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Abstract

Myc is an important protein at the center of multiple pathways required for growth and proliferation in animals. The
absence of Myc is lethal in flies and mice, and its over-production is a potent inducer of over-proliferation and cancer. Myc
protein is localized to the nucleus where it executes its many functions, however the specific sub-nuclear localization of Myc
has rarely been reported. The work we describe here began with an observation of unexpected, punctate spots of Myc
protein in certain regions of Drosophila embryos. We investigated the identity of these puncta and demonstrate that Myc is
co-localized with coilin, a marker for sub-nuclear organelles known as Cajal Bodies (CBs), in embryos, larvae and ovaries.
Using antibodies specific for U7 snRNP component Lsm11, we show that the majority of Myc and coilin co-localization
occurs in Histone Locus Bodies (HLBs), the sites of histone mRNA transcription and processing. Furthermore, Myc localizes to
HLBs only during replication in mitotic and endocycling cells, suggesting that its role there relates to replication-dependent
canonical histone gene transcription. These results provide evidence that sub-nuclear localization of Myc is cell-cycle
dependent and potentially important for histone mRNA production and processing.
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Introduction

Myc protein controls metabolism, cell growth and proliferation in

a coordinated fashion to provide energy production on demand and

promote successful replication [1]. Myc functions by regulation of

genes transcribed by RNA Polymerase II plus stimulation of

transcription by RNA Polymerases I and III, helping to promote

protein synthesis consistent with its primordial role in ribosome

biosynthesis [2,3,4]. In keeping with its promotion of ribosome

biogenesis, Myc influences nucleolar architecture via regulation of

viriato (vito), the Drosophila Nol12 homolog that is required for

nucleolar integrity during Myc stimulated growth [5].

We have previously shown variation in levels of Myc protein

present during Drosophila embryogenesis [6], and during these

experiments we observed punctate spots of Myc protein within the

nuclei of embryonic cells. Interested in the potential significance of

sub-nuclear Myc puncta, we investigated the identity of these and

show here that Myc overlaps coilin and Lsm11 in the Histone

Locus Body (HLB) of Drosophila.

The histone genes of Drosophila melanogaster exist as tandemly

repeated sets of the canonical histone genes, which are transcribed

during S phase of the cell cycle. The resulting replication-

dependent histone transcripts lack a poly-A tail, rather the 39 ends

of histone mRNAs form a conserved stem-loop structure.

Metazoans share this feature along with the U7 snRNP that

binds the stem-loop, which includes proteins SLBP, Lsm10 and

Lsm11 (reviewed in [7]). Lsm10 and Lsm11 are required for

histone pre-mRNA processing and are found in the HLB, a

nuclear body associated with the histone gene locus [8,9]. Nascent

histone transcripts associate with a Cyclin E/Cdk2 dependent

phospho-epitope localized to the HLB [10]. We show that Myc

associates with all HLBs that contain the same Cyclin E/Cdk2

phospho-epitope, and that Myc does not associate with HLBs in

the absence of this epitope. Our results reveal a novel role for Myc

as a cell-cycle dependent component of HLBs.

Methods

Genotypes
Oregon-R, except for embryos in Figures 3 and 4, which are

doubly heterozygous for daughterless-Gal4 [11] and UAS-Lsm11-

EYFP [9].

Tissue fixation and immunostaining
Ovaries were fixed and stained according to Frydman and

Spradling [12]; embryos were fixed and stained according to

Sokac and Wieschaus [13]; larvae were fixed and stained

according to Johnston and Edgar [14].

To be certain of the validity of the co-localization observed

during this study, we obtained the following data from control

experiments: single stainings for Myc showed similar puncta;

stainings with each primary antibody combined with the wrong

secondary showed no staining pattern except for one case, and we

eliminated that secondary antibody. Staining with one primary

antibody and all secondary antibodies together showed the same

patterns as with one secondary alone. For microscopy we used

sequential scanning of each channel, ensuring that detection of

each fluorophore occurred only with the correct excitation laser.
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Antibodies
We used three different Myc antibodies (Santa Cruz, Figure S1).

Immunostaining of larvae and embryos expressing an RNAi

construct specific for dmyc [15] showed the absence of Myc

puncta (Figure S2).

Primary antibodies were used at the following concentrations:

rabbit anti-Myc 1:500, goat anti-Myc 1:250, mouse anti-fibrillarin

1:1000 (abcam), guinea pig anti-coilin 1:2000 (ovaries, embryos,

the antibody was a gift from Joseph Gall) and 1:500 (larvae), rabbit

anti-Lsm11 1:2000 (ovaries and embryos, gift from Joseph Gall)

and 1:500 (larvae), mouse anti-GFP 1:500 (Covance), chicken anti-

GFP (abcam) and mouse MPM-2 1:1000 (Millipore).

Microscopy
Images were generated using a Zeiss LSM 710 or Olympus

FluoView FV1000 confocal microscope. Images were acquired

such that there were no saturated pixels, with minimal offset.

Modifications to images were minor, and limited to gamma

adjustment and contrast adjustments within the Olympus FV1000

software (Figure 1A was obtained on the Zeiss and we did not alter

those images following acquisition). Modified images were cropped

using Adobe Photoshop.

Results

Myc rarely localizes to the nucleolus
During the course of repeated antibody stainings to examine

Myc protein levels, we observed clusters of cells containing

punctate spots of Myc. As a transcription factor, the general

nuclear localization that we observed in most cells was expected,

however we were curious to determine the identity of the Myc

puncta. Although in vitro experiments have not shown Myc to be

associated with ribosomal DNA in Drosophila, Myc abundance

correlates with the size and integrity of nucleoli [1,16]. Therefore,

we began our investigation by double staining ovaries, larval

salivary glands and embryos with antibodies specific for Myc and

fibrillarin, a marker for nucleoli.

In ovaries, we observed broad Myc accumulation with many

Myc puncta located within the nuclei of nurse cells. Myc appeared

excluded from nucleoli in both nurse cells and follicle cells.

Different from the nurse cells, we observed no Myc puncta but

Figure 1. Myc does not localize to the nucleolus. A) Myc (green), fibrillarin (red) and DAPI label stage 8 (top) and 10 (lower) egg chambers.
Arrows label a nurse cell, and arrowheads label a follicle cell. B) A larval salivary gland nucleus labeled with DAPI (blue), Myc (green) and fibrillarin
(red) shows the exclusion of Myc from the nucleolus. C) A stage 10 embryo labeled with Myc (green), fibrillarin (red) and DAPI (blue) showing minimal
overlap of Myc and fibrillarin (bottom three panels, note the cell within the yellow circles with a bright fibrillarin domain that lacks Myc). D) A stage 6
embryo labeled with Myc (green), fibrillarin (red), coilin (white) and DAPI, showing that locations where Myc and fibrillarin overlap are puncta
containing coilin (shown by the white arrow in the higher magnification boxes below). Myc does not overlap with fibrillarin in the nucleolus (shown
by the orange arrow). E) A larval salivary gland cell labeled with Myc (green), fibrillarin (red), coilin (orange) and DAPI, showing that Myc, fibrillarin and
coilin overlap outside of the nucleolus (arrows).
doi:10.1371/journal.pone.0023928.g001
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general nuclear staining of Myc in follicle cells (Figure 1A). In the

salivary glands of larvae, Myc localized to the nucleus and was

largely excluded from the nucleolus (Figure 1B).

Fibrillarin is present in a sub-nuclear organelle known as the

Cajal Body [9]. In embryos, Myc infrequently overlapped

fibrillarin (Figure 1C, at stage 8, 63 Myc puncta also contained

fibrillarin, n = 213). The overlap that we observed with Myc and

fibrillarin in both larvae and embryos coincided with the Cajal

Body, not the nucleolus (Figure 1D-E).

Myc protein co-localizes with coilin
Cajal Bodies are organelles within the nucleus where the

accumulation and some assembly of snRNPs occurs before mature

snRNPs relocate to chromosomes for splicing [17]. They often

appear adjacent to the nucleolus in Drosophila, and have been

shown to transiently associate with several different loci in

mammalian cells [9,18]. The signature protein component of

CBs is coilin; homozygous null coilin tissues lack CBs in

Drosophila, and coilin knockout mice lack functional CBs

[19,20]. Given the presence of fibrillarin in CBs and the minimal

overlap of Myc and fibrillarin, we next hypothesized that the Myc

puncta were localized to CBs. Therefore, we double stained ova-

ries, larvae and embryos with anti-Myc and anti-coilin antibodies

(a gift from Dr. Joseph Gall).

In ovaries, Myc and coilin localized to the same nuclear bodies in

nurse cells. Beyond stage 2 of oogenesis, Myc bodies almost always

contained coilin (49 in 50 Myc bodies contained coilin), although

less than half of Cajal bodies contained Myc (21 Myc positive CBs,

n = 57, Figure 2A). In the germarium and in follicle cells, Myc

appeared diffuse and not obviously localized to any coilin-

containing body. In salivary glands of third instar larvae, we

observed co-localization of Myc with most of the large coilin bodies

(Myc appeared in 22 out of 27 large coilin bodies, Figure 1E).

During embyrogenesis, Myc puncta appeared following the

onset of cellularization. In the cellular blastoderm, Myc puncta

almost always overlapped coilin (75 Myc positive CBs, n = 78

CBs). In cells of the early postblastoderm mitotic domains [21],

Myc protein exhibited puncta that overlapped the CBs of those

cells (39 Myc positive CBs, n = 41, Figure 2B, upper panels). Later,

at approximately stage 11, Myc protein appeared diffuse in cells of

the endoderm and the visceral musculature of the mesoderm. In

the head regions and ectoderm, Myc protein appeared in puncta

that overlapped CBs (32 Myc positive CBs, n = 37, Figure 2B,

lower panels).

Figure 2. Myc and coilin overlap in ovaries, salivary glands and embryos. A) A stage 9 egg chamber labeled with Myc (green) and coilin
(orange). The light gray arrow points to a nurse cell, and arrowhead points to a follicle cell. A nurse cell lacking overlap of Myc with coilin is shown
(nurse cell in the green boxes, panels below and left), and a nurse cell with Myc and coilin containing puncta is also shown (nurse cell in the light gray
boxes, panels below and right). B) A stage 8 embryo (top) and stage 11 embryo (bottom) labeled with Myc (green), coilin (red) and DAPI (blue). Myc is
generally diffuse throughout nuclei at stage 8 except for parts of the cephalic furrow (higher magnification boxes below the top embryo; the region
magnified is indicated in the yellow box) and future ectoderm. By stage 11, Myc appears in puncta of the ectoderm and head regions, the latter is
shown magnified in the yellow box. These puncta contain coilin (see text). C) A larval salivary gland nucleus labeled with Myc (white), coilin (red),
Lsm11 (green) and DAPI (blue) shows overlap of Myc with coilin in the largest coilin-containing body.
doi:10.1371/journal.pone.0023928.g002

Myc in Histone Locus Bodies during Replication

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23928



These data show that Myc and coilin co-localize broadly in

Drosophila tissues, and the localization may correspond to CBs,

HLBs or both. We investigated the possibility that the Myc and

coilin overlap occurs in HLBs.

Myc and coilin localization occurs mainly in HLBs
The HLB is a similar nuclear body to CBs, however it is distinct

in that it contains the U7 snRNP and associates with the histone

gene loci in Drosophila [9,17]. HLBs and CBs can reside adjacent

to each other or apart from each other, and both contain coilin

[9,19]. Because we observed Myc and coilin together in the

nucleus, we investigated whether Myc puncta were HLBs rather

than CBs. To visualize HLBs along with coilin, we obtained

transgenic flies expressing an HLB marker, Lsm11-EYFP under

the control of Gal4 (a gift from Dr. Gall). Lsm11 is a protein

component of the U7 snRNP, which is specific for HLBs [17]. We

induced expression of the transgene and triple-stained tissues with

anti-Myc, anti-coilin and anti-GFP (embryos). In additional

experiments, we stained wild type larvae and ovaries with anti-

Lsm11 (also from Dr. Gall), anti-Myc and anti-coilin.

In Drosophila egg chambers, Myc overlapped coilin and Lsm11

in nurse cell nuclei (Figs. 3A and 4D). In salivary glands of third

instar larvae, immuno-staining against Myc and GFP or Lsm11

showed the localization of Myc to HLBs; 81% of Lsm11 and

coilin-containing HLBs included Myc (n = 27, Figures 2C and

4D). Myc localization to CBs containing coilin but no Lsm11 was

less common; Myc appeared in 20% of non-Lsm11 Cajal Bodies,

n = 29 (Figure 4D).

Similarly, in embryos, Myc puncta frequently contained both

coilin and Lsm11 (Figure 3B), suggesting that the majority of

embryonic Myc bodies are HLBs (in 221 Myc puncta, 208 also

contained both coilin and Lsm11). The degree of Myc and Lsm11

overlap depended on the germ layer and/or region of the embryo.

For instance, 86% of HLBs were Myc positive in the ventral

ectoderm of stage 10 embryos (n = 117), however 13% of HLBs

were Myc positive in the endoderm of the posterior midgut at the

same stage (n = 52).

Figure 3. Myc localizes to Histone Locus Bodies (HLBs). A) Two egg chambers, ,stages 5-6, labeled as indicated and showing that Myc, coilin
and Lsm11 co-localize in nurse cells and the oocyte nucleus (the arrow labels a nurse cell and arrowhead labels a follicle cell; the oocyte nucleus is
within the light blue dashed circle). The panels on the right show a nurse cell with Myc, coilin and Lsm11 in the same bodies; a nurse cell lacking Myc
in a coilin-Lsm11 body; the oocyte with all three co-localized (right panels). B) A wild type, stage 8-9 embryo labeled with Myc (green), coilin (red),
Lsm11-EYFP (white) and DAPI (blue) showing that Myc, coilin and Lsm11 co-localize to the majority of the bodies occurring in these embryos (lower
panels show the cells in the orange box). C) The surface of an embryo at the onset of gastrulation, labeled with Myc (green), coilin (red) and MPM-2
(white) and DAPI, with a higher magnification of the merged image above. MPM-2 positive cells are replicating, and the MPM-2 bodies contain Myc
and coilin (note cell in the purple boxes). One CB is evident with no MPM-2 or Myc present (in white box, HLB is labeled with an arrow, and the CB is
labeled with a diamond-headed arrow).
doi:10.1371/journal.pone.0023928.g003
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These data show that Myc occurs in the HLB of both mitotic

and endoreplicating cells. However, Myc does not localize to

HLBs in all nurse cells of an egg chamber, nor does it localize to all

HLBs in the cells of an embryo.

Myc localizes to HLBs only during replication
Because many different cell types showed Myc in the HLB,

however not uniformly within an egg chamber or embryo, we

investigated whether Myc localization to HLBs is cell cycle

dependent. We stained embryos, larvae and ovaries with the

monoclonal antibody MPM-2, which cross-reacts with phospho-

epitopes of mitotic cells in many organisms [22]. In Drosophila

embryos, MPM-2 recognizes the phospho-epitope of a protein

present in HLBs, but only in cells with active Cyclin E/Cdk2 [10].

We first examined all coilin-containing bodies, which may be

CBs or HLBs, by staining embryos with MPM-2, anti-coilin and

anti-Myc antibodies. Myc appeared in 100% of the coilin and

MPM-2 positive bodies, n = 30. Myc appeared in just 10% of CBs

or HLBs lacking MPM-2, n = 30 (Figures 3C, 4D). We found

similar results in ovaries, that Myc overlapped MPM-2 in all nurse

cells containing puncta positive for MPM-2 (n = 30 nurse cells),

and overlap with coilin was limited to MPM-2 positive bodies (all

of which are HLBs later in oogenesis [19], as in Figure 4A).

To examine bodies identifiable as HLBs in cells undergoing

replication, we stained ovaries and embryos with MPM-2, anti-

Lsm11 (or anti-GFP) and anti-Myc. Myc and Lsm11 co-localized

only in the presence of the MPM-2 epitope. HLBs containing both

Lsm11 and MPM-2 were positive for Myc (Figure 4D). HLBs

lacking the MPM-2 epitope also lacked Myc (Figure 4B and 4D).

In embryos, replicating cells were identified with MPM-2 positive

HLBs, and those bodies always included Myc (n = 27). Myc was

never observed in MPM-2 negative HLBs, n = 33 (Figure 4C–D).

Discussion

Our data show that Myc is a component of the HLB along with

Lsm11 and the MPM-2 epitope-containing protein during

replication, the time at which the canonical histone genes are

transcribed. We observed little cell-type specificity of Myc puncta,

Figure 4. Myc localizes to HLBs in replicating cells. A) A stage 10 egg chamber is shown, labeled with Myc (green), coilin (red), MPM-2 (white)
and DAPI, and a nurse cell is labeled with the light gray arrow. Myc, coilin and MPM-2 overlap in the HLB of the nurse cell in the yellow boxes, and
MPM-2 and Myc overlap although coilin staining is weak in the HLB of the nurse cell in the gray boxes. B) A stage 8 egg chamber, labeled with Myc
(green), MPM-2 (red), Lsm-11 (white) and DAPI shows that Myc puncta are the HLBs of replicating nurse cells. A nurse cell is shown with MPM-2
positive HLBs (cell in yellow boxes and magnified below), and Myc appears in those HLBs. A nurse cell is shown with Lsm11, non-MPM-2 staining
HLBs, and Myc is absent (cell in light gray boxes, magnified below in the right-most panels). C) A germband-retracted embryo labeled with Myc
(white), MPM-2 (red), Lsm11 (green) and DAPI showing that HLBs containing MPM-2 and Lsm11 also contain Myc (white arrows), and HLBs that
contain Lsm11 but not MPM-2 do not contain Myc (light blue arrows). D) A chart showing the numbers reported in the text of Myc-overlapping
(green bars) and non-Myc-overlapping puncta containing coilin (C), Lsm11 (L), and MPM-2 in embryos (E and the third and fifth sets of bars), larvae (L)
and nurse cells (NC and also the fourth set of bars).
doi:10.1371/journal.pone.0023928.g004
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since we identified Myc puncta throughout the embryo and in

larval and ovary tissues. One exception is the lack of Myc puncta

in the germarium and follicle cells of the ovary.

What could be the function or consequence of Myc in the HLB?

One obvious possibility is that Myc helps boost transcription of the

histone genes, consistent with its localization during replication

when those genes are transcribed. In human embryonic stem cells

and fibroblasts, HLBs contain the U7 snRNP in addition to a

histone gene coactivator protein, p220NPAT, during mid-late G1

through S phase of the cell cycle [23]. These data suggest that

HLBs are capable of histone gene transcription initiation. It is

therefore logical to consider that Myc’s role in the HLB is related

to transcriptional activation. If this is indeed the case, Myc loss-of-

function mutants should have decreased histone gene expression.

Short-term knock-down of Myc by RNAi should address this

question, as long as pleiotropic effects are minimized. The

reciprocal should also be informative; over-expression of Myc

may induce higher levels of histone gene expression. In our

previous experiments expressing ectopic Myc [24,25], we have not

found dramatic changes in the levels of histone gene transcripts,

however. Over-expression of Myc may not lead to increased levels

of Myc in HLBs; that would have to be determined before

conclusions can be drawn about the effect of elevated Myc on

histone gene expression.

In human primary cells as in Drosophila, the U7 snRNP

localizes to the HLB. In most human cancer cell lines, however,

the U7 snRNP often localizes to the Cajal Body rather than the

HLB, and therefore an intriguing delocalization of the U7 snRNP

occurs in cancerous cells [18]. Elevated telomerase activity is a

hallmark of cancer cells [26], and Cajal Bodies play a role in

telomere length regulation; human telomerase RNA and the

telomerase reverse transcriptase, hTERT, localize to CBs near

telomeres during S phase [18]. Myc protein has been found to

bind directly to TRF/PIN2, a DNA binding protein involved in

telomere capping and telomerase inhibition. Expression of the

TRF/PIN2 interaction domain of Myc, the protein’s C-terminus

that lacks its trans-activation domain, led to increased telomere

length in vivo [27]. It would be informative to determine the

localization of Myc with respect to HLBs, CBs and TRF/PIN2 in

wild type and cancerous cells.

How might Myc be targeted to the HLB? Myc has been shown

to be phosphorylated by cyclin E/Cdk2, altering Myc function, at

mammalian c-Myc residue Ser-62 [28]. Drosophila Myc is not

identical in this region of the protein, Myc Box I, however it does

harbor a serine residue at the site next to the Ser-62 orthologous

site [29]. An intriguing hypothesis is that cyclin E/Cdk2

phosphorylation of Myc causes subsequent localization to the

HLB. Mutations eliminating potential phosphorylation sites of

Myc in Drosophila would be informative in addressing this

hypothesis. If a Ser-62 to alanine-62 mutant protein is unable to

localize to the HLB, then phosphorylation of that site may have a

role in Myc’s localization to the HLB. Alternatively, ectopic cyclin

E expression may drive constitutive localization of Myc in the

HLB. We are pursuing this experiment.

Recently, White and colleagues identified several novel

components of HLBs in Drosophila. Using biochemical and

genetic approaches in S2 culture cells, the group identified Spt6

and the Drosophila NPAT homolog, Mxc, as novel components of

the HLB. Myc was not identified as a component of the HLB in

these experiments, but neither were two known components of

HLBs: Lsm10 and Lsm11 [30]. Despite this fact, the new

knowledge of HLB components, including Myc as described in

this study, will help determine the function of HLBs, whose

complete set of functions remains unclear.

Supporting Information

Figure S1 MycN, dMyc and Myc-1 antibodies recognize Myc

protein in embryos (top panels), egg chambers (middle panels) and

larval salivary glands (bottom panels).

(TIFF)

Figure S2 The puncta recognized by anti-Myc are eliminated by

RNAi specific for dmyc. We crossed hsGal4 females with UAS

dmyc RNAi males, heat shocked third instar larvae (left panels)

and embryos (right panels) for 90 minutes followed by fixation and

staining (MycN antibody). Each column is a series of confocal

sections through the same sample.

(TIFF)
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