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Abstract

Background: Cell-free eukaryotic transcription assays have contributed tremendously to the current understanding of the
molecular mechanisms that govern transcription at eukaryotic promoters. Currently, the conventional G-less cassette
transcription assay is one of the simplest and fastest methods for measuring transcription in vitro. This method requires
several components, including the radioisotope labelling of RNA product during the transcription reaction followed by
visualization of transcripts using autoradiography.

Methodology/Principal Findings: To further simplify and expedite the conventional G-less cassette transcription assay, we
have developed a method to incorporate a reverse transcriptase-coupled quantitative real time PCR (RT-qPCR). By using
DNA template depletion steps that include DNA template immobilization, Trizol extraction and DNase I treatment, we have
successfully enriched p21 promoter-driven transcripts over DNA templates. The quantification results of RNA transcripts
using the RT-qPCR assay were comparable to the results of the conventional G-less cassette transcription assay both in
naked DNA and chromatin-assembled templates.

Conclusions: We first report a proof-of-concept demonstration that incorporating RT-qPCR in cell-free transcription assays
can be a simpler and faster alternative method to the conventional radioisotope-mediated transcription assays. This method
will be useful for developing high throughput in vitro transcription assays and provide quantitative data for RNA transcripts
generated in a defined cell-free transcription reaction.
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Introduction

The p53 tumor suppressor has been extensively studied for

its role as a transcriptional activator for a range of downstream

target genes [1]. The p21 gene is one of the most studied direct

downstream target genes of p53, which is inducibly activated

through two consensus p53 response elements located at 22.3 kb

and 21.4 kb [2]. This p53-dependent p21 gene activation has also

been shown to require the recruitment of p300 histone acetyl-

transferase (HAT) and localized nucleosome acetylation which in

turn facilitates transcription through chromatin modifications [3].

Since the laboratory of Robert Roeder introduced cell-free

transcription of RNA polymerase II in a test tube [4], detailed in

vitro studies of the transcription machineries have illuminated

many critical molecular mechanisms for eukaryotic transcription

[5]. Cell free transcription assays are an extremely powerful tool to

dissect or recapitulate the functional roles of diverse transcription

factors and cofactors by setting up biochemically defined

transcription reactions in a test tube. The G-less cassette in vitro

transcription assay was developed to speed up the measurement of

RNA polymerase II-dependent transcripts on DNA templates [6].

This method generates radiolabelled G-less RNA products of a

defined length which are then visualized using polyacrylamide gel

electrophoresis and autoradiography. However, the G-less cassette

transcription assay is still a time and labour-consuming procedure,

undertaking multiple technical steps that commonly require two

days and more [7]. In vitro transcription for class II promoters is

also known to be inefficient in terms of template usage [8]. In a

conventional G-less cassette transcription assay, typically 50 to

100 ng of the template DNA is required in the transcription

reaction along with ATP, CTP and [a-32P]UTP supplemented

with unlabelled UTP. Considering the limitations of inefficient

template usage (0.03 transcripts synthesized per strong promoter-

containing DNA template [8]) along with a low rate of radioactive

UTP incorporation into a RNA transcript (approximately one in 8

transcripts is radioactively labelled [7]), detection would only be

possible if over hundred picogram amounts of the RNA transcript

was produced via the G-less cassette transcription assay. In order

to bypass the radioisotope labelling of RNA and time-consuming

steps of electrophoresis and autoradiography, a RT-qPCR method

was first employed in this study to measure RNA levels in the

transcription reaction. To this end, additional steps were also
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incorporated to remove template DNA to a reasonable level such

that it does not interfere with the final quantitative analysis of

RNA product from a transcription reaction.

Here we outline a method for a radioisotope-free in vitro

transcription assay by using biotin-labelled template DNA,

standard RNA extraction techniques and RT-qPCR assay. We

have successfully measured p21 promoter-driven transcripts from a

model system of p53 and p300-dependent chromatin transcription

and demonstrated the validity of our method by comparing the

results to a conventional G-less cassette transcription assay.

Results and Discussion

Generation of p21 promoter-driven G-less cassette
To assess the feasibility of RT-qPCR to replace the radioisotope

labelling in the transcription assay, we used a natural p21 promoter

that has been shown to be activated by p53- and p300-dependent

manner on the chromatin template in vitro [3]. To construct the p21

promoter-driven G-less cassette (Figure 1), the promoter from

p208p53ML [9] plasmid was removed by PstI and XbaI restriction

enzyme digestion and replaced with a PCR-amplified p21 promoter

derived from a pWWP-luc plasmid [10] using primer set,

p21PCRpWWP (table 1). The resultant construct, p208p21ML

contained the p21 promoter-driven G-less cassette surrounded by

5S rRNA nucleosome positioning sequences and was used for the

conventional G-less cassette transcription assay in this study. In

order to be able to remove template DNA/chromatin after an in

vitro transcription reaction, we generated a biotinylated linear DNA

(PCRp21MLbio) of the p21 promoter template using primer set,

Biop21PCR (table 1). PCRp21MLbio was used for as the naked

DNA template or chromatin-assembled template for our revised

cell-free transcription assay. Streptavidin-coupled beads were later

used to immobilize biotin-labelled template, which provided an

essential DNA template depletion step during the procedure.

Assuming less than one picogram of contaminating template DNA

is acceptable in the final qPCR analysis, the DNA template

depletion step is required to remove 99.999% of the initial input

DNA template (1 pg out of 100 ng template DNA). We found that

conventional RNA purification steps in conjunction with DNase I

treatment cannot sufficiently remove contaminating DNA from the

transcription reaction (data not shown). In order to obtain a

desirable amount of DNA template depletion, we used biotin-

labelled template DNA which was immobilised using streptavidin-

coupled beads in the transcription reaction and facilitated the

removal of template DNA after the transcription reaction.

In a conventional transcription assay, the G-less cassette must

be cloned at the precise start site of transcription and results in a

chimeric fusion of an artificial G-less cassette and a natural pro-

moter. However, if downstream promoter elements play a

significant role in regulating transcription activity, the G-less

cassette containing promoter may not recapitulate actual physi-

ological regulation of the transcription [11]. This disadvantage

may be overcome using the RT-qPCR method since the sequence

downstream of promoter is not restricted to a G-less sequence and

therefore can be easily modified to a natural promoter and coding

sequence.

Preparation of proteins for transcription reaction on
chromatin template

Detailed methods on the preparation of recombinant factors for

chromatin assembly and transcription reaction have been

previously described [12,13]. HeLa nuclear extracts were used

as a source of general transcription machinery [8]. Recombinant

Xenopus histones were individually expressed in E. coli and

purified as previously described [12]. Reconstituted histone

octamers were purified using gel filtration chromatography and

compared with HeLa core histones (Figure 2A). Histidine-tagged

NAP1 and Flag-tagged p53 were expressed in E. coli and purified

using Ni-NTA resin and M2 agarose, respectively (Figure 2B) [12].

ACF Chromatin assembly factor (ACF1+ISWI) and p300 histone

acetyltransferase were expressed in Sf9 cells and purified using M2

agarose [13]. All protein preparations used in this study were

examined using SDS-polyacrylamide gel electrophoresis (SDS-

PAGE) and Coomassie Blue R-250 staining (Figure 2) and the

relative concentrations were determined using bovine serum

albumin as a standard. The homogeneity of preparations was

comparable to similar preparations used in other studies [14].

Figure 1. Schematic presentation of the p21 promoter template DNA. Plasmid p208p21ML (derived from p208p53ML and pWWP-luc) was
used as a template in the conventional G-less cassette in vitro transcription assay. Biotinylated linear template DNA (PCRp21MLbio), amplified from
p208p21ML was used as naked DNA and chromatin-assembled templates in the radioisotope-free in vitro transcription assay. Transcription start site is
indicated by +1. PRE: p53 response element, TATA: TATA box.
doi:10.1371/journal.pone.0023617.g001

Radioisotope-Free Cell Free Transcription Assay
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In vitro chromatin assembly of p208p21ML plasmid and
synergistic transcriptional activation by p53 and p300

The p21 promoter was modified in the p208p21ML plasmid

with the fusion of G-less cassette and therefore its transcriptional

regulation could be different from p21 promoter driven-luciferase

plasmid used in the previous studies [3]. Before attempting real

time PCR analysis of in vitro transcription assay, we examined if

p53 and p300-dependent transcriptional activation in p208p21ML

was comparable to that in previous studies [3].

To examine p21 promoter activity of the p208p21ML plasmid

in a conventional G-less cassette transcription assay [7], chromatin

assembly was performed as previously described [12] and the

quality of the reconstituted chromatin was assessed by micrococcal

nuclease digestion [15] (Figure 3A). The characteristic DNA

ladders that were observed after MNase digestion demonstrates

that the in vitro assembled chromatin mimics physiologically spaced

nucleosomes and therefore deemed suitable for a cell-free

transcription assay.

Conventional G-less cassette transcription assays were per-

formed as described previously [13] and summarised in Figure 3B

(ii to v). Briefly, 50 ng of supercoiled plasmid DNA template or

chromatin was first incubated with 10 ng of purified p53 in a HAT

reaction buffer (20 mM Tris-HCl; pH 7.6, 50 mM KCl, 5 mM

DTT, 10 mM sodium butyrate, 2 mM MgCl2, 5% glycerol) at

30uC for 20 min. Then, targeted nucleosome acetylation was

performed in the HAT reaction by adding 15 ng of purified p300

and 2 mM acetyl-CoA followed by an incubation at 30uC for

30 min. To allow for the assembly of the preinitiation complex on

the promoter template, 27 ml of a transcription reaction mixture

(6 ml of transcription buffer (200 mM HEPES; pH 7.9, 40 mM

MgCl2), 0.48 ml of 1 M DTT, 1.22 ml of BSA (10 mg/ml), 0.3 ml

of RNasin (10 U/ml), 6 ml of BC150 buffer (20 mM Tris-HCl;

pH 7.9, 0.2 mM EDTA, 150 mM KCl, 20% glycerol) and 10 ml

HeLa nuclear extracts (10 mg/ml)) was added to 30 ml of the HAT

reaction and incubated for 20 min at room temperature. The

transcription reaction was now initiated by adding 3 ml of

nucleotide substrates (12 mM ATP, 12 mM CTP, 0.5 mM UTP

and 2 mM 39-O-methyl-GTP) and 12.5 mCi (10 mCi/ml) of

[a-32P]UTP (3,000 Ci/mmol)) and incubated for 50 min at

30uC. After treatment with 10 U of RNase T1 for 15 min, the

radioisotope-labelled RNA transcript was purified using multiple

steps including proteinase K digestion, phenol/chloroform

extraction and ethanol precipitation. The final RNA pellet was

resuspended in 10 ml of formamide loading buffer (98%

Formamide, 0.5 mM EDTA, 0.1% xylene cyanol, 0.1% bromo-

phenol blue) and analysed by electrophoresis using a 5%

polyacrylamide-8 M urea gel. The final result of 32P-labelled

RNA transcript was visualised by exposure to X-ray film

(Figure 3C). The results demonstrate that the naked DNA

template of p208p21ML produced high basal levels of transcrip-

tion which was not affected by either p53 or p300 (Figure 3C, left

panel). However this high basal level of transcription was

significantly repressed when using the chromatin-assembled p21

promoter (Figure 3C, right panel). Only a modest enhancement of

transcription was observed with p53 alone on the chromatin

template, which, however, was significantly stimulated by co-

incubating with p300 histone acetyltransferase. This result suggests

that main function of p53 in activating p21 promoter could be

mediated through recruiting chromatin modifying /remodelling

activity to the promoter to relieve chromatin-mediated repression.

Previous studies using p21 promoter-luciferase plasmid (pWWP-

luc) and primer extension analysis [3] demonstrates that

transcriptional activation of chromatin-assembled p21 promoter

requires p53 in conjunction with p300 histone acetyltransferase

whereas naked DNA template produces a high level of basal

transcription regardless of the presence of p53 and p300. Our

results are in line with this earlier study and indicate that the

p208p21ML plasmid, like the pWWP-luc plasmid, can be

successfully used as a template for cell-free transcription analysis

of p21 promoter.

Real time PCR analysis of in vitro transcription assay from
a naked DNA template

A summary of the transcription procedure using RT-qPCR

analysis is outlined in Figure 4A. The procedure is similar to the

Table 1. Sequences of PCR primer pairs.

p21PCRpWWP 59 gcttggcctgcaggctgtggctctgattggct 39 ccgccttctagaggcgacccgcgctcggccca

Biop21PCR 59 ctgcaggctgtggctctgattggct 39 Biotin-gagtggaatgagaaatgagtgtgag

p21RT-PCRbio 59 ttttatgattggggataagattgaa 39 cctttccatatcccctccac

doi:10.1371/journal.pone.0023617.t001

Figure 2. Analysis of recombinant histones, chromatin assem-
bly factors, transcriptional activator, and chromatin modifier.
(A) Xenopus recombinant histones (1 and 2 mg) were resolved in 12%
SDS-PAGE and stained with Coomassie Brilliant Blue R-250. (B)
Copurified drosophila Flag-ACF1 and ISWI, Histidine-tagged NAP1,
transcriptional activator Flag-p53, and chromatin modifier Flag-p300 are
shown with Coomassie Brilliant Blue R-250 staining. b, copurified
protein from E. coli. *, a partially degraded p300.
doi:10.1371/journal.pone.0023617.g002
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conventional G-less cassette transcription procedure (figure 3B)

except for the template immobilization step (i), transcription

reaction (v) and subsequent follow up procedures that are outlined

in Figure 4B. Streptavidin-coupled agarose was preblocked with

preincubation buffer (20 mM HEPES; pH 7.5, 200 mM NaCl,

1 mM EDTA, 10% glycerol, 5 mg BSA/ml and 0.1% NP-40). A

total of 50 ml of the 50% streptavidin-coupled agarose suspension

was incubated with 1 mg of PCRp21MLbio DNA in 500 ml of

binding buffer (20 mM HEPES; pH 7.5, 2 M NaCl, 1 mM

EDTA, and 10% glycerol) at room temperature for 1 hr with

constant agitation. The efficiency of template DNA immobiliza-

tion was calculated by measuring the amount of unbound DNA

and was generally 50% or less than the amount of input DNA.

The PCRp21MLbio-immobilized resin was washed thoroughly

with HEG 50 buffer (25 mM HEPES; pH 7.6, 50 mM KCl,

0.1 mM EDTA, 10% glycerol) and resuspended in the same buffer

to generate a final concentration of 16 ng PCRp21MLbio DNA/

ml. The activator binding, chromatin remodelling-modifying and

PIC formation steps were carried out as described in the

conventional G-less transcription assay, followed by a radioiso-

tope-less transcription. Briefly, a total of 3 ml of 206 nucleotide

mixture (12 mM ATP, 12 mM CTP, 12 mM UTP and 2 mM 39-

O-methyl-GTP) was added to initiate transcription. After

incubating the transcription reaction at 30uC for 50 min with

constant agitation, the reaction mixture was centrifuged at 3,000 g

for 1 min and the pellet of the template-immobilized resin was

discarded. The supernatant was further treated with 10 U of

RNaseT1 and 20 U of DNase I at 37uC for 20 min. After adding

10 mg of glycogen as a carrier, the reaction mixture was extracted

using 200 ml of TRIZOL LS and 40 ml of chloroform according to

the manufacturer’s instructions (Invitrogen). RNA transcript was

precipitated by adding an equal volume of isopropanol and

pelleted by centrifugation at 12,000 g for 15 min at 4uC. The

RNA pellet was washed once with 75% ethanol and air-dried for

10 min. The dried RNA pellet was dissolved in 8 ml of RNase-free

distilled water and treated with 10 U of DNase I for 30 min at

37uC. After inactivating DNase I by heating at 75uC for 5 min,

2 ml of purified RNA transcript was analysed using a one step RT-

qPCR method employing the primer set, p21RT-PCRbio (table 1)

and the Light Cycler 480 (Roche). The primer set employed in this

study produced a single peak in the melting curve analysis,

demonstrating that the RT-qPCR reaction produced a single sized

amplicon, representing the specific PCR product from the target

sequence of PCRp21MLbio (data not shown). Known amounts of

template DNA (625 fg to 6,250 fg of PCRp21MLbio) was used to

plot the standard curve that was used to calculate the amount of

RNA transcript from the in vitro transcription reaction (Figure 4C).

Control reactions without NTP in the transcription reaction were

used to estimate the amount of template DNA carryover in the

final RNA preparation. The results from control reactions indicate

that less than 0.001% of input DNA template survived from the

DNA template depletion procedure (Figure 4D). Three tested

conditions, in the presence and absence of p53 and/or p300

produced high basal transcription activities from the p21

promoter, which reached to more than 150 pg equivalent of the

target sequence (Figure 4D). This result demonstrates that the

DNA template depletion procedure can successfully suppress the

signal from the template DNA in the RT-qPCR assays and can be

used to accurately quantify RNA production from the in vitro

transcription reaction.

Real time PCR analysis of in vitro transcription assay from
a chromatin template

To examine if the RT-qPCR assay can quantify inducible

activation of a chromatin-assembled p21 promoter, 1 mg of

PCRp21MLbio DNA was assembled into chromatin according

Figure 3. Conventional G-less cassette transcription assay. (A) Micrococcal nuclease (MNase) digestion of chromatin-assembled p208p21ML
plasmid. 500 ng of assembled chromatin was digested with MNase and resolved using 1.2% agarose gel electrophoresis and ethidium bromide
staining. The mass ratios of core histones to DNA are indicated. 100 bp DNA ladders were used as a size marker. (B) Summary of the in vitro
transcription reaction is outlined (left to right) from chromatin assembly to the transcription reaction involving [a-32P] UTP-mediated labelling. PIC,
preinitiation complex. (C) p53- and p300-dependent transcription of naked (left panel) and chromatin-assembled (right panel) p208p21ML plasmid.
G-less cassette transcript of 365 bp was resolved in the 8 M urea-PAGE gel and visualized by autoradiography. Relative signal intensities were
quantified using phosphoimager software and values are indicated at the bottom of the autoradiogram.
doi:10.1371/journal.pone.0023617.g003
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to the procedures described previously [12]. The quality of

chromatin assembly was assessed by MNase digestion and showed

comparable DNA ladders to the supercoiled plasmid DNA

(Figure 4E). Chromatin-assembled PCRp21MLbio was subjected

to in vitro transcription analysis as summarised in Figure 4A.

Briefly, 50 ml of preblocked streptavidin-coupled agarose resin was

added to the chromatin assembly reaction containing 1 mg of

PCRp21MLbio and incubated at room temperature for 1 hr with

constant shaking. The chromatin-immobilized resin was thor-

oughly washed with HEG50 buffer and finally resuspended in the

same wash buffer to yield a final concentration of 16 ng DNA/ml.

Then 5 ml of chromatin-immobilized agarose was used for an in

vitro transcription reaction and subjected to DNA template

depletion procedure as described earlier for the in vitro transcrip-

tion of the naked DNA template (Figure 4B). The results show that

chromatin assembly on the p21 promoter, using chromatin-

assembled PCRp21MLbio, significantly repressed basal transcrip-

tion activity. The level of basal RNA production in the absence of

p53 and p300 was about one pg whereas naked template in the

same conditions produced approximately 150 pg of RNA

(compare Figure 4D and Figure 4F). Transcription assays with

p53 alone produced a modest enhancement of transcription that

was further enhanced by co-incubating with p300 (Figure 4F).

These results are similar to those observed using the conventional

G-less cassette transcription assay with supercoiled plasmid DNA

(p208p21ML) in Figure 3C. Overall, the amount of G-less RNA

produced from activation of a chromatin-assembled PCRp208p21

DNA was about 10% of what was observed from the naked DNA

template. Albeit not significantly affecting a final RNA quantifi-

cation, we note that the template DNA amplicon was still present

in final RNA preparations even after several elimination steps.

Given a short amplicon (62 bp) for RT-qPCR in this study, it is

plausible that some of fragmented template DNA by DNase I

digestion was still present and amplified by the qPCR reaction.

The background level could be further reduced by a thorough

blocking and washing of streptavidin-coupled resin and by using a

longer amplicon in the RT-qPCR reaction.

This study demonstrates that a one-step RT-qPCR method can

successfully replace the radioisotope-labelling of RNA and gel

electrophoresis procedure in the G-less cassette in vitro transcrip-

tion assay. By eliminating several time-consuming steps, the whole

procedure can be completed in one day, from chromatin assembly

to the quantification of RNA product in the final transcription

reaction. Since the whole procedure is performed in a liquid-based

Figure 4. Real time PCR analysis of in vitro transcription assay from naked DNA and chromatin templates. (A) Summary of the in vitro
transcription reaction is outlined (left to right) from a template immobilization on the streptavidin-coupled agarose to the radioisotope-free
transcription reaction. (B) Schematic presentation of the procedures that are followed after the transcription reaction. (C) Standard curve of
biotinylated template DNA (625/3,125/6,250 femtogram) from a RT-qPCR analysis. (D) Transcription output of naked p21 promoter-driven G-less
transcript. Triplicate samples were analyzed by a RT-qPCR and absolute quantification was performed based on the standard curve in panel (C). The
standard deviation is indicated by error bars. (E) MNase digestion of chromatin-assembled biotinylated p21 promoter template (PCRp21MLbio).
500 ng of assembled chromatin was digested with MNase and resolved using 1.2% agarose gel electrophoresis and ethidium bromide staining. The
mass ratios of core histones to DNA are indicated. (F) Transcription output of chromatin-assembled p21 promoter-driven G-less transcript. Triplicate
samples were analyzed by a RT-qPCR and absolute quantification was performed based on the standard curve. The standard deviation is indicated by
error bars.
doi:10.1371/journal.pone.0023617.g004
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reaction, this methodology could also be easily adapted to a high

throughput format, with the ability to accurately quantify even

small amounts of RNA transcript.

Materials and Methods

Plasmids and reagents
p208p53ML [9], pWWP-luc [16] and all other expression

plasmids were obtained from Dr. Roeder at the Rockefeller

University. PCR primers, M2 agarose and FLAG peptide were

purchased from Sigma. Enzymes for DNA manipulation were

from New England Biolabs. High capacity streptavidin-coupled

agarose was purchased from Pierce and aliquoted to 50%

suspension in the blocking buffer as described in the text.

TRIZOL LS and the SuperScript III Platinum SYBR Green

One-Step qRT-PCR kit were purchased from Invitrogen. RNase

T1 and DNase I were purchased from Roche Diagnostics. All

other chemicals and biochemicals were purchased as molecular

biology grade reagents.

Preparation of recombinant proteins and HeLa nuclear
extracts

E. coli BL21-Codon plus (Stratagene) was used to express

FLAG-p53, Histidine-tagged NAP1 and Xenopus core histones.

Sf9 insect cells were maintained in Grace’s insect medium (Gibco)

supplemented with 10% fetal bovine serum and used to express

recombinant drosophila ACF complex (Flag-ACF+ISWI) and

p300 from baculoviruses. Detailed purification methods were as

previously described [12,13].

One-step RT-qPCR
Triplicate samples of 2 ml of purified RNA from in vitro

transcription reactions were analysed by adding 23 ml of a

combined reverse transcriptase (RT) and PCR reaction mixture

(0.2 mM forward and reverse primers, 12.5 ml of 26 SYBR

reaction mixture, 0.5 ml of reverse transcriptase and Taq DNA

polymerase mixture). The RT reaction was started by incubating

at 50uC for 30 min for cDNA synthesis and followed by

conventional qPCR amplification cycles (95uC for 5 sec and

60uC for 30 sec, 40 cycles) in the LS480 real time PCR machine

(Roche).
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