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Abstract. Mixed-effect Markov chain models have been recently proposed to characterize the time
course of transition probabilities between sleep stages in insomniac patients. The most recent one, based
on multinomial logistic functions, was used as a base to develop a final model combining the strengths of
the existing ones. This final model was validated on placebo data applying also new diagnostic methods
and then used for the inclusion of potential age, gender, and BMI effects. Internal validation was
performed through simplified posterior predictive check (sPPC), visual predictive check (VPC) for
categorical data, and new visual methods based on stochastic simulation and estimation and called visual
estimation check (VEC). External validation mainly relied on the evaluation of the objective function
value and sPPC. Covariate effects were identified through stepwise covariate modeling within
NONMEM VI. New model features were introduced in the model, providing significant sPPC
improvements. Outcomes from VPC, VEC, and external validation were generally very good. Age,
gender, and BMI were found to be statistically significant covariates, but their inclusion did not improve
substantially the model’s predictive performance. In summary, an improved model for sleep internal
architecture has been developed and suitably validated in insomniac patients treated with placebo.
Thereafter, covariate effects have been included into the final model.
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INTRODUCTION

Sleep disorders affect a large portion of the world’s
population—prevalence is thought to be approximately 10%
(1)—and their effects are far-reaching: medical, psychiatric,
personal, and societal spheres are all substantially involved.
Among other things, sleep pathologies affect the quality of life
because of comorbid conditions and impaired interpersonal
relationships (1).

The appropriate diagnosis and treatment of these
disorders still represent great challenges for clinicians and
pharmaceutical companies. The latter have made large
investments in this research field, trying to develop safer
and more effective drugs able to regulate the sleep–wake
alternation. But it is of particular importance that the
therapeutic interventions also maintain the physiological
sleep architecture (2,3), which is a physiologically relevant
description of the sequence of sleep stages (REM, slow-wave
sleep, awake, etc.) coming one after the other during night-
time. An individual sleep pattern can be easily assessed
through polysomnography (4), but its characterization in a
population is problematic: the data to describe are catego-
rical, non-ordered, and with high variability between subjects
and occasions.

Different models have been proposed to characterize the
time course of sleep stages in groups of individuals, in
particular those by Karlsson et al. (5), Kjellsson et al. (6),
and Bizzotto et al. (7): all of them used Markov chains for
describing the time course of transition probabilities between
sleep stages in insomnia patients. Karlsson et al. introduced
Markov chain models as tools for describing sleep data,
included the so-called stage time effects, and parameterized
the models through binary logistic functions. Bizzotto et al.
introduced multinomial logistic functions instead of the
binary ones, without including stage time effect. Kjellsson et
al. described initial sleeplessness as a new sleep stage and
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estimated the knots of the piecewise linear binary logits
instead of fixing them. These are, briefly, the strengths of the
existing models for the time course of sleep stages, which will
be clarified in “MATERIALS AND METHODS.”

The objectives of the present work were therefore to (1)
build on and combine these features, (2) add additional
components, and (3) perform a fuller model validation than
before using partly new diagnostic methods. In the general
scope of improving the proposed models, we also aimed to
reduce the model structure without compromising the model
performance in describing the data in order to include
potential covariate and drug effects.

We internally validated the final model against the original
dataset using two traditional visual diagnostics for categorical
data: the visual predictive check (VPC) (8) and a check closely
related to posterior predictive check, already implemented in
(5) and called here simplified posterior predictive check (sPPC).
In addition, a new diagnostic was introduced in this work to
assess the accuracy and precision of model parameter estimates
through a graphic description of transition probability time
courses: the visual estimation check (VEC). The final Markov
chain model was also externally validated on a new study not
used for the model development.

Finally, we used the proposed model to explore covariate
effects (age, gender, and BMI) on transition probabilities
between sleep stages. In the literature, such analysis was
reported only for some specific aggregated sleep parameters,
e.g., total sleep time, number of arousals, etc. (9–15). A sounder
inspection on the entire sleep architecture was instead not
possible since appropriate models were not available.

MATERIALS AND METHODS

Clinical Studies

Data were obtained from the placebo arms of two
polysomnographic (PSG) multicentre, randomized, double-
blind, placebo-controlled parallel group studies designed to
investigate two new candidate drugs. These two studies (A
and B) followed a similar design, reported in Bizzotto et al.
(7) for study A. The only difference was in the inclusion
criteria for the PSG parameters, described as follows. The
mean sleep parameter values obtained in the two screening
PSGs (with single-blinded placebo administration) had to fall
within the following ranges: mean total sleep time (TST)
between 240 and 390 min in study A and between 240 and
420 min in study B; mean latency to persistent sleep (LPS) of
at least 30 min and not less than 20 min on either night (study
A), and mean LPS of at least 20 min and not less than 15 min

on either night (study B). Mean wake after sleep onset
(WASO) was instead the same in both studies, i.e., 60 min or
more and neither night <45 min.

Age, gender, and body mass index (BMI) were available
for each patient from studies A and B. Demographic statistics
are reported in Electronic Supplementary Material (ESM)
Table I.

Datasets

Data from study A were used to develop the Markov
chain model, internally validate the model, and perform
covariate analysis. Data from study B were used for external
validation only. The two datasets included PSG measure-
ments from the first night of treatment in the placebo arm:
NA=116 subjects in study A and NB=81 subjects in study B.
Each measure reported the sleep stage of a specific subject in
a 30-s time interval, called “epoch.” PSG signals were
recorded for 8 h along the night. The considered sleep stages
were the awake one (AW), stages 1 and 2 of light sleep (ST1
and ST2), deep sleep or slow-wave sleep (SWS), and rapid
eye movement sleep (REM), as reported by Rechtschaffen
and Kales (4).

Base Multinomial Markov Chain Model

In this section, we present the so-called base multinomial
Markov chainmodel whose structure, derived fromBizzotto et al.
(7), was the framework into which the strengths of models
presented by Karlsson et al. (5) and Kjellsson et al. (6) were
incorporated. In the following, we denote sit as the state (i.e., sleep
stage) of a subject i at epoch t (also called “nighttime”), taking
finite values in the set S={AW, ST1, ST2, SWS, REM} of sleep
stages. Moreover, we denote pikmðtÞ ¼ P sit ¼ m j si t�1ð Þ ¼ k

� �
as

the probability of the transition between state k at nighttime t−1
and state m at nighttime t. The parameterization of the model
relies on the introduction ofmultinomial logit functions, gikm rðtÞ ,
defined as the following for all i∈{1,…,N}, k,m, and r∈S, and t∈
{1,…, n}:

gikm rðtÞ ¼ log
pikmðtÞ
pikrðtÞ ð1Þ

In the above definition, the choice of r, called “reference
state,” is a degree of freedom that may be exploited to
improve model performance.

The vectors gik rðtÞ ¼ gikAW rðtÞ; gikST1 rðtÞ; :::; gikREM½
rðtÞ�T , k∈S, i∈{1,…, N}, t∈{1,…, n} completely describe
the model. For each k in S, such vectors are characterized in
an independent sub-model, referred to as “sub-model k”.

Table I. Logits for the Different Sub-models

AW ST1 ST2 SWS REM

0 1: giST1AW(t) 1: giST2AW(t) 1: giSWSAW(t) 1: giREMAW(t)
1: giAWST1(t) 0 2: giST2ST1(t) 2: giSWSST1(t) 2: giREMST1(t)
2: giAWST2(t) 2: giST1ST2(t) 0 3: giSWSST2(t) 3: giREMST2(t)
– – 3: giST2SWS(t) 0 –
3: giAWREM(t) 3: giST1REM(t) 4: giST2REM(t) – 0
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Logit function values for the different individuals are
assumed normally distributed, i.e.,

gik rðtÞ�N gk rðtÞ;4k rðtÞð Þ; ð2Þ
where gk rðtÞ ¼ gkAW rðtÞ; gkST1 rðtÞ; :::; gkREM rðtÞ½ �T is the
vector of typical values of the logit functions and 4k rðtÞ is
a diagonal covariance matrix for inter-individual variability.
The relationship between logits and nighttime is modeled
through piecewise linear functions, making the Markov
chains non-homogeneous.

Model Development

The aim of the model development strategy was to
improve the multinomial Markov chain model previously
proposed (7) in order to facilitate the assessment of covariate
and drug effects and reduce potential model biases. Each step
in model development was tested through sPPC (described
below) and through parsimony criteria, i.e., log-likelihood
ratio test, with hierarchical structures, and Bayesian informa-
tion criterion (BIC), with non-hierarchical structures. Con-
sistency between sub-models was always preferred when
these criteria were suggesting slightly different developments
in the different sub-models.

Model reduction was attempted by decreasing the number
of knots (called “break points”) in the piecewise logit functions
and zeroing some transition probabilities. The removal of model
biases was instead pursued acting on different model features,
first of all the value of the reference state r to be used for each
triple (i, k, t) in Eq. 1. Then, the significance of values different
from zero was tested for each variance–covariance element in
the full 4k rðtÞ . Since internal validation showed some
misspecifications related to SWS (see “RESULTS”), and SWS
epochs often follow or precede ST2 epochs, a new sub-model
was introduced by merging sub-models ST2 and SWS: in this
new sub-model correlation, terms were tested between individ-
ual values of logits defined on ST2 and SWS leaving stages.
Finally, in order to convey a more physiological characterization
of sleep architecture, two model features implemented by
Karlsson et al. (5) and Kjellsson et al. (6) in their Markov chain
models with binary logit functions were introduced in this model
(with multinomial logit functions) and tested on our data. The
main purpose of such features was to relax the first-order
assumptionmade on theMarkov chainmodel. The first feature
is letting the logits depend also on other variables, in
addition to nighttime: both time elapsed since the last
change in sleep stage (“stage time”) and time elapsed in a
sleep stage since the nighttime beginning (the latter never
tested in the literature) were attempted. The second
feature is the differentiation of the model behavior
between initial sleeplessness and rest of nighttime.

The identification of the sub-models was performed
using NONMEM VI (Globomax Corp.) (16).

Internal Validation

Internal validation was implemented according to multi-
ple techniques (using data from study A). Each of them was
based on Monte Carlo simulation of 100 datasets from the

identified and merged sub-models, with number of individuals
as in the original study.

Simplified Posterior Predictive Check

sPPC was performed to assess the model’s capability in
describing and simulating aggregated characteristics of PSG
data in the population. This technique was used during the
whole model development process. Several aggregated
parameters of clinical interest in detecting hypnotics efficacy
were considered (e.g., WASO, TST, LPS) (7). The individual
values of each of these parameters, derived from the
observed data, were compared with the corresponding values
computed from the simulated data. In particular, for any
given parameter, the median of the individual values was
computed in each dataset (observed or simulated); the
relative deviations of medians were calculated as follows:

RelativeDeviation

¼ MedianEndpointSimulated �MedianEndpointObserved

MedianEndpointObserved
:

ð3Þ
For each endpoint, the distribution of relative deviations was
computed and plotted in box–whisker plots using the R
package (R 2.10.0 from the R Development Core, 2009).

Visual Predictive Check

The final model capability in describing the physiological
evolution of the sleep stages and transitions along nighttime
was tested through VPC (17). Two new statistics computed on
the observed data together with the corresponding confidence
interval derived from simulations (the ones used for sPPC)
were plotted against nighttime t. These statistics were the
frequencies of occurrence of each sleep stage (as proposed in
Bergstrand et al. (8) for categorical data):

b�k ¼ SOkPS
k¼0

SOk

; 8k 2 S; ð4Þ

where SOk is the number of occurrences of state k in the
dataset; and the transition frequencies between stages:

f̂km ¼ Nkm

Nk
; 8k 2 S; ð5Þ

where Nkm is the number of transitions from state k to state m
in the dataset and Nk is the number of transitions from state
k. Each statistic was computed for each of ten equal intervals
in the nighttime (48 min each).

Visual Estimation Check

The VEC is a novel approach to assess the robustness
and precision of parameter estimates in terms of transition
probability time course, and it is introduced in this work. It
relies on the combination of stochastic simulation, re-estima-
tion (18,19), and computation. Specifically, all of the 100
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simulated datasets were re-identified using the developed
Markov sub-models. From each of the original and the
simulated datasets, the estimated parameter values were used
for computing the temporal profiles of typical transition
probabilities, and for drawing and computing the temporal
profiles of individual transition probabilities, from which 5th
and 95th percentiles were derived. Consequently, an observed
and 100 simulated profiles were obtained to evaluate three
statistics: the typical transition probabilities and the 5th and
95th percentiles on inter-individual variability. At the end, the
95% confidence intervals for each statistic profile derived
from the simulation were computed and visually compared
with each observed statistic profile.

External Validation

The external validation of the final model was performed
applying the model to data from study B and looking at
objective function values (OFVs), distributions of empirical
Bayes estimates (EBEs), parameter values, and sPPC. OFVand
EBE distributions were computed for dataset B using each of
the five sub-models in two different scenarios: using parameter
values estimated from study A and using parameter values
estimated from study B. sPPC was performed comparing
aggregated parameters computed on study B with the corre-
sponding aggregated parameters computed on 100 datasets
simulated from parameter values estimated on study B.

Covariate Selection

The last objectives of this work were (1) the identifica-
tion of the appropriate structural form of a second-stage
model for defining the covariate effects and (2) the evaluation
of the statistical relevance of the covariate, tested on study A
using stepwise covariate modeling (20). The chosen discrim-
inating p values for covariate effect inclusion (forward search)
and exclusion (backward search) were 0.05 and 0.01, respec-
tively. Linear and piecewise linear additive effects were tested
on each logit at each different nighttime break point. Differ-
ent effects at different break points were allowed.

RESULTS

Model Development

Reference Stage

The exploration of the value of the reference state r to
be used in gikm rðtÞ brought to the choice of the same value
used for k. Accordingly, r disappears from the logit notation;
Eq. 1 can be rewritten as:

gikmðtÞ ¼ log
pikmðtÞ
pikkðtÞ ; ð6Þ

and Eq. 2 becomes

gikðtÞ�N gkðtÞ;4kðtÞð Þ: ð7Þ
Actually, this choice was supported by parsimony consider-
ations (lower objective function values) within sub-models
AW, ST2, SWS, and REM. The reference state for sub-model

ST1 providing the lowest objective function value was ST2,
but little difference derived from using ST1 instead; thus, the
latter state was chosen in order to achieve complete
consistency among sub-models.

Transition Probabilities Fixed to Zero

Transitions for which probability could be fixed to zero
were chosen according to their observed frequency bfkm
(Eq. 5). The chosen frequency threshold was 0.1%. Con-
sequently, the number of logits in each sub-model was
reduced as reported in Table I.

Nighttime Break Points

The number of break points in the piecewise linear logit
functions of nighttime was reduced from 6 to 3, BPA, BPB,
and BPC: BPA and BPC were placed at the nighttime
beginning (epoch 2) and end (epoch 960), respectively, and
BPB was estimated in each sub-model as a new parameter
(with no inter-individual variability), as suggested in (6) for
binary logit functions. Consequently, the individual logits at
the break points can be expressed with the vector:

gikm ¼ gikmA; gikmB; gikmC½ �T

¼ gkmA þ bgikmð Þ; gkmB þ bgikmð Þ; gkmC þ bgikmð Þ½ �T ; ð8Þ

where gkmA; gkmB; gkmC are the typical individual values of
the logit km at times BPA, BPB, and BPC, and bgikm is the
individual deviation from this logit.

Once nighttime break points are introduced, the matrices
4kðtÞ; k 2 S , in Eq. 7, are replaced by 4k , with elements

w2
kmn ¼ cov bgikm;bgiknð Þ;m; n 2 Sk: ð9Þ

Inter-individual Variability

The search for triples (k, m, n) bringing to values of
w2

kmn statistically different from zero in the full 4k brought
to the use of the following variance–covariance matrices:

4AW ¼
w2

AWST1ST1 w2
AWST1ST2 0

w2
AWST2ST1 w2

AWST2ST2 0
0 0 w2

AWREMREM

24 35;
4ST1 ¼

w2
ST1AWAW w2

ST1AWST2 w2
ST1AWREM

w2
ST1ST2AW w2

ST1ST2ST2 w2
ST1ST2REM

w2
ST1REMAW w2

ST1REMST2 w2
ST1REMREM

24 35;

4ST2 ¼
w2

ST2AWAW 0 0 0
0 w2

ST2ST1ST1 0 0
0 0 w2

ST2SWSSWS 0
0 0 0 w2

ST2REMREM

2664
3775;

4SWS ¼
0 0 0
0 w2

SWSST1ST1 0
0 0 w2

SWSST2ST2

24 35;
4REM ¼

w2
REMAWAW 0 0

0 w2
REMST1ST1 0

0 0 w2
REMST2ST2

24 35:

ð10Þ

No significant improvements were achieved by introducing
correlation terms between individual logits in sub-model ST2-
SWS (unification of sub-models ST2 and SWS); therefore,
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these parameters were not included in the final model.

Stage Time Effect

Stage time ts was assumed to modify each logit at its
three nighttime break points according to an additive piece-
wise linear model. Three break points for each sub-model k
were again chosen for the stage time effect, skm tsð Þ : BPsa at ts
=1 epoch (the minimum stage time that can be observed),
BPsc at the maximum observed time elapsed since the last
change in state k, and BPsb considered as a model parameter
constrained in the interval (BPsa, BPsc). Therefore, the
vector of individual logits at the nighttime break points
(Eq. 8) becomes a function of ts:

Gikm tsð Þ ¼ GikmA tsð Þ;GikmB tsð Þ;GikmC tsð Þ½ �T

¼ gkmA þ bgikm þ skm tsð Þð Þ; gkmB þ bgikm þ skm tsð Þð Þ;

gkmC þ bgikm þ skm tsð Þð Þ

26664
37775
T

:

ð11Þ

The introduction of time elapsed in a sleep stage since
nighttime beginning did not produce significant improve-
ments; therefore, this predictor was not included in the final
model.

Initial Sleeplessness

In sub-model AW, the 8-h nighttime was divided into two
parts: the first part ranged from the beginning of nighttime to
t = IS, where IS is the first epoch of the night in which a non-
awake state is observed in a specific subject, and the second
one covered the remaining part of the night. In the second
time interval, the logits were modeled as previously
described, changing only the position of the first nighttime
break point: BPA = IS. During initial sleeplessness, new logits
were modeled, again as piecewise linear functions, but
without inter-individual variability or stage time effects. In
particular, three additional break points were defined: BP1 at
nighttime beginning (epoch 2), BP3 at the maximum IS
observed in the data for the specific sub-model, and the
central BP2 considered as a model parameter. When referring
to initial sleeplessness, the vector in Eq. 11, which defines the
individual logits at the nighttime break points, is thus
expressed as follows:

Gikm tsð Þ ¼ gkm ¼ gkm1; gkm2; gkm3½ �T ; ð12Þ
where gkm1; gkm2; gkm3 are the values of the logit km at times
BP1, BP2, and BP3. The feasibility of using IS as the first
epoch of persistent sleep was also tested, but not supported
by the data.

A final model file, the one for estimating sub-model AW,
is shown in Appendix 1 as an example, and some lines of the
data file used for that control stream are shown in Appendix
2. Condition numbers for the final sub-models were in the
range 6.9–25.8 (they were not available for the base sub-
models (7) since the R matrix, i.e., the inverse Hessian, could
not be computed in those cases).

The estimated parameter values are shown in Table II.
Eight parameters, involved in the computation of logits
defined on ratios close to zero in sub-model AW, had to be

fixed to −10, a value which is close enough to zero in terms of
probability ratios. When these parameters were not consid-
ered fixed, they had high CVs and likelihood minimization by
NONMEM was rarely successful. However, they could not be
discarded because they were involved in limited time
intervals (nighttime or stage time) and the piecewise linear
functions of time needed to be defined in their entire domain.

Transition probability profiles were computed from the
estimated parameters and are shown in Fig. 1. Estimated
stage time effects are shown in Fig. 2.

In each sub-model, an important reduction in OFV was
achieved, with respect to the base model (7) (see the first
three columns of Table III). Most of OFV reduction was due
to the introduction of stage time effect: in cases where
covariance elements and initial sleeplessness differentiation
still had to be introduced, the implementation of stage time
effect produced in the sub-models AW, ST2, SWS, ST1, and
REM reductions of 5,110, 1,275, 874, 88, and 61 points,
respectively. The decrease of OFVs amounted to some tens
when introducing the final reference state for the logits
(Eq. 6), covariance elements for inter-individual variability
(Eq. 10), and initial sleeplessness differentiation for the logits
in sub-model AW. Similar outcomes were obtained using
BIC. It was not possible to evaluate the effect of fixing one
transition probability to zero (in each sub-model, ST2
excluded) with either OFVs or BIC since the few observa-
tions for which transitions assumed impossible actually
happened had to be removed.

Internal Validation

The sPPC outcome for the final model is presented in
Fig. 3 and indicates a good agreement between the simulated
and the observed efficacy endpoints in most cases. Only 1 out
of 23 median aggregated parameters computed from the real
study falls outside the range of median values computed from
the simulated studies. This parameter is the time spent in
SWS (tSWS), which results underpredicted. Other sPPC
plots were produced considering statistics different from
the median (not reported here), and they corroborate the
overall goodness of the model predictive performance in
terms of both typical outcomes and variability extent in the
population.

Figure 4 shows the results of VPC implementation on
transition frequencies, f̂km , and stage frequencies, �̂k . The
plots show a general very good agreement between the
observed and simulated statistics. A slight bias can be
detected on transitions from ST2 to REM, from REM to
ST2, and from REM to REM, only in the very first period
after light off. Simulation-based confidence intervals are
generally narrow. The largest ones are observed for tran-
sitions from AW to AW and to ST1, from SWS to ST2 and to
SWS (especially in the last hours of the night), and from
REM to all sleep stages, only in the first hour.

Figure 5 illustrates the results from VEC performed on
the time course of transition probabilities. In general, a very
good agreement between profiles estimated from raw and
simulated data is shown in these plots, with the exception of
the transitions from REM to ST2 and from REM to REM at
the beginning of the night. Probability confidence intervals on
transitions from AW, SWS, and REM are larger compared
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with the other ones, and they vary according to the amount of
available information (depicted in the last row of Fig. 4).

External Validation

The five final sub-models were successfully identified
using dataset B. The last two columns of Table III show the
estimated OFVs using parameter values estimated from study
A and using parameter values estimated from study B.
Distributions of EBEs in the two scenarios are not shown
here since η-shrinkage (21) was high in most occasions
(>25%).

Final parameter estimates from study B are shown in
ESM Table II. They were used to compute typical
probability profiles along nighttime, at stage time=1
epoch, and at median stage time. These profiles are not
shown here as only few small differences could be found
in comparison with previously computed profiles. When
using dataset B, variance estimates for inter-individual
variability were instead strongly reduced: averages of
variances on the logits were reduced by 75%, 39%,
34%, 24%, and 18% in sub-models SWS, ST1, REM,
AW, and ST2, respectively.

sPPC on median aggregated parameters from the new
study is visualized in Fig. 6. The performance looks very

Fig. 1. Probability profiles for all the transitions between sleep stages. Their computation is done for the median stage times over the nighttime
and the whole patient population
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similar to the one shown in Fig. 3 on data from study A.
WASO, tAW, and tSWS are even slightly better predicted.
The simultaneous comparison with median efficacy endpoints
computed from dataset A (Fig. 6, purple dots) highlights a
reduced predictive performance for the aggregated parame-
ters which are highly variable in the two studies (see tST1,
tSWS, meanAW, meanSWS, and nREM).

Covariate Selection

Stepwise covariate modeling brought to OFV reduc-
tion in all sub-models, SWS excluded, as indicated in the
fourth column of Table III. All of the three analyzed
covariates (age, gender, and BMI) were included, linearly
affecting various model parameters in different night

Fig. 2. Stage time effects estimated in the different sub-models. Exp(stage time effect) is used in order to visualize
multiplicative effects on probabilities ratios instead of additive effects on logits (less intuitive). Median stage times over the
nighttime and the whole patient population are also reported in each plot

Table III. OFVs for the Five Sub-models Identified on Study A or B on Different Scenarios

Sub-models A, Bizzotto et al. A, final model
A, covariate effects
inclusiona

B, parameter
values from A

B, after likelihood
maximization

AW 26,983 21,662 21,605 (7) 11,627 11,434
ST1 24,264 24,086 24,070 (2) 19,752 19,511
ST2 49,984 48,733 48,705 (3) 33,772 33,441
SWS 9,341 8,380 – 5,299 5,214
REM 14,798 14,687 14,668 (2) 8,906 8,811

aThe number of included covariate effects is indicated between parenthesis
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sections. Thus, the vector of individual logits at the
nighttime break points (Eq. 11) becomes a function of

both ts and the covariate values cvti = [agei, genderi, BMIi]
T for

the subject i:

Gikm ts; cvtið Þ ¼ GikmA ts; cvtið Þ;GikmB ts; cvtið Þ;GikmC ts; cvtið Þ½ �T

¼ gkmA þ bgikm þ skm tsð Þ þ ckmA cvtið Þð Þ; gkmB þ bgikm þ skm tsð Þ þ ckmB cvtið Þð Þ; gkmC þ bgikm þ skm tsð Þ þ ckmC cvtið Þð ÞT :
h i

ð13Þ

In the last equation, one has

ckmA cvtið Þ ¼ ckmA ageið Þ þ ckmA genderið Þ þ ckmA BMIið Þ ð14Þ
and

ckmA ageið Þ ¼ akmA � agei � 44ð Þ;
ckmA genderið Þ ¼ 0 if genderi ¼ male;
ckmA genderið Þ ¼ bkmA if genderi ¼ female;

(
ckmA BMIið Þ ¼ dkmA � BMIi � 26:9ð Þ:

ð15Þ

akmA , bkmA , and dkmA are equal to zero if the covariate
effect is not significant; the median values for age and BMI in
the population are 44 and 26.9. During initial sleeplessness,
the expression used in Eq. 13 becomes the following:

Gikm ts; cvtið Þ ¼ Gkm cvtið Þ ¼ Gkm1 cvtið Þ;Gkm2 cvtið Þ;Gkm3 cvtið Þ½ �T

¼ gkm1 þ ckm1 cvtið Þð Þ; gkm2 þ ckm2 cvtið Þð Þ;
gkm3 þ ckm3 cvtið Þð Þ

24 35T

:

ð16Þ
Equations 14 and 15 can be rewritten for break points BPB,
BPC, BP1, BP2, and BP3 similarly.

A visual representation of the selected covariate effects is
provided by Fig. 7, where typical individual probability
profiles are shown for different covariate values. A reduction
in inter-individual variability was generally not achieved. The
application of sPPC to the obtained full model did not show
any relevant improvement in the model performance.

DISCUSSION

This work was performed to (1) develop a Markov chain
model to describe transitions between sleep stages through
multinomial logistic functions and combine the best features
of similar models available in the literature; (2) validate the
new implementation by means of partly new diagnostic
methods; and, finally, (3) analyze the effects of covariates as
age, gender, and BMI on the parameters of the final model.
The model development strategy was aimed to improve the
model’s predictive performance while preserving model
simplicity, in accordance with the principle of parsimony.
The latter was instrumental in developing second-stage
models accounting for covariates and drug effect.

The structure of the final Markov chain model was taken
from Bizzotto et al. (7). The major change adopted during the
model development process was the introduction of stage time

(time elapsed since the last change in sleep stage) as a predictor
of logit values, in addition to nighttime. Its multiplicative effects
on ratios of transition probabilities were found to change greatly
during stage time so that the sensitivity of the logits to stage time
was comparable or even higher than the sensitivity to nighttime.
For this reason, the degrees of freedom in the parameterization
of the relationship between logit functions and nighttime could
be set as equal to the degrees of freedom in the relationship with
stage time (break point numbers in piecewise linear functions of
nighttime lowered from 6 to 3). And, for the same reason, it
would be interesting to test whether the inclusion of inter-
individual variability and covariate effects can significantly
modify the individual profiles of stage time effects, besides the
individual profiles of nighttime effects.

The choice to select the sleep stage recorded at epoch t − 1
as the reference stage in the definition of logits at epoch t
allowed an easy interpretation of plots of stage time effects vs.
stage time: increasing values in the profiles indicate higher
probability to exit from the current sleep stage, and vice versa.
These profiles resulted to be approximately L-shaped in many
cases, meaning that transitions to new states happen with higher
probability in the first minutes than later on. However, high
early transition probabilities may be partially related to sleep
scoring difficulties when sleep stages are changing (5). As
exceptions to the “L-shape rule,” there are transitions which
become likely again (U-shaped) when stage time reaches high
values: this is the case for transitions from ST1 and ST2 to REM,
from SWS to AW, and from REM to ST2.

Since it was shown that median ST1 time (1 epoch only)
anticipates the decline in ST1 time effect and that ST1 is the
stage with a higher probability of transitioning to other stages
during nighttime, it can be claimed that stage 1 sleep is a state of
“fast transition” toward other more stable sleep states (22).
Another way to explain this is thinking that the separation of
the physiological stages of sleep in five states (AW, ST1, ST2,
SWS, and REM) is the discretization of a continuum done with
some degree of grossness. SWS, for example, is already
explicitly used as a state in which the characteristics of stage 3
sleep and stage 4 sleep are aggregated together (4). Similarly,
each of the five labels used for the recorded sleep stages likely
aggregates an interval of different characteristics changing on a
continuous domain. The recorded sleep stages can be thought
of as refractory aggregated states, or as observable discrete
states on the top of a layer of hidden continuous (or at least
more refined) states. A more refined discretization of sleep
states (and of nighttime) would probably make unnecessary the
use of stage time effects (i.e., semi-Markov models). According
to this hypothesis, the degree of aggregation of underlying
more refined states seems lower in ST1 than in other states. The
same can be thought about REM sleep since in this case, stage
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time effect was estimated to be quite flat over stage time. In
fact, the removal of the first-order assumption on our Markov
chain model was less important for ST1 and REM, as confirmed
by the small values of OFV drop in the two sub-models.

Inclusion of stage time effect and of the other features
described in “RESULTS” produced an improvement of model
predictive performance, as shown by simplified posterior
predictive check (sPPC): when comparing the base model (7)
and the final model (presented with this paper) in terms of this
diagnostic technique, a general refinement of the predictive
performance on overall sleep parameters is depicted. The most
significant improvements were obtained on latency to persistent
sleep (LPS), number of transitions to AW (nAW) and to ST1
(nST1), and time spent in ST1 (tST1). The introduction of
specific parameters for initial sleeplessness was particularly
important for the improvement on LPS. Incidentally, initial
sleeplessness can be thought of as a sixth sleep stage (6), which
cannot be observed after the first epoch of sleep occurs (the AW
state, instead, can be seen thereafter).

As part of model development, significant correlations
between logits from a specific sleep stage have also been
investigated: the results highlight that diagonal variance–cova-
riance matrices are not optimal in sub-models where the
probability of staying in a state is not clearly dominating on the
probabilities of transitioning to other states. Moreover, correla-
tions between individual logits of sub-models ST2 and SWSwere
tested since aggregated sleep parameters related to SWS were
predicted with some bias (see sPPC). No improvements were
obtained when including such correlations, but the bias could be
justified as well, as specified later in the next paragraph.

The Markov chain model was internally validated through
three complementary visual diagnostics on categorical data. sPPC
assessed the model’s capability in predicting overall sleep
parameters (usually considered as efficacy endpoints in clinical
studies) close to the observed ones. Visual predictive check
(VPC) focused on the accuracy of sleep description along the
independent variable (nighttime tested here, stage time was not

considered): since data were categorical, stage frequencies and
transition frequencies, and the uncertainty on their prediction,
were considered. Visual estimation check (VEC) was introduced
in this work as a new tool able to validate the capability of
estimating accurate and precise model parameters through a
graphic description of accuracy and precision on transition
probability time courses. The name “visual estimation check”
was chosen because the effect (during nighttime) of possible
weaknesses in the estimation method can be visually checked,
even if not easily distinguished from the effects of potential model
misspecifications; however, the simultaneous use of VPC and
VEC is recommended to overcome this kind of issue. sPPC,VPC,
and VEC showed that the employed model slightly suffers in a
couple of scenarios: statistics with high variability despite similar
sleep patterns were predicted with some bias (see, for example,
the aggregated sleep parameters related to SWS); small amount
of observations for a specific sleep stage determined small bias (if
in the Markov chain departure) or inflated uncertainty in the
VPC and VEC outcomes. Since outcomes from VPC and VEC
were mostly similar, it can be claimed that slight bias and
uncertainty in VEC were mostly due to the imperfection of the
model’s structure rather than the estimation of its parameter
values. Therefore, despite the slight bias just mentioned, the three
diagnostic tools showed an overall good performance of the
developed Markov chain model in describing the data and of the
employed estimation technique. The maximum likelihood esti-
mator, with Laplacian approximation as implemented in NON-
MEMVI, was shown in the literature to suffer in the case of high
η-shrinkage (23). In our case, despite 3 out of 15 values of η-
shrinkage being >25%, it revealed instead to be robust.

The Markov chain model has also been validated on a
dataset (from study B) which was not used in model develop-
ment. The validation dataset included less subjects (81 vs. 116)
whose characteristics were similar to those of the original dataset
(from study A). Ten subjects from study B would have been
excluded from study A according to its inclusion criteria: these
subjects would not have been severe enough since their TST and

Fig. 3. Results from posterior predictive check: relative deviations of median efficacy endpoints in 100 simulated clinical studies from
parameter medians in the real study. Represented parameters are: Latency to persistent sleep (LPS); wake after sleep onset (WASO); total
sleep time (TST), time spent in each stage (tAW, tST1, tST2, tSWS, tREM); time spent in non-REM sleep (tNREM); sleep efficiency in 0–2 h of
bed time (SE1), 2–4 h of bed time (SE2), 4–6 h of bed time (SE3), and 6–8 h of bed time (SE4); mean extension of each stage (meanAW,
meanST1, meanST2, meanSWS, meanREM); and number of transitions to each stage (nAW, nST1, nST2, nSWS, nREM)

454 Bizzotto et al.



Fig. 4. Results from visual predictive check on frequency of transitions (first five rows) and stage frequencies (last row). Note that range of the y-
axis values is larger in plots at positions (4, 3), (4, 4), (6, 1), and (6, 3)
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LPS values were roughly 5 min above and 5 min below,
respectively, compared with the inclusion criteria of study A.
Nevertheless, it was shown in “RESULTS” that the proposed
model could adequately describe also the new data: the
parameters estimated in the two datasets were similar, and the
OFVs differed of maximum 300 when using study B with
parameter estimates from likelihood maximization on study A
or on study B. The new final parameter estimates for the typical
individual were used to compute typical probability profiles along

nighttime (plots not shown). Few typical probabilities of staying
in the different sleep stages were just slightly different compared
with the corresponding probabilities estimated from the original
dataset: (a) transitioning from AW to ST1 was slightly more
likely, at about 1–2 h from light off and short AW stage time; (b)
moving from ST1 to ST2 was less likely during all nighttime; (c)
transitioning from ST2 to AW was more likely, in the last hour
before light on; and (d) moving from SWS to ST2wasmore likely
during all night, at low SWS stage time. The last difference likely

Fig. 5. Results from visual estimation check on transition probabilities. Note that two different scales are used for the y-axis in the different
plots. Note also that dark red areas come from the superimposition of light red and blue confidence intervals (see the typical and 5th and/or 95th
confidence intervals for sub-models AW, SWS, and REM)
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impacts on the lower time spent in SWS (tSWS) and mean
extension of SWS (meanSWS), detected through sPPC.

Age, gender, and BMI were found to be statistically
significant predictors of transition probability profiles during
nighttime in the considered population of insomniac subjects
under placebo. However, the predictive performance of the
model and the explanation of inter-individual variability were
not improved by their inclusion. Each covariate significantly
influenced specific transitions, in specific nighttime intervals;
therefore, the multiple covariate effects could be diluted if
evaluated on aggregated sleep parameters. The choice of the
covariate–parameter relations to include or exclude in the
model was based on p values which need to be interpreted
with caution since multiple comparisons are involved (24).

To our knowledge, this is the first analysis where age, BMI,
and gender are considered potential covariates with respect to
transitions between sleep stages. Moreover, transitions are
considered here in terms of transition probabilities rather than
transition frequencies. In addition, the nature of thismodel allows
understanding in which part of nighttime the effect is significant.
Probability was found to increase with age for transitions to AW
and to decrease for transitions to ST2 and SWS, in the first hours;
it was found to increase for the transition from REM to AW,
during intermediate hours; and it was found to increase for
transitions to AW, in the last hours. These effects are consistent
with previous findings from the literature (9–12), described in
terms of sleep stage percentages, arousal index, sleep efficiency,
total sleep time, and time spent awake after falling asleep.Gender
was found to affect transition probabilities only in the last part of
the night: transitions from AW to ST2 and from REM to AW
appeared more likely in women. In the literature, it has been
reported that females have higher sleep efficiency, higher SWS
percentage, and lower light sleep (ST1 and ST2) percentage (9)
compared with males. Therefore, in this case, linking our findings
with previous ones becomes challenging. Finally, high BMI values
translated into less likely transitions from ST1 to ST2, ST1 to
REM, and ST2 to SWS, in the intermediate night hours, and from

ST2 to REM, in the last hours. These effects are compatible with
lower SWS percentage (13,14), arousal index (9), and sleep
duration (14,15) reported in the literature.

It is important to notice that the covariate analysis was
performed on insomniac subjects treatedwith placebo.Although
the considered covariates did not appear to be relevant in terms
of model predictive performance when including or excluding
their effects, their relevance cannot be excluded in a patient
population with a wider range of severity. In fact, it is likely that
the effect of age, gender, and BMI on sleep architecture is highly
masked by the insomnia severity. Further applications of this
model in different patient populations or healthy subjects are
recommended to better characterize and possibly differentiate
physiological and pathophysiological sleep architecture.

Finally, herein, the proposed approach was applied to data
from a population of insomniac patients treatedwith placebo, but
it can be easily extended to estimate the effect of drug exposure
on the transition probabilities. In this way, the key sleep patterns
differentiating the mechanism of action of different hypnotic
compounds may be identified. As for stage time effect and
covariate effect, drug effect can be added to the definition of the
logits in the model. The detection of the logits and the stage time
and/or nighttime values on which drug effect is significant can be
performed with up-to-date methods for covariate inclusion,
similar to what was done in this work for covariate analysis.

CONCLUSIONS

This work proposed multinomial mixed-effect Markov
chain models as a robust modeling framework for describing
and predicting sleep architecture obtained from PSG. The
model structure has been improved with respect to previous
models, as shown by both internal and external validation
procedures. The set of adopted diagnostics may represent a
useful base for future evaluation of models dealing with
categorical non-ordered data. Age, gender, and body mass

Fig. 6. Results from posterior predictive check on dataset B: median aggregated parameters computed on
dataset B are compared with the corresponding median aggregated parameters computed on 100 datasets
simulated from parameter values estimated on dataset B. Comparison is shown in terms of relative
deviation. Represented parameters are described in Fig. 3 legend. Red dots are depicted for visualizing the
relative deviation of median values computed from study A, from median values computed from study B
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Fig. 7. Covariate effects on the typical individual profiles of some transition probabilities. The computation of probability
values is done for covariate values chosen as follows: in both the male and female populations of study A, the 5th and 95th
percentiles for age and BMI values are computed and used in each of their four combinations. Stage times and length of
initial sleeplessness are chosen as the median values in the whole population. Effects are shown only on the transitions for
which maximum changes in the probability values using the four combinations are >0.01
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index have been found to influence many features of sleep
architecture in insomniac patients. Such influence has been
characterized in a second-stage model including statistically
significant covariate effects.
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APPENDIX 1

NONMEM model file for sub-model AW:
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APPENDIX 2

Some Lines from the Dataset Used with Sub-model AW
(the Whole Dataset Can Be Found as ESM Table II)
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