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Abstract
Background—Recent evidence suggests a genetic component for sudden cardiac death (SCD) in
subjects with coronary artery disease (CAD). We conducted a systematic candidate-gene approach
using haplotype tagging SNPs (htSNPs) to identify genes associated with SCD risk in the context
of CAD.

Methods and Results—We investigated 1,424 htSNPs representing 18 genes with mutations
described in patients with ventricular arrhythmias, in 291 subjects from the Oregon Sudden
Unexpected Death Study (Ore-SUDS). The Ore-SUDS is an ongoing prospective investigation of
SCD in the Portland, OR metropolitan area (pop. 1,000,000). SCD cases were ascertained from
multiple sources and medical records were reviewed to determine the presence of CAD. A total of
36 SNPs were associated with risk of SCD (uncorrected p-values <0.01) in the initial study
sample. These SNPs were subsequently tested for replication in an independent case-control study
sample from the Ore-SUDS (n=688). The association analysis in the replication stage revealed six
SNPs associated with SCD: CASQ2 region (rs17500488; P=0.04, rs3010396; P= 0.007,
rs7366407; P=0.04), NOS1AP (rs12084280; P=0.04, rs10918859; P=0.02) and one SNP located
~26 kb upstream of GPD1L (rs9862154; P= 0.04).

Conclusions—Common variations in or near CASQ2, GPD1L and NOS1AP are associated with
increased risk of SCD in patients with CAD. These findings provide further evidence for overlap
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between the genetic architecture of rare and common forms of SCD, and replication in additional
populations is warranted.
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Introduction
Sudden cardiac arrest leading to sudden cardiac death (SCD) is a major cause of mortality in
the US, accounting for 250,000–300,000 deaths on an annual basis 1. Prediction and
prevention have been recognized as pivotal steps toward improved outcomes 1, particularly
since national rates of survival from sudden cardiac arrest are below 5%. Since the vast
majority of SCD cases (at least 80%) have evidence of associated severe coronary artery
disease 2, the latter phenotype has become the focus of intensive investigation.

Several studies have highlighted the evidence for a clear genetic contribution in the more
common SCD phenotype among patients with coronary artery disease 3–6. We have recently
published results from ongoing genome-wide association studies of SCD, identifying novel
loci associated with either protection from 7, or susceptibility to SCD 8. However, much
needs to be learned regarding the genetic architecture of common, complex forms of SCD9.
On the other hand, due to multiple kindred-based investigations performed in the last two
decades, significant knowledge has accumulated regarding gene defects that cause rare
primary arrhythmia syndromes. Several mutations in multiple genes have been identified in
inherited forms of the long and short QT syndromes 10–14. Brugada syndrome is
characterized by idiopathic ventricular fibrillation and characteristic ECG changes 15–17; and
catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic
disorder manifesting with ventricular tachyarrythmias 18, 19. However, primary arrhythmia
syndromes account for only a small proportion of SCD cases in the general population. We
hypothesized that variations in genes that cause primary arrhythmia syndromes could be
associated with the more common, complex SCD phenotype observed in patients with CAD.
Given that candidate gene-based evaluations can be complementary to genome-wide
association efforts, we conducted a systematic candidate-gene SNP genotyping, case-control
study of SCD in CAD subjects, based on common variations among genes known to cause
primary arrhythmia disorders.

Methods
Clinical diagnosis

The Oregon Sudden Unexpected Death Study (Ore-SUDS) is an ongoing population based
study of SCD in residents of Portland, OR and the surrounding metropolitan area 7,20–25.
SCD was defined as a sudden unexpected pulseless condition of likely cardiac etiology;
survivors of sudden cardiac arrest were included. If the event was unwitnessed, subjects
were required to have been seen living and symptom free within 24 hours of sudden death.
A diagnosis of SCD was assigned following in-house adjudication by three physicians who
evaluated arrest circumstances and all available clinical data. Exclusion criteria for Ore-
SUDS SCD cases were chronic terminal illness, and non-cardiac causes of sudden death
such as pulmonary embolism, cerebrovascular event, traumatic death or drug overdose.

Subject selection
Case subjects in this analysis were individuals with SCD who were white non-Hispanic
adults (age ≥ 18 years) with DNA for analysis. Control subjects were white, non-Hispanic
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individuals with medically documented coronary artery disease, and without prior history of
sudden cardiac arrest or ventricular arrhythmias. They were recruited from individuals
transported by the Emergency Medical Response system for complaints suggestive of
ongoing coronary ischemia, from clinics of participating health systems, or from patients
who had received a coronary angiogram revealing significant CAD. After consent was
obtained, medical records for each potential control subject were reviewed; those with
documented CAD (as defined below) were enrolled.

Documented CAD was defined as ≥ 50% stenosis of a major coronary artery on angiogram
or postmortem examination; history of percutaneous coronary intervention (PCI) or
coronary artery bypass grafting (CABG); physician report of MI; pathologic Q waves on
ECG; or myocardial infarction (MI) history determined by any two of the following three:
ischemic symptoms, ECG changes, or positive troponins/CKMB. All controls had
documented CAD. A total of 346 SCD cases (52%) had documented CAD by autopsy or
medical records. Ninety-four percent of cases had either medically-documented coronary
artery disease (CAD), as defined below, or had presumed CAD based on previous studies
that have reported that the vast majority (85–95%) of subjects with SCD at age ≥ 50 years
have significant coronary disease at autopsy 2,26.

Blood samples were obtained for SCD cases from the first responders during attempted
resuscitation or from the medical examiner, when autopsies were performed. Samples were
obtained from control subjects at the time of their visit to the study site for a blood draw and
ECG. All aspects of this study were approved by the appropriate institutional review boards.

Candidate-Based Genotyping and SNP selection
We performed a custom SNP genotyping assay on the initial study population using a
candidate-gene-based approach with the GoldenGate™ assay (Illumina, Inc., San Diego,
CA). SNPs representing 18 high priority genes were selected for analysis. Genes were
considered to have a high priority if mutations had been described in patients with primary
ventricular arrhythmia syndromes or if these were genes encoding crucial subunits of such
candidate genes. A list of the selected genes is shown in Table 1.

The common genetic variation of each gene was covered by systematic selection of
haplotype tagging SNPs (htSNPs), considering both intronic and exonic variants. SNP
selection was performed in mid 2007 and was performed using the software tagger 27 based
on the HapMap data release #20 / phase II from January 2006 using the NCBI B35 genome
assembly and dbSNP b125 data applying the following criteria: HapMap CEU population,
pairwise tagging only with a cut-off of r2 ≥ 0.8 and a minor allele frequency (MAF) of at
least 10%. To account for genetic variation in genome regions surrounding each gene, up-
and downstream genetic information was included in the tagging procedure. The respective
regions were defined using linkage-disequilibrium (LD) blocks as described elsewhere 28. If
the detected LD-blocks were smaller than 50kb, then at least 50 kb of both up- and
downstream information was tagged. Due to the potentially higher a priori probability of
being a pathophysiologically causal variant, all known nonsynonymous coding variants in
the selected genes were added to the assay design.

SNP genotyping
A SNP genotyping assay containing all mentioned variants was purchased from Illumina
based on the Illumina GoldenGate™ technology. Genotyping was performed according to
the manufacturer’s recommendations using the Illumina Beadstation 500G. Illumina’s
BeadStudio 3.1.14 genotyping module was used to automatically cluster, call genotypes, and
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assign confidence scores. All markers with call frequency lower than 95% were manually
edited.

SNP Validation
SNPs significantly associated with risk of SCD were subsequently validated on a different
set of cases and controls. These samples from the Ore-SUDS study were also white Non-
Hispanic from the same geographic area as the original sample and ascertained according to
the subject selection characteristics listed above. Genotyping for the replication stage was
performed using PCR, iPLEX single base primer extension and subsequent MALDI-TOF
mass-spectrometry on a Sequenom platform (Sequenom, San Diego, CA) according to the
manufacturer's standard recommendations. Genotypes were determined using matrix
assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) on a
MASSArray Compact system and analyzed using the software TyperAnalyzer (Sequenom).
A total of 40 SNPs were processed in two experiments of 30 and 10 variants, respectively.
Replicated associations with a Pearson's Chi-square p-value <0.05 were considered truly
associated with the phenotype.

SNP rs9862154 did not meet the call rate cutoff in the iPLEX and was genotyped in a single
ABI TaqMan Genotyping assay according to the manufacturer's directions (Applied
Biosystems, Inc.).

Statistical analysis
Association analyses were performed on the original study population and the validation
dataset using PLINK (http://pngu.org/~purcell/plink/ 29). SNPs were tested for genotype-
phenotype association using the genotypic C/C association test in PLINK, which calculates
the association of genotype to SCD using a full model of inheritance. Asymptotic p-values
are provided for each of four association tests: additive, genotype, dominant and recessive.

Results
Genotyping in the discovery population

A panel of 1,424 SNPs was genotyped in 291 individuals. The average call rate was 96%.
Our initial study population consisted of 141 cases (43 female and 98 male) and 150 controls
(48 female and 102 male). Ten individuals missing >10% genotype data were removed from
analysis. The sample remaining for analysis consisted of 134 cases (mean age 66±14 yrs,
71% male) and 147 controls (mean age 66±13 yrs, 67% male) (Table 2).

Of 1,424 SNPs, 50 SNPs were missing >10% of genotypes and 67 SNPs had a minor allele
frequency (MAF) of < 0.01, which resulted in exclusion of a total of 76 SNPs from the
dataset. SNPs not in Hardy-Weinberg equilibrium (P < 0.001) in control subjects (n=14)
were removed from the study because their inclusion could lead to false signals of
association 30.Thus, 281 subjects with genotypes in 1,334 SNPs (overall call rate of 99.64%)
were included in the final dataset. Thirty-eight SNPs were associated with SCD (uncorrected
p-value <0.01) in at least one of the association models (Table 3), while 53 significant
associations would have been expected by chance alone.

Genotyping in the validation population
In the second stage, we performed validation genotyping for these 38 SNPs in an
independent Ore-SUDS sample (n=688). Replicated associations with a Pearson's Chi-
square p-value statistic of less than 0.05 were considered truly associated with the
phenotype. Several SNPs showed association with SCD on chromosome 1, near the CASQ2
gene (just upstream of NOS1AP) and in the NOS1AP gene (nitric oxide synthase 1 adaptor
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protein) under different genetic models. In addition, the SNP rs9862154 ~26 kb upstream of
GPD1L was associated with SCD under the recessive genetic model (Table 3).

Discussion
In the present study, we observed and validated significant associations between DNA
variants located in non-coding regions of CASQ2, GPD1L and NOS1AP genes, and risk of
SCD in subjects with CAD. However, false positive results should be evaluated in future,
larger replication efforts. CASQ2 and GPD1L are of special interest due to their known
involvement in the primary arrhythmia syndromes and NOS1AP has been previously
associated with prolongation of the QT interval and risk of SCD in the community. These
findings indicate the interesting possibility of overlap between the genetic architecture of
rare and common forms of SCD.

CASQ2 encodes the intra-sarcoplasmic reticulum Ca2+ binding protein cardiac calsequestrin.
Mutations in CASQ2 have been associated with CPVT, a rare familial arrhythmogenic
disorder characterized by malignant ventricular arrhythmias 31–33. GPD1L can harbor
coding mutations among kindreds with the Brugada syndrome. An interesting relationship
has also been described between GPD1L and the SCN5A gene, implicated in the majority of
causative mutations discovered for Brugada syndrome. London, Dudley and colleagues have
shown that missense mutations in GPD1L cause reduced trafficking of the cardiac Na+
channel to the cell surface, reducing inward Na+ current, and causing Brugada syndrome 34.
Furthermore, the downregulation of Na current by GPDIL mutations is likely due to
alteration of the oxidized to reduced Nicotinamide adenine dinucleotide hydrogenase
[NAD(H)] balance 35. In recent work, Valdivia et al. 36 lend support for linking mutations in
GPD1L to SCD using an in vitro cell culture system expressing GPD1L and SCN5A mutant
and wildtype constructs. They demonstrated association of GPD1L with SCN5A; mutants of
GPD1L increased PKC-mediated phosphorylation of SCN5A which in turn causes a
dysfunction in sodium current, a mechanism for ventricular arrhythmias.

NOS1AP encodes a nitric oxide synthase 1 adaptor protein. Common variants in NOS1AP
have been associated with prolongation of the QT interval 37–44 as well as increased risk of
SCD 45–46. Kao et al reported that two non-correlated NOS1AP SNPs (rs16847548 and
rs12567209) were associated with SCD in a large US community 46.The SNP rs12567209 is
in high linkage disequilibrium (LD) with rs12084280 reported in the present study (D’ =
1.0; r2 =0.92). Of note, a NOS1AP variant was also identified as a risk modifier among
patients with familial long QT syndrome 47–48. Although it is well documented that
NOS1AP common variants are associated with increased risk of SCD, the specific functional
role of NOS1AP variants merits further evaluation.

Whereas mutations have been described and characterized in CASQ2 earlier, in the present
study we report a role for common variants for which functional evaluation has yet not been
performed. One hypothesis might be that common SNPs are markers of functional, rare
variants that are not covered by current genotyping strategies, similar to what has been
shown for hypertriglyceridemia 49. For the elucidation of the relationship between common
and rare variants at a single locus and to identify pathophysiologically causal variants, the
current advent of high-throughput sequencing efforts is a promising strategy for the near
future.

Limitations
Our sample size is relatively small, and the possibility exists that we have missed additional
association signals. Future investigation in larger cohorts will be needed to detect such
associations with sufficient statistical power. However, this is a challenging phenotype to
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study in the community and subjects were matched for presence of CAD. Furthermore, our
cases and controls were all derived from the same underlying population and adjudicated
following a common, standardized protocol. All tested genes bear a high a priori probability
for a true associations based on previous reports on their pathophysiological involvement in
our phenotype. A Bonferroni correction for multiple testing is often applied in genome-wide
association studies, but might be considered too conservative for highly selective candidate
gene-based approaches. Independent replication of significant findings can be regarded as
the most reliable form of validation. We therefore did not perform correction for multiple
testing in association results in either the discovery or the replication population, but rather
attempted independent replication.

Conclusions
These findings suggest that common variants in genes previously implicated in relatively
rare inherited forms of arrhythmias may contribute to the pathogenesis of more common,
complex forms of SCD. Further studies in larger samples are warranted to validate the
contribution of these genes in SCD.

Sudden cardiac death remains a public health problem of significant magnitude and the
key to prevention is improvement in risk stratification methodology. Recent studies have
shown that there is evidence of a genetic component even among patients with coronary
disease who suffer sudden cardiac death, the most common yet complex form of this
condition. We employed high through-put genetic analysis to evaluate the potential role
of genes that are known to be causative in more rare, familial forms of sudden cardiac
death, such as the long QT and Brugada syndromes. The results indicate that common
variations in the genes known to be involved in the rare syndromes are also associated
with sudden cardiac death in the more common and complex coronary artery disease
manifestation. These findings provide evidence for a unifying genetic link between rare
and common forms of sudden cardiac death, and is likely to inform the development of
enhanced risk stratification methodologies.
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Table 1

Candidate genes under investigation and the number of tag SNPs genotyped.

Gene Chr Position Region included # SNPs

AKAP9 Isoform 1 7 91570192–91739989 9330760–9396760 20

ANK 2 Isoform 1 4 113970870–114304885 113802396–114332396 118

CACNA1C 12 2162464–2802107 2029739–2949739 176

NOS1AP (CAPON) 1 162039581–162339813 161948342–162438342 130

CASQ2 1 16209379–116311270 116097958–116417958 70

CAV3 3 8775496–8788450 8725000–8865000 63

FKBP1B 2 24272628–24286548 24222627–24336547 13

GPD1L 3 32148144–32210201 32004996–32254996 50

KCNE1 21 35818988–35883613 35718130–36008130 71

KCNE2 21 35736323–35743440 35718130–36008130 28

KCNH2 / HERG 7 150642049–150675014 50152739–150762352 67

KCNJ2 17 68165676–68176181 68098405–68253405 42

KCNQ1 11 2466221–2870339 2303424–2943424 151

RYR2 1 237205702–237997288 237101177–238101176 240

SCN1B 19 35521534–35531352 35448160–35578160 24

SCN4B 11 118004092–118023535 117844790–118114790 54

SCN4A 17 62015914–62050278 61866268–62166268 25

SCN5A 3 38589553–38691163 33867996–38814996 82

Total 1,424

All data based on hg 19, NCBI build 37.

Chr, chromosome.
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Table 2

Demographics in original and validation samples.

Cases Controls

Original Sample

      N (281 total) 134 147

      % Male 71% 67%

      Age (Mean, SD) 66 (14) 66 (13)

Validation Sample

      N (688 total) 536 152

      % Male 71% 66%

      Age (Mean, SD) 62 (15) 666 (11)
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