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Abstract. The development of covariate models within the population modeling program like NONMEM
is generally a time-consuming and non-trivial task. In this study, a fast procedure to approximate the
change in objective function values of covariate–parameter models is presented and evaluated. The
proposed method is a first-order conditional estimation (FOCE)-based linear approximation of the
influence of covariates on the model predictions. Simulated and real datasets were used to compare this
method with the conventional nonlinear mixed effect model using both first-order (FO) and FOCE
approximations. The methods were mainly assessed in terms of difference in objective function values
(ΔOFV) between base and covariate models. The FOCE linearization was superior to the FO
linearization and showed a high degree of concordance with corresponding nonlinear models in ΔOFV.
The linear and nonlinear FOCE models provided similar coefficient estimates and identified the same
covariate–parameter relations as statistically significant or non-significant for the real and simulated
datasets. The time required to fit tesaglitazar and docetaxel datasets with 4 and 15 parameter–covariate
relations using the linearization method was 5.1 and 0.5 min compared with 152 and 34 h, respectively,
with the nonlinear models. The FOCE linearization method allows for a fast estimation of covariate–
parameter relations models with good concordance with the nonlinear models. This allows a more
efficient model building and may allow the utilization of model building techniques that would otherwise
be too time-consuming.
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INTRODUCTION

The aim of covariate modeling is generally to reduce
unexplained parameter variability, improve the predictability
of the models, and/or to increase understanding of the studied
system. The covariates explored as predictors are of many
different types, e.g., demographic factors, laboratory values,
disease characteristics, habits, and concomitant therapy-
related and study-related factors. The identification of
covariate models, i.e., the relationship between the parame-
ters of the models and covariates, within the population
modeling program like NONMEM is a time-consuming and
non-trivial task. Many different approaches exist for building
covariate models, for example automatic screening and
directed implementation based on clinically expected rela-
tions. Regardless of the approach taken, the improvement of
the goodness-of-fit to data, expressed through the change in
the objective function value (OFV) is an important determi-
nant of the relationship.

In order to facilitate the identification of parameter–
covariate relations Maitre et al. (1) suggested a plot of
empirical Bayes estimates of a parameter from a model
without covariates versus covariates. When an individual’s
data are sparse in parameter information, shrinkage toward

the population average parameter will occur (2). This distorts
the covariate–parameter relation and may make it appear
either stronger or weaker than it truly is. The approach does
not handle situations of time-varying covariates as only single
covariate and parameter values per subject are explored.
Mandema et al. (3) presented an automated generalized
additive models (GAM) approach in which the individual
empirical Bayes estimates parameters are regressed against
covariates to identify possible covariate relations which are
then subsequently tested in nonlinear mixed effect models.
However, the GAM approach suffers the same disadvantages
of empirical Bayes estimates versus covariates plot as
mentioned above.

Recognizing the shortcomings of the identification
method based on empirical Bayes estimates, Jonsson and
Karlsson (4) developed a method based on the analysis of the
observed data using a first-order (FO) approximation of the
influence of covariates on parameters. The method showed
promising properties in identifying parameter–covariate rela-
tions. However, this FO linearization method was never
incorporated in software, and soon after its introduction,
shortcomings of the FO approximation for model selection
become evident (5), while in the same studies, the first-order
conditional estimation (FOCE) method, with interaction
when called for, showed good model discrimination proper-
ties when the test statistic was based on the change in
objective function value. In the present work, we present a
method based on FOCE linearization which is an extension of
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the previous FO linearization method. The FOCE lineariza-
tion method is outlined and compared with the corresponding
nonlinear models; the relative merits compared with the FO
linearization method are also investigated.

METHODS

Population Model and Linearization

In a nonlinear mixed effects model framework, it is often
assumed that the data can be described by

yij ¼ F ~pi;~xij;~"ij
� �¼ f ~pi;~xij

� �þ hij ð1Þ

where yij is the ith individual’s jth observation, f p!ij; x
!

ij

� �
is

a model that relates the independent variables x!ij and the
ith individual’s vector of model parameters p!ij to the
observations, and hij is the residual error. Usually, the residual
term hij is modeled as a function of ~"ij � gð~�iÞ , where
hij
��
~"ij¼~0 ¼ 0 , gð~�iÞj~�i¼~0 ¼ 1 , ~"ij is assumed as symmetrically

distributed with the variance–covariance matrix Σ, and ~�i is
assumed as symmetrically distributed with mean 0 and
variance–covariance matrix Ω. Normally, γ depends only on
some elements of ~�i , and often, there is no dependence at all,
i.e., gð~�iÞ � 1 . Common forms are hij ¼ "ij (additive error),
hij ¼ f ð~pi;~xijÞ � "ij (proportional error), or a combination of
the two.

The vector of model parameters ~pi can be modeled as

~pi ¼~p ~�;~�i;~g ~zi; ~�~g
� �� �

ð2Þ

where ~� are the typical values of the parameters in the
population, ~�i describes the inter-individual and inter-
occasion variation of ~� , and ~g is a function of additional
population parameters ~�~g , which are specific to the function~g
, and covariates~zi such as age, gender, and clinical laboratory
measurements. Commonly, the inter-individual variation of
Pki is described using the following models:

additive pki ¼ �k � gkð~zi; ~�gkÞ þ �ki;

proportional pki ¼ �k � gkð~zi; ~�gkÞ � ð1þ �kiÞ;

logit pki ¼ ln
�k

1� �k

� �
þ gkð~zi; ~�gkÞ þ �ki;

exponential pki ¼ �k � gkð~zi; ~�gkÞ � e�ki

ð3Þ

In the above examples, the same indexing is used for p
and η, illustrating the common situation that the elements of
~� are unique to their respective parameters, but this
assumption is not required for the proposed method. The
covariate functions are defined so that the value of pki will be
the same as if no covariate effects are included at all when the
effect parameters ~�gk are 0, or when the covariates ~zi are
equal to that of the typical individual. Specifically, this means
that gkð~zi; ~�gkÞ

���
~�gk¼~0

¼ gkð~zi; ~�gk Þ
���
~zi¼~ztyp

¼ 1 for covariate

functions which are multiplicative with respect to pk, as with
additive, proportional, or exponential models for inter-individual
variation, and gkð~zi; ~�gkÞ

���
~�gk¼~0

¼ gkð~zi; ~�gk Þ
���
~zi¼~ztyp

¼ 0 for

covariate functions which are additive with respect to pk, as with
the logit model.

The FO and FOCE algorithms of NONMEM use a first-
order Taylor expansion of F around~"ij ¼~0 and ~� ¼~b� , where
~b� ¼~0 with the FO method and ~b� ¼~e� , where ~e� are the
empirical Bayes estimates of ~� , when the FOCE method is
used. In NONMEM, F is first linearized around ~"ij ¼~0 :

yij � F j~"ij¼~0 þ
Xt
v¼1

@F
@"ijv

����
~"ij¼~0

� "ijv � 0
� �

¼ f ~pi;~xij
� �þXt

v¼1

@hij
@"ijv

����
~"ij¼~0

� "ijv ð4Þ

In the FO and FOCE algorithms, Eq. 4 is then linearized
around ~� ¼~b� . In the method proposed in this work, Eq. 4 is
linearized both around ~� ¼~b� and ~gð~zi; ~�~gÞ ¼~bgi in the
following way:

yij � f ~pi;~xij
� ���

Q0
þ
Xm
l¼1
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����
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ð5Þ
where Q0 ¼ f~"ij ¼~0;~� ¼~b�;~gi ¼~bgig ; m is the number of
elements in ~�i ; n is the number of elements in ~pi ; and
f ð~pi;~xijÞ

��
Q0

is the model prediction based on ~b� , ~� , and ~bgi .
Equation 5 reduces to the linearization used in the FO and
FOCE algorithms if ~g�i is set to ~bgi , i.e., there is no
linearization around ~bgi .

Only the parameters marked with an asterisk in Eq. 5 are
not known after the minimization or single-point evaluation
from the original nonlinear model. Partial derivatives with
respect to ηli and εijv are outputs by NONMEM, and formulas
for the partial derivatives with respect to gki can be derived
from the expressions for ~pki and the error model using the
chain rule as follows:

@f
@gki

¼ @f
@pki

� @pki
@gki

¼ @f
@�ki

� @pki
@�ki

� ��1
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ð6Þ
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where the expressions for @pki

@�ki

� ��1
� @pki

@gki
are easily derived

using Eq. 3. In Eqs. 6 and 7, it is assumed that each element
of ~�i affects at most one element of ~pi . Without this
assumption, the derivation strategy remains the same, but the
expressions will include sums over k and l and require solving
a linear system of equations (not shown). In this work, we
have only tested models where the assumption holds.
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It is necessary in the proposed method that all parame-
terizations of the covariate function fulfill the requirement
that gkð~zi; ~�gkÞ has no effect on pki for the typical individual
because �

!
are fixed in the linearized Eq. 5.

For covariate functions which are additive or multi-
plicative with respect to pk, the covariate functions gkð~zi; ~�gk Þ
are parameterized as Eqs. 8 or 9, respectively.

gkð~zi; ~�gkÞ ¼
Xq
r¼1

cirðzir; �gk;rÞ ð8Þ

gkð~zi; ~�gkÞ ¼
Yq
r¼1

cirðzir; �gk;rÞ ð9Þ

where zir is the ith individual’s covariate value. Examples of
cirðzir; �gk ;rÞ for continuous covariate parameterizations are:

linear cir ¼ lþ �gk;r � ðzir �medianðzrÞÞ

piece� wise linear cir ¼
lþ �gk ;r1 � ðzir �medianðzrÞÞ if zir � medianðzrÞ
lþ �gk ;r2 � ðzir �medianðzrÞÞ if zir > medianðzrÞ

(
ð10Þ

where λ is 0 for gk which are additive and 1 for multiplicative
gk, and �gk ;r is estimated in Eq. 5 and is a measure of the
change in parameter value per unit change in the covariate.
For multiplicative gk, the

exponential cir ¼ e�gk ;r�ðzir�medianðzrÞÞ

power cir ¼ zir=medianðzrÞð Þ�gk ;r
ð11Þ

parameterizations can also be used.
For categorical covariates with levels a and b, cir is

parameterized as:

cir ¼
lþ �gk ;r � fa if zir ¼ b

lþ �gk ;r � ðfa � 1Þ if zir ¼ a

(
ð12Þ

where fa is the fraction of individual with a as the value of the
covariate. The centering method in Eq. 12 requires that
categorical covariates are bivariate.

The two steps involved in the current method are the
development of a linearized base model and the addition of
covariates to the linearized base model. The linearized base
model is developed by extracting PRED (FO), IPRED
(FOCE), and first partial derivatives of the individual
predictions with respect to etas from the conventional non-
linear mixed effect base model (Fig. 1, left side). In the next
step, the covariates are added to the linearized base model. If
desired, the base model can also include pre-selected
covariates.

The linearized and nonlinear base models under FO and
FOCE approximations were fit to the observed data. This
step was performed in order to assure that linearization is
correctly performed and the results are the same as the
nonlinear base model. Also, the linearized covariate and
nonlinear covariate models were fit to the observed data
using both FO and FOCE approximations. The schematic
representation of the method and comparisons is shown in
Fig. 1. An example of a NONMEM model file for univariate
testing is shown in Appendix 1. The calculations were
performed in NONMEM (version 7) (6) running on Linux
cluster with CentOS 5.5×86 operating system and gfortran,
version 4.5.0, compiler from GCC.

Datasets

Both the simulated and real datasets were used to
compare the FO and FOCE linearization methods with the
corresponding nonlinear method.

Simulated Dataset

In order to test the sensitivity of the method to the
quality of the dataset, both rich and sparse sampling
techniques were employed. The simulated continuous cova-
riate was tested for inclusion in both the linear and nonlinear
models for the 100 datasets for each condition.

1. Rich sampling: A one-compartment IV bolus model
was used to simulate the datasets of 100 individuals
with five samples per individual. The samples were
collected at 2, 4, 6, 8, and 10 h post-dose. The mean
(inter-individual variability) CL and V were 30 L/h
(30% CV) and 100 L (30% CV), respectively, without
any covariate parameter relation. One hundred data-
sets were simulated using these conditions, and in
parallel, a normally distributed covariate (COV1),
unrelated to the pharmacokinetic data, was simulated.
The mean and CV of COV1 was set to 80 and 20%,
respectively.

2. Sparse sampling: A one-compartment IV bolus model
was used to simulate the datasets of 50 individuals with
two samples (1 and 10 h post-dose) and 50 individuals
with one sample (50% 1 h post-dose and remaining
10 h post-dose). Simulations were performed as in the
example above.

3. Docetaxel dataset: The structural model describing
docetaxel-induced myelosuppression as reported in (7)
was used for simulation. Briefly, the model consists of a
compartment representing stem cells and progenitor
cells, three transit compartments with maturing cells,
and a compartment representing circulating neutro-
phils. A negative feedback between circulating neutro-
phils and the proliferation rate was included in the
model. The true model comprises three different
univariate scenarios, namely: (a) effect of α1-acid
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glycoprotein (AAG) on baseline neutrophil concen-
trations (NEUt0); (b) effect of age on NEUt0; and (c)
effect of previous chemotherapy (PC) on SLOPE. The
following fixed effects parameter estimates were used
for simulation: 5.20×109 cells/L (NEUt0); 84.1 h (mean
transition time, MTT); 0.144 (γ); 14.6 L/μmol
(SLOPE); and 0.4710, 0.004, and 0.216 (coefficients
for AAG, age, and PC, respectively). A log-normal
distribution was assumed for inter-individual variability
(η, IIV).The residual variability (ε) was 42%
(proportional error). The IIVs (CV%) for NEUt0,
MTT, γ, and SLOPE were 28%, 14%, 15%, and 45%,
respectively. All random effects variables (η and ε)
were assumed to be symmetrically distributed with zero
mean and variance ω2 or σ2, respectively. Since the
model is computationally intensive, only ten datasets
(n=10) were simulated for each scenario using these
conditions (FOCE approximation) and the design of
the original reported study (7).

Real Dataset

In the current work, the pharmacokinetic structural
model was adopted from the literature and only the covariate
models were explored.

1. Phenobarbital (8): The dataset contains 155 observa-
tions from 59 subjects ranging from one to six samples
per subject. The structural model describing the data
was a one-compartment model with IIV on both (CL)
and volume of distribution (V). Both weight and
APGAR score were treated as continuous covariates.
The covariates were tested on CL and V.

2. Moxonidine (9): The dataset contains 1,022 observa-
tions from 74 patients. The base model describing the
data was a one-compartment model parameterized in
CL, V, and Ka with IIV and inter-occasion variability
(IOV) on CL, V, and Ka. Four dichotomous covariates
including concomitant medications (digoxin, diuretic,
and ace inhibitors), sex, and one continuous covariate
(age) was considered in this study. The covariates were
tested on CL and V. Also, the base model considered in
this analysis already had creatinine clearance on CL
and weight on V. The other remaining covariates were
added to it using both the linear and nonlinear FO and
FOCE methods.

3. Pefloxacin (3,10,11): The dataset contains 337 obser-
vations (plasma concentrations) from 74 critically ill

patients obtained after multiple IV infusions of
pefloxacin. The plasma samples were withdrawn at
three different occasions ranging from 2.5 to 14 days.
A one-compartment model with IIV and IOV on CL
and V was used to describe the data. Weight, age,
creatinine clearance bilirubin (millimoles per liter),
and systolic blood pressure were treated as continu-
ous whereas sex and center were treated as dichot-
omous covariates. All the covariates were tested on
CL and V.

4. Dofetilide (12): The dataset comprises 9,548 observa-
tions from 1,438 patients. A total of 43 covariates
including demographics, concomitant medications, bio-
chemical markers, and clinical status were tested on
CL. The model describing the data was a one-compart-
ment model with first-order absorption with IIVon CL,
V, and Ka.

5. Docetaxel (13): The dataset contains 3,553 neutrophil
observations from 601 patients. Two continuous (age
and AAG) and three dichotomous covariates (per-
formance status (PERF), PC, and sex) were tested on
NEUt0, MTT, and SLOPE. The model consists of five
compartments in series: a compartment representing
proliferative cells, three compartments representing
maturation, and a compartment representing circu-
lating neutrophils. The transfer between compart-
ments is first-order. Docetaxel acts nonlinearly on
the proliferative cells. A negative feedback between
circulating neutrophils and the proliferation rate is
included in the model. Further details of the phar-
macokinetic–pharmacodynamic models are described
elsewhere (7).

6. Tesaglitazar(14): The population pharmacokinetic–
pharmacodynamic (PK/PD) model relating tesagli-
tazar exposure, fasting plasma glucose (FPG),
hemoglobin (Hb), and glycosylated hemoglobin
(HbA1c) overtime in patients with type 2 diabetes
mellitus was used for covariate analysis. The dataset
contains 4,035, 3,115 and 1,548 observations for
FPG, Hb, and HbA1c, respectively from 412
patients. The model describes the life span of red
blood cells through a transit compartment model.
The impact of drug treatment on FPG is charac-
terized through an indirect response model, and
FPG influences the glycosylation rate of Hb in a
nonlinear manner. The effect of sex was tested on
EC50FPG and rate constant for the release of RBCs

Fig. 1. Schematic representation of the steps involved in the linearization approach and
comparison with nonlinear models for the inclusion of a covariate
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(KinRBC), whereas the effect of sex and age was
tested on EC50 dilution.

Model Comparisons

For both FO and FOCE linearizations, the covariate
models were compared with the conventional nonlinear
models in terms of difference in objective function values
(ΔOFV). The covariate screening was performed using a
univariate search. The ΔOFV between two nested models
is approximately χ2-distributed, and the critical ΔOFV for
α=0.05 at 1 degree of freedom is 3.84. The ΔOFV between
the covariate and base models for both the linear and
nonlinear models are calculated and are represented
graphically by a plot of linear ΔOFV (covariate–base)
versus nonlinear ΔOFV (covariate–base).

In the current work, the performance of the linearization
models to the nonlinear mixed effect models with respect to
the importance of covariate–parameter relations is compared
based on the similarity of ΔOFV. Additionally, as an
illustration, it was compared whether the significance of the
covariate–parameter relations based on the likelihood ratio
test (p<0.05) would differ if based on the linear or nonlinear
model. In this comparison, the nonlinear models are treated
as providing the correct answer, and the outcome of the
comparison is referred to as “true” if the linear models
provide the same result as the nonlinear model and “false”
otherwise. Outcome is “statistically significant” if the cova-
riate is significant and “not statistically significant” otherwise.

RESULTS

Simulated Dataset

For both rich and sparse one-compartment data, excellent
agreement was obtained between the linearized FOCE and
nonlinear models as assessed byΔOFV’s. In the case of rich data
and FOCE, the non-statistically significant relations identified by
the nonlinear and linear methods were 96% and 94%, respec-
tively, whereas for sparse data, the non-statistically significant
relation identified by both the linearized and nonlinear methods

was 95%. A plot of linearized ΔOFV (covariate–base) versus
nonlinearΔOFV (covariate–base) is shown in Fig. 2. TheΔOFV
(covariate–base) between the linear and nonlinear models are
very similar for the simulated docetaxel dataset (Fig. 3).

Comparison of Covariate Coefficient from Linear
and Nonlinear Models

The three different simulated true models (docetaxel
dataset) reflect strong, intermediate, and weak covariate
effect scenarios. The effect of AAG and age on NEUt0 and
PC on SLOPE are examples of strong, weak, and intermedi-
ate effects, respectively. The true coefficients for AAG, PC,
and age are 0.471, 0.216 and, 0.004, respectively. The mean ±
SD coefficients for AAG, PC, and age from the nonlinear
models are 0.480±0.046, 0.216±0.037, and 0.004±0.001,
respectively, whereas for the linear models in the same order
are 0.422±0.018, 0.191±0.030, and 0.004±0.001. The mean
coefficients and the corresponding drop in ΔOFV (Fig. 3) are
very similar for the linear and nonlinear models, suggesting
similar magnitude of covariate effect.

Real Dataset

A brief summary of the statistically significant (α=0.05,
df=1) covariate identified by a univariate search using differ-
ent methods for real datasets is included in Table I. In all the
investigated real datasets, the FOCE linearization performs
better than the FO linearization (Fig. 4, filled circles (FOCE)
versus open triangles (FO)). For all the covariate–parameter
relations (phenobarbital dataset), a good (FO) or excellent
(FOCE) agreement was obtained between the linear and
nonlinear models, except for the effect of weight on V
(ΔOFV >60) as shown in Fig. 4. In the case of the
moxonidine dataset, none of the covariates were identified
as statistically significant by FOCE approximation (linear and
nonlinear methods). Excellent agreement was obtained
between the linearized and nonlinear methods (FOCE) for
moxonidine, pefloxacin, dofetilide, docetaxel, and tesaglitazar
datasets (Fig. 4)

Effect of Covariate Parameterization

In all of the above examples, the covariates were linear
centered. In order to demonstrate that the FOCE linearization
can also be used for other covariate parameterizations, the
moxonidine dataset was used as an example. The effect of age
andweight (WT)were tested onCL andV, whereas the effect of
CLCR was tested on CL. The univariate screening was
performed using both power and exponential parameterizations
(Eq. 11). The ΔOFV’s (covariate–base) between the linear and
nonlinear models are very similar for both power and exponen-
tial parameterizations using the FOCE method (Fig. 5).

DISCUSSION

The proposed FOCE approximation for the addition of
covariates provides essentially the same information regard-
ing improvement in goodness of fit and covariate coefficients
as the corresponding conventional nonlinear models. The
OFV as the main measure of goodness of fit is most often

Fig. 2. Correlation in ΔOFV (covariate model–base model) between
the nonlinear models and linearized models (FOCE) for 100 datasets.
The filled circles (rich) and open circles (sparse) represent ΔOFV of
the linear model in FOCE versus the nonlinear model in FOCE

468 Khandelwal et al.



used in the likelihood ratio test as a component in covariate
model selection. The FOCE linearization is superior in
performance to the corresponding FO approximation, but
computationally as efficient with similar run times between
the FO and FOCE linearizations. The method saves time
because it does not depend on the complexity of the
structural model and only depends on the number of
covariates, the number of parameter–covariate relationships,
and the size of the data. On the other hand, the run times for
the nonlinear mixed effect models (conventional method) will
also depend on the complexity of the structural model. This is
exemplified by the time required to fit the tesaglitazar dataset
with four parameter–covariate relationships (univariate). The
time required to fit all the models with the current method
(FOCE linearization) was 5.1 min compared with 151.6 h with
the conventional method.

The approximation will be less accurate for strong
covariate relations; for example, in the case of the pheno-
barbital data, the difference in OFV (ΔOFV) between the
covariate (effect of weight on V) and the base model for
nonlinear models is −96.33, whereas ΔOFV for the corre-
sponding linearized model is −71.87. However, both relations
are clearly significant and their importance will be identified
in either case. It is possible that this difference in strong
effects could be reduced by employing a second-order Taylor
expansion around random effects. However, for the reason
given, we have not prioritized the development of such a
refinement as the FOCE approximation is sufficiently accu-
rate for weaker covariate relationships. This is important
since the outcomes of the hypothesis tests for relations that
are close to the statistical significance limit is then likely to be
the same for the nonlinear and linearized models.

Fig. 3. Simulated docetaxel dataset: The vertical and horizontal axes in each panel represent ΔOFV (covariate model–base
model) between the nonlinear models and linearized models (FOCE), respectively, for ten datasets. The filled circles
represent ΔOFV of the linear model in FOCE versus the nonlinear model in FOCE. The left, center, and right panels
represent the effect of AAG on NEUt0, effect of age on NEUt0, and effect of PC on SLOPE, respectively

Table I. Summary of Statistically Significant (α=0.05) Covariate–Parameter Relations Identified By Different Methods

Datasets

FO FOCE

Nonlinear mixed
effect models Linearized

Nonlinear mixed
effect models Linearized

Phenobarbital Weight on CL and V Weight on CL and V Weight on CL and V Weight on CL and V
Moxonidine ACE and Age on CL. ACE on CL. None None.
Pefloxacin Bilirubin, creatinine

clearance, sex, and
weight on CL and V; age,
center, and systolic blood
pressure on V

Bilirubin, center, creatinine
clearance and sex on
both CL and V; age on
CL and weight on V

Bilirubin, center, creatinine
clearance and sex on
both CL and V; age on
CL and weight on V

Bilirubin, center, creatinine
clearance and sex on
both CL and V; age on
CL and weight on V

Dofetilide Age, sex, ACE, loop
diuretics, thiazide
diuretics, alkaline
phosphatase and alanine
transaminase on CL

Age, sex, ACE, loop
diuretics, thiazide
diuretics, alkaline
phosphatase and alanine
transaminase on CL

Age, sex, ACE, loop
diuretics, thiazide
diuretics, alkaline
phosphatase and alanine
transaminase on CL

Age, sex, ACE, loop
diuretics, thiazide
diuretics, alkaline
phosphatase and alanine
transaminase on CL

Docetaxel Age, AAG, PC, PERF and
sex on NEUt0 and
SLOPE, and age
on MTT.

Age, AAG, PC, PERF and
sex on NEUt0 and
SLOPE, and age
on MTT

Age, AAG, PC, PERF and
sex on NEUt0 and
SLOPE, and PCC and
sex on MTT

Age, AAG, PC, PERF and
sex on NEUt0 and
SLOPE, and PCC
and sex on MTT

Tesaglitazar – – Sex and age on EC50

dilution, sex on EC50FPG,
and KinRBC

Sex and age on EC50

dilution, sex on EC50FPG,
and KinRBC
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The advantage of the FOCE linearization compared with
the nonlinear method is that of shorter run times. The
advantages of the linearization compared with graphical and
othermethods based on empirical Bayes estimates are: (a) all the
steps involved in model building are within the same population
modeling program; (b) multiple parameter–covariate relation-
ships can be tested simultaneously; (c) the ΔOFV criterion used
to judge the significance of covariate effect has familiar meaning;
(d) it does not depend on posterior Bayes estimates of individual

parameter values (to a larger extent than the FOCE method
itself); and (e) it is suitable for time-varying covariates.

The derivatives and predictions can be obtained from
the base models with or without covariates. If it is known a
priori that a particular covariate is important, it can be
included in the model before other covariates are tested
using the linearization procedure. In the current study,
phenobarbital, pefloxacin, and docetaxel datasets are
examples of the former, whereas moxonidine, dofetilide,
and tesaglitazar are examples of the latter. The derivatives
and predictions for the moxonidine and dofetilide datasets
are obtained from base models with effect of creatinine
clearance on CL and weight on V.

Although the performance for the FOCE linearization
method in this work was illustrated using single parameter–
covariate relations, we anticipate its use and usefulness in
model building procedures. One such procedure is the
stepwise forward/backward search further discussed below.
Some methods rely on the building of a “full” model,
simultaneously incorporating all covariate–parameter rela-
tions of interest. The method proposed here may be used to
get initial estimates for a full model which can be used as a
final model or as a starting point for Wald’s approximation
method analysis (15). This can be done by including all the
covariates of interest and developing a full linearized model.
The final parameter estimates from the linearized model can
then be used as an initial estimate for the full model. The full
model initial parameter estimates developed in this manner

Fig. 4. Real datasets: each panel represents a dataset. The vertical and horizontal axes in each panel represent ΔOFV
(covariate model–base model) between the nonlinear models and linearized models, respectively. The filled circles represent
ΔOFV of the linear model in FOCE versus the nonlinear model in FOCE; open triangles represent ΔOFV of the linear
model in FO versus the nonlinear model in FO

Fig. 5. Filled and open circles represent ΔOFVof the linear model in
FOCE versus the nonlinear model in FOCE using exponential and
power parameterizations, respectively
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may be more stable and less likely to get trapped in local
minima. In this, as in other uses of the linearization method
during covariate model building, we envisage that at least the
final model will be reanalyzed with the estimation of all
parameters using a nonlinear method.

The FO and FOCE linearization methods are completely
automated and implemented in PsN (Perl-speaks–NONMEM),
version 3.2.6 and later (16). The “-linearize” option of the
stepwise covariate model building (scm) module in PsN can be
used to develop linearized covariate models. The generated
models and script can then be used for manually directed
investigations or in automated univariate search or forward
addition/backward deletion stepwise model building. It should
be noted that the method per se does not depend on a specific p
value or difference in OFV and that it can be used for a fast
evaluation of any covariate model, not only as part of scm. The
“-derivatives_update” option can be used to recalculate deriv-
atives and predictions after the addition (or deletion) of each
covariate–parameter relation. This option will increase compu-
tational time as it requires a re-estimation of model parameters
from the nonlinearmixed effect model after the addition of each
covariate. Alternatively, the same predictions and derivatives
can be used throughout a stepwise model building procedure or
at least until the model resulting from the forward step.

Although not performed in the current study, the
shorter run time allows users to perform computer-inten-
sive tasks such as bootstraps and cross-validation. These
procedures may improve the robustness of covariate model
building, but presently often is performed, if at all, only on
the final model. This in turn can also provide information
about the stability of the covariate model, i.e., predictive
performance at different model sizes and the possible
presence of influential individuals.

CONCLUSIONS

The performance of linearized FOCE was better than the
linearized FO. The linearized models can provide information
on ΔOFV that is very similar to that of nonlinear models, but
with substantially reduced run times. In the current work, the
linearization methods were applied to single parameter–cova-
riate relations. However, the linearization methods have been
implemented in software such that they can be explored or used
in common model building methods.

APPENDIX 1

1. Nonlinear Base Model
$PROBLEM PHENOBARB additive model
$ABBREVIATED COMRES = 2
$INPUT ID TIME AMT WT APGR DV
$DATA PHENO.dta IGNORE = @
$SUBROUTINE ADVAN1 TRANS2
$OMEGA 0.228 ; variance for ETA(1), initial estimate
$OMEGA 0.146 ; variance for ETA(2), initial estimate
$PK
TVCL = THETA(1) ; typical value of CL
TVV = THETA(2)
CL = TVCL*EXP(ETA(1)) ; individual value of CL
V = TVV*EXP(ETA(2)) ; individual value of V
S1 = V

$ERROR
IPRED = F; individual prediction
IRES = DV − F; individual residual
W = THETA(3); additive residual error
IWRES = IRES/W; individual weighed residual
Y = IPRED + W*EPS(1)
$THETA (0,0.005); 1. TVCL (lower-bound initial estimate)
$THETA (0,1.45); 2. TVV (lower-bound initial estimate)
$THETA (1E−16, 5)
$SIGMA 1 FIX ; initial estimate
$ESTIMATION METHOD = 1 MAXEVAL = 9999;
FOCE calculation method
$TABLE ID DV MDV IPRED = OPRED WG11G21
ETA1 ETA2 APGR WT NOPRINT
NOAPPEND ONEHEADER FILE = derivatives_
covariates.dta
2. Linear Base Model
$PROBLEM PHENOBARB additive model
$INPUT ID DV MDV OPR WG11G21 OET1 OET2
APGR WT
$DATA derivatives_covariates.dta IGNORE = @
$PRED
BASE1 = G11*(ETA(1)-OET1)
BASE2 = G21*(ETA(2)-OET2)
IPRED = OPR + BASE1 + BASE2
Y = IPRED + EPS(1)*W
$OMEGA 0.19788; variance for ETA(1), initial estimate
$OMEGA 0.201374; variance for ETA(2), initial estimate
$SIGMA 1; initial estimate
$ESTIMATION METHOD = 0, MAXEVALS = 9999
3. Linearized Base Model with Covariate: Effect of
Weight on Clearance
$PROBLEM PHENOBARB additive model
$INPUT ID DV MDV OPR WG11 G21 OET1 OET2
APGR WT
$DATA derivatives_covariates.dta IGNORE = @
$PRED
CWT1 = THETA(1)*(WT-1.3) ; median(wt) = 1.3
BASE1 = G11*(ETA(1)-OET1)
BASE2 = G21*(ETA(2)-OET2)
BASE3 = G11*CWT1 ; Effect of Weight on CL
IPRED = OPR + BASE1 + BASE2 + BASE3
Y = IPRED + EPS(1)*W
$THETA 0.1;
$OMEGA 0.19788; variance for ETA(1), initial estimate
$OMEGA 0.201374; variance for ETA(2), initial estimate
$SIGMA 1; initial estimate
$ESTIMATION METHOD = 0, MAXEVALS = 9999
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