plasma
level of VWF propeptide is ~1 ug/mL. In contrast,



VWF multimers are cleared more slowly with a half
life of ~12 hours, and the plasma concentration
averages ~10 ug/mL.

The second storage site for VWF is within the
platelet a-granules, which may contain as much as
20% of the total VWF present in blood. The VWF of
platelet o-granules characteristically also consists of
the ultra-large VWF multimers?®. The release platelet
VWF from o-granules can be triggered by a variety of
different agonists, including adenosine diphosphate
(ADP), collagen and thrombin and this ensures ultra-
large VWF multimers availability at site of vascular

injury.

VWF functions

VWEF is an adhesive plasma glycoprotein which
performs its haemostatic functions through binding to
FVIII, to platelets surface glycoproteins, and to
constituents of connective tissue. VWF acts as a
stabilizer of FVIII in the circulation. This is obtained
by the formation of a non-covalently bound
VWF-FVIII complex that protects FVIII from
degradation by activated protein C, and localises FVIII
to sites of platelet plug and subsequent clot
formation?%2?’. The FVIII binding site on VWF is
within the amino-terminal 272 amino acid residues
of the mature subunit. Amino acid residues in the
FVIII protein involved in the binding of VWF are
located in the segment between residues 1669-1689,
and optimal binding requires sulfatation of Tyr1680.
When FVIIl is activated during blood coagulation,
thrombin cleaves it after Arg1689. This cleavage
destroys the VWF binding site and release FVIIla.
In addition, VWF blocks the interaction of FVIII with
lipoprotein-related receptors and thereby increases the
half life of FVIII in the circulation. VWF for FVIII
has an important protective role both under normal
physiological conditions and in patients with
haemophilia!®?%. In haemophilia patients who have
developed FVIII inhibitors following replacement
therapy, VWF may protect exogenous FVIII from the
binding of inhibitory antibodies?. The major inhibitor
epitopes in FVIII are located in the A2 domain
(residues 373-740) or in the C2 domain (residues
2173-2332) of FVIII. Some epitopes are also located
in the A3 domain. The most controversial risk factor
for the development of inhibitors in haemophilia A
patients comes from the type of the therapeutic FVIII

molecule used. A systematic review on the
epidemiology of inhibitors in haemophilia A
investigated the influence of different FVIII
products, plasma-derived (pd) or recombinant FVIII
(rFVIID)*. Plasma-derived products may vary in purity
and VWF content. Recombinant products produced in
mammalian tissue culture are of high purity and do not
contain VWF multimers. Some studies had claimed a
higher propensity of recombinant products to cause
inhibitor formation, which, however, lack prospective
studies. For example, a recent report documents a
higher success rate using a plasma-derived, VWF
containing product compared with recombinant FVIII
in elimination of inhibitors by immunotolerance®'. It has
been hypothesised that VWF could prevent binding of
inhibitors by masking epitopes on the C2 domain,
probably due to the presence within C2 of overlapping
binding sites for the two ligand or by competition for
processing by antigen-presenting cells*.

VWEF has a central role in primary haemostasis
where it mediates platelet adhesion to damaged
vascular subendothelium and subsequently platelet
aggregation. Following a vascular injury, VWF binds
specifically to fibrillar collagen type I and III.
Binding sites for fibrillar collagen have been
identified within VWF domains A1 and A3, although
mutagenesis studies suggest that the major site in
VWF domain A3 and the minor site in domain A1l
interact with different targets on collagen. Recently
has been reported that the A3 domain is necessary
and sufficient to support binding to fibrillar
collagen type I and III, while A1 domain is involved
in binding to collagen type VI****. Once VWF is
immobilised in subendothelial connective tissue, its
main function is to mediate adhesive interactions of
platelets exposed to rapid blood flow. Two distinct
platelets receptor for VWF, the glycoprotein GPIbo
in the GPIb-IX-V complex and the integrin oIIb33
(GPIIb-IIIa complex) are localised on platelet
membrane. VWF-dependent platelet adhesion
occurs optimally under conditions of high fluid
shear stress, but such conditions are cumbersome
to duplicate in vitro and several more convenient
surrogate assays are commonly used, as a bacterial
glycopeptide antibiotic ristocetin or botrocetin,
protein derived from the viper Bothrops jararaca
that cause platelets agglutination through
mechanism dependent on VWF and GPIbo. Thus, only
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the use of experimental models that approximate the
hemodynamic conditions in the circulation has
elucidated the distinct physiological significance of the
different ligand-receptor interactions that mediate VWF
binding to platelets. The binding of GPIba to the A1
domain of VWF can tether platelets to a surface when
the flow velocity is elevated, such as the high shear
stress (>5,000 s°') found in arterial circulation?’.
Interaction of the platelet Gplb receptor with the A1-
domain of immobilised VWF results in initial adhesion,
characterised by a continuous surface translocation of
the platelets. The process ultimately leads to stable
platelet adhesion by means of interaction of the platelet
collagen receptors GpVI and Gpla/Ila38, activation of
the platelet aIIbB3 receptor complex?, and finally
platelet aggregation.

Plasma VWF exists as a multimers of various sizes,
the largest VWF multimers are usually contained in
storage granules and are not seen in the blood of
normal people. Ultra-large VWF multimers can be
detected in normal plasma only transiently, after
induction of secretion from endothelial cells with the
therapeutic agent I-deamino-3-D-arginine vasopressin
(DDAVP)* or in diseases such as thrombotic
thrombocytopenic purpura (TTP)/haemolytic uraemic
syndrome. Ultra-large VWF multimers are hyperactive
in binding the platelet receptor GPIb-IX-V complex,
which results in spontaneous platelet aggregation®!.
Because of this prothrombotic property, ultra-large
VWEF should be quickly removed from the plasma of
healthy individuals?’. The regulation of plasma VWF
size occurs by specific proteolytic process by the
metalloprotease ADAMTS-13*2. VWF is cleaved within
the A2 domain at its Tyr1605-Met1606 bond and
separated into two smaller species, each presenting a
cleaved subunit at the amino or carboxyl terminal end®.
Recently studies show that arterial fluid shear stress
promotes proteolysis of plasma VWF?!44_ Ultra-large
VWEF has been shown to undergo conformational
changes upon application of hydrodynamic shear
making it exposed to enzymatic cleavage. An elegant
study using force atomic microscopy demonstrated that
VWF undergoes a shear stress-induced structural
transition from a globular state to an extended or
stretched chain conformation exposing individual
globular domains*. Recently, the study of Schneider
and colleagues has shown that shear flow is able to
stretch VWEF, and tensile force exerted on the multimer
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could cause conformational change in the A2 domains
that enables the cleavage of the scissile bond that is
buried in the unsheared state of VWF*¢, More recently,
other authors confirmed these original data by using
different and sophisticated microfluidic devices*’. The
stretching of VWF molecules has been directly
visualised under flow conditions and the appropriate
shear force has been determined to be in the range
between 3,000 and 5,000 s! (>30 dyn/cm?)*. The VWF
conformational changes induced by high shear stress
are of particular relevance, since the different VWF
conformers have a very different efficiency both in
performing the haemostatic functions of the protein and
in favouring its proteolytic processing by the
metalloprotease ADAMTS-13.

Haemostasis depends on the balanced participation
of VWF, and this balance reflects a competition
between the biosynthesis of large VWF multimers and
their degradation by the ADAMTS-13 metalloprotease.
Severe deficiency of ADAMTS-13 activity may cause
thrombotic thrombocytopenic purpura (TTP), a life-
threatening haematological disease associated with
extensive platelet- and VWF-rich thrombus formation.
On the other hand, mutation in the A2 domain may
increase the susceptibility of VWF to cleavage and lead
to von Willebrand Disease (VWD) type 2A, which is
characterised by selective depletion of large VWF
multimers.

The pathophysiologic importance of VWF is not
limited to the phenotypes of VWD and TTP. In fact,
VWEF level also correlates with thrombosis risk and
inversely with bleeding risk within the apparently healthy
population®®. Furthermore, bleeding risk and thrombosis
risk appear to vary continuously and reciprocally across
the normal range of VWF levels, and there is no clear
boundary between a normal and a pathological level
of risk for these adverse events.

Keywords: von Willebrand factor, molecular
biology, haemostasis, platelets adhesion, ADAMTS-13.
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