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Abstract

Background: Glycemic variability has been proposed as a contributing factor in the development of diabetes
complications. Multiple measures exist to calculate the magnitude of glycemic variability, but normative ranges
for subjects without diabetes have not been described. For treatment targets and clinical research we present
normative ranges for published measures of glycemic variability.
Methods: Seventy-eight subjects without diabetes having a fasting plasma glucose of < 120 mg/dL (6.7 mmol/L)
underwent up to 72 h of continuous glucose monitoring (CGM) with a Medtronic Minimed (Northridge, CA)
CGMS� Gold device. Glycemic variability was calculated using EasyGVª software (available free for non-
commercial use at www.easygv.co.uk), a custom program that calculates the SD, M-value, mean amplitude of
glycemic excursions (MAGE), average daily risk ratio (ADRR), Lability Index (LI), J-Index, Low Blood Glucose
Index (LBGI), High Blood Glucose Index (HBGI), continuous overlapping net glycemic action (CONGA), mean
of daily differences (MODD), Glycemic Risk Assessment in Diabetes Equation (GRADE), and mean absolute
glucose (MAG).
Results: Eight CGM traces were excluded because there were inadequate data. From the remaining 70 traces,
normative reference ranges (mean – 2 SD) for glycemic variability were calculated: SD, 0–3.0; CONGA, 3.6–5.5;
LI, 0.0–4.7; J-Index, 4.7–23.6; LBGI, 0.0–6.9; HBGI, 0.0–7.7; GRADE, 0.0–4.7; MODD, 0.0–3.5; MAGE-CGM, 0.0–
2.8; ADDR, 0.0–8.7; M-value, 0.0–12.5; and MAG, 0.5–2.2.
Conclusions: We present normative ranges for measures of glycemic variability in adult subjects without dia-
betes for use in clinical care and academic research.

Introduction

In clinical practice, the overall assessment of plasma
glucose control is typically performed using hemoglobin

A1c (HbA1c) in combination with fasting blood glucose and
self-monitored capillary blood glucose profiles. HbA1c is the
‘‘gold standard’’ measure of glycemic exposure as it provides
a biologically integrated indication of average glucose control
during the 6–8 weeks prior to sampling.1 Both the Diabetes
Control and Complications Trial (DCCT) and the United
Kingdom Prospective Diabetes Study demonstrated that a

lower HbA1c was associated with a reduction in the incidence
of micro- and macrovascular complications.2–5 HbA1c targets
are a key part of the American Diabetes Association’s guide-
lines6 for optimizing diabetes control.

Despite HbA1c being the ‘‘gold standard’’ for the measure
of glycemia, the DCCT showed that the progression of reti-
nopathy associated with a given mean level of HbA1c was
significantly lower in those patients treated intensively than in
those treated conventionally over 5 to 9 years.7 Thus, for a
given mean HbA1c, the incidence of retinopathy was in-
creased in the conventional treatment group, suggesting an
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additional benefit from intensive insulin treatment above that
accrued from HbA1c. It was suggested that the part of the
additional microvascular risk seen in the conventional treat-
ment group may be attributable to excess glycemic variability.
This analysis was later retracted8 by the DCCT Study Group,
which concluded that glucose variation may contribute to the
risk of complications but can only explain a small part of the
differences in risk between intensive and conventional ther-
apy. In a separate analysis of the DCCT data assessing the
relationship between variability and complication status,
neither SD or the area under the curve of seven-point profile
capillary glucose correlated with development or progression
of neuropathy or retinopathy.9 However, this observation
was based on using quarterly seven-point capillary blood
glucose profiles and was limited to SD as a measure of vari-
ability.

Despite the reduction in microvascular complications in
the intensive arm of the DCCT and the later retraction, an
increased risk of hypoglycemia was observed that was not
solely explained by the difference in HbA1c values. A re-
analysis of the DCCT study has established that HbA1c, mean
blood glucose, and glucose variability measurements each
have an independent role in determining an individual’s risk
of hypoglycemia in type 1 diabetes.10

In clinical practice, glycemic variability may contribute in
part to the HbA1c though its role remains uncertain. In vitro
and in vivo data support glycemic variability as an independent
risk factor for hypoglycemia, oxidative stress, endothelial dys-
function, and microvascular complications.11–15 However, these
data are controversial. Mean amplitude of glycemic excursions
(MAGE) was found to correlate significantly with oxidative
stress as measured by urine isoprostane excretion in subjects
with type 2 diabetes,13 but a similar study examining the rela-
tionship in subjects with type 1 diabetes and using a different
assay found no association.16 So, although glycemic variations
over time may play a role in the etiology of endothelial dys-
function and oxidative damage through a variety of pathways,
the evidence is inconclusive.

With the introduction of continuous glucose monitoring
(CGM) a more detailed glucose time series can be constructed
that overcomes the problem of unrepresentative data inherent
when irregular and infrequent glucose sampling is under-
taken. CGM data sets are no different from other time series
and can be analyzed using the same techniques, such as
Fourier transformation and serial data array averaging.17

Simply defining the mean value of a data set plus its disper-
sion (a marker of variance) remains the most useful starting
point in describing CGM data sets.

With the increased availability of CGM, clinicians face a
considerable challenge in handling the large data sets gener-
ated. The situation is made the more daunting by the multiple
modalities for estimation of glycemic variability, quality of
glycemia, and glycemic risk18–26 that have been described and
the lack or normative data sets with which to compare their
data. Ambulatory glucose profiles have been described for
subjects with normal glucose tolerance, demonstrating
changes in glucose over time,27 and CGM has been used to
demonstrate abnormal glucose profiles in insulinoma, cystic
fibrosis, and bariatric surgery, among others.28–30 Here, we
describe normative reference ranges for all of the described
methods of variability assessment in subjects without diabe-
tes from varying ethnic origins.

Subjects and Methods

Seventy-eight subjects were recruited by general adver-
tisement. Prior to CGM they had a fasting laboratory plasma
glucose measured and were included in the study if fasting
glucose was less than 120 mg/dL (6.7 mmol/L). Subjects, with
an overall equal male to female ratio (39:39), were drawn from
the American white (n = 44), Hispanic (n = 13), Asian (n = 7),
and African American (n = 6) populations. A CGM system
(CGMS� Gold, Medtronic MiniMed, Northridge, CA) sensor
measures subcutaneous tissue interstitial glucose levels con-
tinuously, recording values every 5 min, within a range of 40–
400 mg/dL (2.2–22.2 mmol/L). The sensor was implanted in
the anterior abdominal wall. Subjects were instructed in the
use of the device, including calibration and management of
sensor alarms. The monitoring period was up to 72 h (mean,
66 h) with calibration from capillary blood glucose samples at
a minimum of 12 h.

The mathematical formulae of the methods of assessment
for glucose variability (Table 1) were taken from their origi-
nal publications for inclusion in a computer program,
EasyGVª (available free for non-commercial use at www
.easygv.co.uk). The implementation and use of the methods
of assessment have been exemplified in Figure 1. The EasyGV
is used to calculate the following measures of glycemic vari-
ability:

SD

The SD is a widely used measurement of variability used in
the assessment of glycemic profiles. It shows how much
variation or dispersion there is from the average.

M-value18

The M-value is calculated on each glucose value using a
formula and then is divided by the total number of values to
produce a mean. The M-value has several different versions,
and the initial glucose value can be set in EasyGV. The default
of 120 or M120 was used for analysis.

MAGE19

The MAGE is calculated using the formula as the mean
height of excursions (greater than 1 SD).

Average daily risk ratio20

The average daily risk ratio (ADRR) is calculated by
transforming each glucose value using a formula and then
attributing a risk value to the transformed point.

Lability Index21

The Lability Index (LI) formula processes three glucose
values to calculate a lability value and then moves to the next
three glucose values, and so on. The LI is the mean of these
values. The LI time frame can be changed in EasyGV; the
default is 60 min, and this was used for analysis.

J-Index 22

The J-Index is calculated using a simple formula on each of
the data points.
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Low Blood Glucose Index and High Blood
Glucose Index23

The Low Blood Glucose Index (LBGI) and High Blood
Glucose Index (HBGI) formulae are implemented by con-
verting glucose values into risk scores. If the glucose risk score
is below 0, then the risk is labeled as LBGI, and if it is above 0,
then it is labeled as HBGI.

Continuous overlapping net glycemic action24

Continuous overlapping net glycemic action (CONGA) is
calculated by determining the difference between values at
different set intervals, and the difference is then applied to the
CONGA formula. In EasyGV an operator can change the in-

terval used. The default is 60 min or CONGA1; this was used
for the analysis.

Mean of daily differences25

The mean of daily differences (MODD) formula is calcu-
lated as the average of the difference between values on dif-
ferent days but at the same time.

Glycemic Risk Assessment in Diabetes Equation26

The Glycemic Risk Assessment in Diabetes Equation
(GRADE) formula converts glucose values to a risk score,
calculates the median, and provides the risk attributable to
hypoglycemia and hyperglycemia.

Table 1. Measures of Glycemic Variability with the Equations for Glucose Measurements

Measure Formulae Variables

M-value*15 M¼+
tk
t¼ t1

10 · logGt · 18
IGVj j

N

3

G = glucose measured
IGV = ideal glucose value
k = total number of observations
N = total number of readings

MAGE16 MAGE¼+k
x

if k > v k = blood glucose changes from peak to nadir
x = number of valid observations
v = 1 SD of mean glucose for a 24-h period

Lability Index17 LI¼ +
N� 1

n¼ 1

Gn �Gnþ 1ð Þ2
tnþ 1 � tnð Þ G = glucose measured

N = total number of readings in a week
t = time

ADRR*18 ADDR¼ 1
N

+
N

t¼ 1

LRþHR½ � N = total number of readings
LR = risk value attributed to low glucose
HR = risk value attributed to high glucose

J-Index19 J = 0.324 · (MBG + SD)2 MBG = mean glucose levels
SD = SD of glucose levels

LBGI/HBGI*20 LBGI¼ 1
N

+
N

i¼ 1

rl(xi) HBGI¼ 1
N

+
N

i¼ 1

rh(xi) N = number of readings
rl = risk value associated with a low glucose (if x < 0)
rh = risk value associated with a high glucose (if x > 0)
x = nonlinear transformation of glucose measured

CONGA21
CONGA¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
+
tk

t¼ t1

Dt�D
� �2

k� 1

vuuut

D¼
+
tk

t¼ t1

Dt

k
Dt¼Gt�Gt�m

k = number of observations with an observation
n · 60 min ago

m = n · 60
G = glucose measured

MODD22 MODD¼
+
tk

t¼ t1

Gt �Gt� 1440j j

k
k = number of observations with an observation

24 h ago
G = glucose measured
t = time (in min)

GRADE*23 GRADE = median(425 · {log[log(Gn)] + 0.16}2) G = glucose measured

MAG24 MAG¼
+

N� 1

n¼ 1

Gn �Gnþ 1ð Þ

T
G = glucose measured
N = number of glucose measurements
T = total time (in h)

Glucose was measured in mmol/L.
*Indicates methods that assess the quality of glycemia. Three of the measures defined good control in people with type 2 diabetes: M-value,

0 £ M £ 18 is good control, 19 £ M £ 31 is fair control, and 32 £ M is poor control; J-Index, 10 £ J £ 20 is ideal control, 20 < J £ 30 is good control,
30 < J £ 40 is poor control, and J > 40 is lack of control; and Glycemic Risk Assessment in Diabetes Equation (GRADE), median GRADE < 5 is
good control.

ADRR, average daily risk ratio; CONGA, continuous overlapping net glycemic action; HBGI, High Blood Glucose Index; LBGI, Low Blood
Glucose Index; LI, Lability Index; MAG, mean absolute glucose; MAGE, mean amplitude of glucose excursions; MODD, mean of daily
differences.

NORMAL REFERENCE GLYCEMIC VARIABILITY RANGES 923



k 
=

 C
ou

nt

n 
=

 C
ou

nt
M

 =
 C

ou
nt

n 
=

 C
ou

nt

k 
=

 c
ou

nt

k 
=

 C
ou

nt

60
 m

in
ut

es

D
ay

 1
h 

=
 ti

m
e 

in
 h

ou
rs

M
A

G
 =

 k
/h

R
V

 =
 R

is
k 

ca
lc

 (
x)

G
R

A
D

E
=

 M
ed

ia
n 

(R
V

)

C
O

N
G

A
 =

M
O

D
D

 =
S

um
 (

d)
j=

 fo
rm

ul
a 

(x
)

R
 L

ow
 =

 R
is

k 
ca

lc
 (

x)
O

R

R
 H

ig
h 

=
 R

is
k 

ca
lc

 (
x)

R
V

 =
 R

is
k 

ca
lc

 (
x)

A
D

D
R

=
R

V M

LI
=

 (
b-

a)
^2

+
(c

-b
)^

2
M

A
G

E
=

  H
 >

 1
S

D
M

 =
  f

or
m

ul
a 

(x
)

n
n

k

n 
=

 C
ou

nt
(h

)
LG

B
I=

H
G

B
I=

F
or

m
ul

a 
(d

)

k
k

D
ay

 2

a

b

c

h

x 1
x n

x 1
x n

x 1
x n

x 1

x 1

x 1

x 1

x 1
x 3

x 2

x 5

x 4

k 
=

 x
1 
- x

2+
x n-

1 
- x

n
x n

x 2
x 3

x 4

y 4
y 3

y 2
y 1

d 
=

 x
1 

- 
x 2

d n 
=

 y
n 

- 
x n

x 2

x n

R
 lo

w
/n

R
 H

ig
h/

n

7 6 5 4 3 2 1 0
0

10
0

20
0

30
0

40
0

50
0

T
im

e 
(m

in
s)

M
 V

al
ue

M
A

G
E

LI
A

D
D

R
J-

In
de

x
LB

G
I/H

B
G

I
C

O
N

G
A

M
O

D
D

G
R

A
D

E
M

A
G

Glucose (mmol/L)

60
0

70
0

80
0

90
0

10
00

12
00

F
IG

.
1

.
G

ra
p

h
ic

al
il

lu
st

ra
ti

o
n

o
f

h
o

w
ea

ch
o

f
th

e
10

m
et

h
o

d
s

o
f

g
ly

ce
m

ic
v

ar
ia

b
il

it
y

as
se

ss
m

en
t

ar
e

ca
lc

u
la

te
d

fr
o

m
a

co
n

ti
n

u
o

u
s

g
lu

co
se

m
o

n
it

o
ri

n
g

tr
ac

e:
av

er
ag

e
d

ai
ly

ri
sk

ra
ti

o
(A

D
R

R
),

co
n

ti
n

u
o

u
s

o
v

er
la

p
p

in
g

n
et

g
ly

ce
m

ic
ac

ti
o

n
(C

O
N

G
A

),
G

ly
ce

m
ic

R
is

k
A

ss
es

sm
en

t
in

D
ia

b
et

es
E

q
u

at
io

n
(G

R
A

D
E

),
H

ig
h

B
lo

o
d

G
lu

co
se

In
d

ex
(H

B
G

I)
,L

o
w

B
lo

o
d

G
lu

co
se

In
d

ex
(L

B
G

I)
,

J-
In

d
ex

,
L

ab
il

it
y

In
d

ex
(L

I)
,

m
ea

n
ab

so
lu

te
g

lu
co

se
(M

A
G

),
m

ea
n

am
p

li
tu

d
e

o
f

g
lu

co
se

ex
cu

rs
io

n
s

(M
A

G
E

),
an

d
m

ea
n

o
f

d
ai

ly
d

if
fe

re
n

ce
s

(M
O

D
D

).
In

p
ra

ct
ic

e
ea

ch
m

et
h

o
d

w
o

u
ld

in
d

ep
en

d
en

tl
y

as
se

ss
th

e
en

ti
re

tr
ac

e.

924



Mean absolute glucose31

Mean absolute glucose (MAG) calculates the sum of the
differences between successive glucose values divided by the
total time measured in hours.

The measures of variability may be statistical measures of
variability or derivations that are adjusted to provide an esti-
mate of risk. It is appropriate to include these together as
clinically they are used to grade the quality of glucose control.
The results from each of the methods have been based on the
total data available. One of the methods, the MAGE formula, is
a mathematical score of glycemic variability based on an op-
erator’s definition of where a peak or trough begins and ends.
This method was modified (MAGE-CGM) to select a peak or
trough based on direction of change (rising or falling) of the
preceding and succeeding data points. The MAGE-CGM for-
mula also contains a 15-min lag window for the direction of
change based on the known delay between interstitial fluid
glucose measurement and plasma glucose concentrations.32

The CGM profiles were analyzed using the methods in the
EasyGV program as well as the percentage of time spent less
than 63 mg/dL (3.5 mmol/L) and percentage of time spent
greater than 126 mg/dL (7.0 mmol/L). Results from the meth-
ods of glycemic assessment were assessed for normality using
the z-test for skewness33 before normative ranges were defined.
The normative ranges were assessed using five representative
CGM data sets (mean number of glucose data points, 887) from
people with type 1 diabetes having a mean – SD age of
47.8 – 11.1 years, body mass index of 22.2 – 3.0 kg/m2, duration
of diabetes of 29.6 – 6.3 years, and HbA1c of 7.5 – 0.8%. The
degree of correlation between the methods of glycemic vari-
ability was identified using Spearman’s correlation coefficient.

Results

Seventy-eight CGM traces were initially collected. Of these
traces, two failed to collect any data, and six were excluded, as
their duration was less than 24 h. The remaining 70 traces had
a mean ( – SD) of 790 – 78.9 measurements (mean, 66 h), with
no difference in mean or SD for glycemia between the ethnic
groups. Fasting blood glucose concentrations were all less
than 120 mg/dL (6.7 mmol/L). Four ethnic groups with a
mean age of 27.9 – 5.2 years were studied with an equal rep-
resentation of the sexes.

Time spent less than 63 mg/dL (3.5 mmol/L) was on av-
erage 1.2% for all subjects, and the percentage of time spent
greater than 126 mg/dL (7.0 mmol/L) was on average 2.1%
for all subjects, with no differences between ethnic groups.
Therefore 96.7% of the time was spent in the euglycemic state.

The z-test for skewness indicated that the results for LI,
HGBI, GRADE, MODD, and ADRR were positively skewed.
Log transformation removed the asymmetry for these meth-
ods. The geometric mean and SD for these results and the
mean and SD for the remaining measures of glycemic vari-
ability are shown in Table 2.

The normative ranges for each of the methods of glycemic
assessment were then defined as the geometric mean – 2 SD or
the mean – 2 SD as appropriate (Table 3). The mean values for
the five representative data sets in people with type 1 diabetes
were all outside of the normative ranges defined: mean SD,
3.9; CONGA, 8.5; LI, 1.9; J-Index, 50.6; LBGI, 8.7; HBGI, 11.5;
GRADE, 7.1; MODD, 4.6; MAGE-CGM, 3.2; ADDR, 24.1;
M-value, 20.0; and MAG, 2.5.

T
a

b
l

e
2.

M
e

a
n

a
n

d
S

D
f
o

r
M

e
a

s
u

r
e

s
o

f
G

l
u

c
o

s
e

a
n

d
G

l
y

c
e

m
i
c

V
a

r
i
a

b
i
l

i
t

y
i
n

P
o

p
u

l
a

t
i
o

n
s

W
i
t

h
o

u
t

D
i
a

b
e

t
e

s

M
ea

n
C

G
M

co
u

n
t

M
ea

n
(S

D
)

E
th

n
ic

it
y

n
M

ea
n

(S
D

)
ag

e
G

lu
co

se
S

D
C

O
N

G
A

L
I*

J-
In

d
ex

{
L

B
G

I{
H

B
G

I*
{

G
R

A
D

E
*{

M
O

D
D

*{
M

A
G

E
-

C
G

M
A

D
R

R
*{

M
-

v
al

u
e{

M
A

G

A
si

an
7

29
.9

(5
.2

)
76

6.
4

5.
3

(0
.4

)
1.

7
(0

.9
)

4.
8

(0
.4

)
0.

2
(3

.5
)

16
.0

(3
.5

)
2.

0
(1

.1
)

0.
3

(3
.8

)
0.

2
(2

.0
)

0.
7

(1
.4

)
1.

3
(0

.7
)

0.
6

(2
.8

)
2.

6
(1

.8
)

1.
1

(0
.6

)
A

fr
ic

an
A

m
er

ic
an

6
26

.7
(5

.0
)

71
2.

0
5.

2
(0

.3
)

1.
9

(1
.1

)
4.

7
(0

.4
)

0.
5

(3
.7

)
16

.7
(5

.5
)

3.
7

(2
.9

)
0.

5
(2

.0
)

0.
5

(2
.2

)
0.

9
(1

.7
)

1.
3

(1
.1

)
1.

3
(2

.3
)

5.
5

(5
.0

)
1.

6
(0

.8
)

C
au

ca
si

an
44

27
.3

(5
.8

)
78

0.
9

5.
0

(0
.5

)
1.

5
(0

.7
)

4.
4

(0
.6

)
0.

4
(1

.9
)

13
.7

(4
.9

)
3.

5
(1

.9
)

0.
4

(4
.2

)
0.

4
(2

.0
)

0.
8

(1
.3

)
1.

4
(0

.5
)

0.
4

(4
.5

)
5.

5
(4

.1
)

1.
4

(0
.3

)
H

is
p

an
ic

13
27

.7
(1

.8
)

80
3.

5
5.

1
(0

.4
)

1.
3

(0
.7

)
4.

6
(0

.4
)

0.
3

(1
.7

)
13

.6
(4

.1
)

2.
5

(1
.2

)
0.

2
(3

.1
)

0.
2

(2
.0

)
0.

7
(1

.4
)

1.
2

(0
.7

)
0.

4
(3

.8
)

3.
5

(1
.9

)
1.

1
(0

.3
)

A
ll

70
27

.9
(5

.2
)

79
0.

8
5.

1
(0

.5
)

1.
5

(0
.7

)
4.

6
(0

.5
)

0.
4

(2
.2

)
14

.3
(4

.7
)

3.
1

(1
.9

)
0.

2
(3

.8
)

0.
4

(2
.1

)
0.

8
(1

.4
)

1.
4

(0
.7

)
0.

5
(4

.1
)

4.
7

(3
.8

)
1.

3
(0

.4
)

G
lu

co
se

w
as

m
ea

su
re

d
in

m
m

o
l/

L
.

*G
eo

m
et

ri
c

m
ea

n
an

d
S

D
u

se
d

fo
r

n
o

n
-n

o
rm

al
ly

d
is

tr
ib

u
te

d
re

su
lt

s.
{ In

d
ic

at
es

m
et

h
o

d
s

th
at

as
se

ss
th

e
q

u
al

it
y

o
f

g
ly

ce
m

ia
.

A
D

R
R

,
av

er
ag

e
d

ai
ly

ri
sk

ra
ti

o
;

C
G

M
,

co
n

ti
n

u
o

u
s

g
lu

co
se

m
o

n
it

o
ri

n
g

;
C

O
N

G
A

,
co

n
ti

n
u

o
u

s
o

v
er

la
p

p
in

g
n

et
g

ly
ce

m
ic

ac
ti

o
n

;
G

R
A

D
E

,
G

ly
ce

m
ic

R
is

k
A

ss
es

sm
en

t
o

f
D

ia
b

et
es

E
q

u
at

io
n

;
H

B
G

I,
H

ig
h

B
lo

o
d

G
lu

co
se

In
d

ex
;

L
B

G
I,

L
o

w
B

lo
o

d
G

lu
co

se
In

d
ex

;
L

I,
L

ab
il

it
y

In
d

ex
;

M
A

G
,

m
ea

n
ab

so
lu

te
g

lu
co

se
;

M
A

G
E

,
m

ea
n

am
p

li
tu

d
e

o
f

g
lu

co
se

ex
cu

rs
io

n
s;

M
O

D
D

,
m

ea
n

o
f

d
ai

ly
d

if
fe

re
n

ce
s.

NORMAL REFERENCE GLYCEMIC VARIABILITY RANGES 925



The Spearman’s correlation coefficient between the meth-
ods of glycemic variability (Table 4) elucidates the degree to
which the methods are related in the normoglycemic range.

Conclusions

In this article we describe normative ranges for measures of
glycemic variability obtained from using a single-source an-
alytical program, EasyGV. The program makes no attempt to
define the best algorithm as each formula makes different
assumptions about what constitutes variability. The popula-
tion chosen is North American and occupies a narrow age
range. Values obtained for the M-value, J-Index, and GRADE
are in agreement with the originally published descriptions
for the methodologies, with mean GRADE less than 5, mean J-
Index less than 20, and a mean M-value under 18. The values
were obtained from a young population with mean tissue
glucose of 91.8 mg/dL (5.1 mmol/L), suggesting that glucose
metabolism was within normal limits over the course of the
monitoring period. This is confirmed with a mean of 96.7% of
time spent in the euglycemic range for all subjects. The dif-
ference in the percentage of time spent less than 63 mg/dL
(3.5 mmol/L) between the ethnic groups was significant.
However, this may be an artifact of the CGM sensor as the
accuracy of sensing becomes degraded at low glucose levels.
In addition, the average time spent less than 63 mg/dL
(3.5 mmol/L) was 1.2%, so it can be heavily affected by a
single outlier. The high degree of correlation between the
methods of glycemic variability assessment may similarly be
related to the fact that these subjects have tight glucose control
with a low level of glycemic variability.

The normative ranges provide a guide for both clinical care
and academic assessment of glucose variability and may offer
an alternative treatment target in people with type 1 and type 2
diabetes. The five representative CGM data sets from people
with type 1 diabetes provide some assurance that the norma-

tive ranges defined have clinical value, and it should also be
noted that the values for glycemic variability reported in other
series also fall outside of the normative ranges reported
here.15,16 They may be especially useful for guiding treatment
in labile type 1 diabetes where assessment of CGM data is used
alongside self-monitored capillary blood glucose and HbA1c.
They may also provide additional data when HbA1c values are
perturbed or uninterpretable as in hemoglobinopathies.

A recent study has reported reference ranges for glycemic
variability in Chinese subjects,34 and the data presented here
provide ranges for other ethnicities. The data analyzed in this
article add to the body of knowledge looking at normal values,
allowing for better identification of abnormalities. These are
important when looking at glucose excursions in situations
such as cystic fibrosis, insulinomas, or post-bariatric surgery.
However, larger studies are required to robustly validate the
use of variability measures as treatment targets for diabetes.

The inter-relationships between measures of variability
were assessed. It should be noted that GRADE, J-Index,
ADRR, HBGI, LBGI, and M-value are measures of quality of
glycemic control and not specifically variability. Despite this
difference, we believe it is appropriate to examine the metrics
together as clinically they are all validated to assess glycemia.
There is a large level of agreement among the measures, with
38 out of 66 correlations being significant at the P < 0.05 level.
It is expected that measures dependent on mean tissue glu-
cose and SD, such as the J-Index, will show close correlations
with the SD, but we may expect that measures of quality of
glucose control will have a poor correlation with other mea-
sures of variability. However, this does not seem to be the case
with ADRR showing significant correlation with nine out of
11 measures and J-Index, LBGI, and HBGI correlated with
seven. Indeed, SD correlated with only four other measures. It
remains unclear which of the measures of glycemia calculated
represents a ‘‘gold standard,’’ and each is measuring a dif-
ferent facet of glucose change over time, but the general
agreement among the values suggests utility in all of them.
However, before measures of variability from CGM data can
be used for clinical targets it is important to identify what is
being measured and the best way to measure it.

We examined a total of 55,000 data points for this analysis,
but we acknowledge that the sample could have been greater
and could embrace other categories of race and age. These
data may, however, allow a baseline on which other data can
be used as comparisons. Normative data are essential if hy-
pothesis testing of, for example, glycemic variability as a
treatment target in diabetes is to be undertaken.

CGM accuracy remains an ongoing issue in people with
diabetes, and peaks and nadirs can be rounded and under-
estimated by the technology. However, in the data set without
diabetes the magnitude and slope of these peaks and troughs
are notably less, and accuracy becomes a smaller issue with
lower values for the mean absolute difference between cor-
relation points and tissue glucose.

Glucose metabolic status was defined by a fasting laboratory
plasma glucose measurement, and, apart from this, no other
investigations were carried out to define normoglycemia. We
therefore prefer to use the term normative range rather than
claim that these profiles represent a standard. The CGM data
used for the study were obtained from subjects with a fasting
plasma glucose of <120 mg/dL, and although this ensures that
the study excludes subjects with diabetes, it is possible that

Table 3. Normal Range for the Population

Without Diabetes (n = 70)

Method of
assessment

Low
(mean - 2 SD)

High
(mean + 2 SD)

SD 0.0 3.0
CONGA 3.6 5.5
LI* 0.0 4.7
J-Index 4.7 23.6
LBGI{ 0.0 6.9
HBGI*{ 0.0 7.7
GRADE*{ 0.0 4.6
MODD* 0.0 3.5
MAGE-CGM 0.0 2.8
ADDR*{ 0.0 8.7
M-Value{ 0.0 12.5
MAG 0.5 2.2

Low and high are defined as mean – 2 SD.
*Geometric mean – 2 SD.
{Indicates methods that assess the quality of glycemia.
ADRR, average daily risk ratio; CGM, continuous glucose mon-

itoring; CONGA, continuous overlapping net glycemic action;
GRADE, Glycemic Risk Assessment of Diabetes Equation; HBGI,
High Blood Glucose Index; LBGI, Low Blood Glucose Index; LI,
Lability Index; MAG, mean absolute glucose; MAGE, mean ampli-
tude of glucose excursions; MODD, mean of daily differences.
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subjects had impaired fasting glucose. However, the mean non-
fasting tissue glucose for the study cohort was 5.1 mmol/L,
suggesting a normal glucose profile over the study period.

These normative ranges should be applicable to other age
groups but need to be explored further in pregnancy and
perhaps in children and adolescents. The ranges could be
used to guide treatment targets for therapies in type 1 and 2
diabetes as several of the measures are sensitive to episodes of
hypoglycemia, thereby providing a more comprehensive es-
timate of glycemic control than that currently available from
finger prick blood glucose testing.

In conclusion, we present normative ranges for measures of
glycemic variability in adult subjects without diabetes for use
in clinical care and academic research.
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