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An important element determining the time requirements of Born-Oppenheimer molecular dynamics
(BOMD) is the convergence rate of the self-consistent solution of Roothaan equations (SCF). We
show here that improved convergence and dynamics stability can be achieved by use of a Lagrangian
formalism of BOMD with dissipation (DXL-BOMD). In the DXL-BOMD algorithm, an auxiliary
electronic variable (e.g., the electron density or Fock matrix) is propagated and a dissipative force is
added in the propagation to maintain the stability of the dynamics. Implementation of the approach
in the self-consistent charge density functional tight-binding method makes possible simulations that
are several hundred picoseconds in lengths, in contrast to earlier DFT-based BOMD calculations,
which have been limited to tens of picoseconds or less. The increase in the simulation time results
in a more meaningful evaluation of the DXL-BOMD method. A comparison is made of the num-
ber of iterations (and time) required for convergence of the SCF with DXL-BOMD and a standard
method (starting with a zero charge guess for all atoms at each step), which gives accurate prop-
agation with reasonable SCF convergence criteria. From tests using NVE simulations of C2F4 and
20 neutral amino acid molecules in the gas phase, it is found that DXL-BOMD can improve SCF
convergence by up to a factor of two over the standard method. Corresponding results are obtained
in simulations of 32 water molecules in a periodic box. Linear response theory is used to analyze
the relationship between the energy drift and the correlation of geometry propagation errors. © 2011
American Institute of Physics. [doi:10.1063/1.3605303]

I. INTRODUCTION

Classical molecular dynamics simulations with the po-
tential energy of part or the entire system evaluated “on-the-
fly” by a quantum-mechanical method are playing an increas-
ing role in chemistry, physics and biology.1, 2 This type of
approach is referred to as Born-Oppenheimer molecular dy-
namics (BOMD). Although the earliest application of BOMD
goes back to 1973,3 there were only a few BOMD simu-
lations in the intervening years4 until 1985, when Car and
Parrinello introduced an alternative approach (CPMD) for
determining the potential energy by quantum mechanics;5

i.e., extra classical variables were associated with the elec-
trons and the computational efficiency for each dynamic step
was significantly improved, especially for applications with
a large number of basis functions. However, the smaller step
size required for CPMD versus BOMD makes the two meth-
ods competitive. Furthermore, due to the use of a fictitious
mass for the electrons, artifacts are unavoidably introduced in
the resultant spectrum computed by CPMD,6, 7 e.g., there is
a fictitious mass dependence of the vibrational frequencies.8

Recently, a modified formalism, called Ehrenfest dynamics,9

in which a complex term depending on the wavefunctions and
their velocities are inserted into Lagrangian to maintain the
orthogonality among orbitals, is being explored, but its per-
formance still remains to be determined.9, 10 Both BOMD and
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CPMD with the potential energy of only part of the system de-
termined by quantum mechanics and the rest obtained from an
empirical force field, in what is called combined quantum me-
chanical and molecular mechanical (QM/MM) molecular dy-
namics, have been extended into many fields. This approach is
of particular importance for reactions in an extended medium
(e.g., in solution or in enzymes).11 An early example is the
BOMD study of the Cl–, CH3Cl exchange reaction in aque-
ous solution with a semiempirical QM potential.12

BOMD, which we consider further here, can be based
on any quantum mechanical method, the most popular of
which are density functional theory (DFT),13 Hartree–Fock
theory (HF),14 and semiempirical quantum mechanical meth-
ods (SE).15–17 All these methods have a high order scaling
with respect to the number of atoms in the quantum system,
which is due to the matrix diagonalization and construction of
Fock matrices. The slow step in BOMD is the convergence of
the SCF iterations so that considerable effort is being invested
to accelerate this aspect of the method.18–23 The new algo-
rithms extrapolate electronic variables (e.g., the Fock matrix)
to accelerate SCF convergence.21 Two types of extrapolations
have been used. The first is “time” extrapolation, in which the
electronic variables are explicit functions of time. An example
is Fock matrix dynamics (FMD).21, 22 In FMD, the Fock ma-
trix is assumed to be a polynomial function of time and the co-
efficients of the polynomial are found from the initial n steps
(n is the polynomial order). For the first n steps, conventional
BOMD is propagated without Fock matrix extrapolation and
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after the first n steps, the electronic variables at a new time
step (i.e., the next geometry in the dynamics) are obtained
from their values at previous time steps. These new electronic
variables are then used as the initial guess in the SCF opti-
mization. This has been found to significantly improve SCF
convergence.20, 21 The second category is “geometric” extrap-
olation, in which the geometry of the current step is approxi-
mated as linear combination of previous step geometries and
the electronic variables are extrapolated with the same linear
combination of steps.19, 20 In the least-square fitting of molec-
ular orbital coefficients method,20 the coefficients of the linear
combination are obtained by the direct inversion in the itera-
tive subspace method.24 Both the time and geometric extrap-
olation algorithms have demonstrated encouraging accelera-
tion of the SCF convergence, but the lack of stability of the
dynamical propagation calculated with these algorithms can
create problems.22

To achieve dynamics stability and efficient SCF conver-
gence, one of the authors (Niklasson and his co-workers) de-
veloped a time-reversible Born-Oppenheimer molecular dy-
namics (TR-BOMD), in which the time reversibility of the
calculated density is explicitly conserved by introducing an
auxiliary density.25, 26 A two-step procedure is used in which
the actual density is determined from the auxiliary density,
which is perfectly reversible and remains close to the Born-
Oppenheimer density by introducing an update filter.25 With
such an approach, the propagated density is close to the con-
verged density. Thus, the SCF convergence efficiency is sig-
nificantly improved, while the time reversibility of the den-
sities aids in preserving the stability of the dynamics; details
are given in Refs. 25 and 26. This approach has been gener-
alized to an extended Lagrangian formalism (XL-BOMD), in
which the auxiliary variables (i.e., the densities) are treated
on an equal footing with other nuclear degrees of freedom.27

Although the XL-BOMD formalism has similarities to the
CPMD, no fictitious mass is associated with the auxiliary vari-
able in the former, eliminating artifacts arisen in the latter.
Moreover, the generalization to a Lagrangian formalism en-
ables the use of higher-order symplectic schemes (e.g., the
Verlet algorithm), which makes possible time steps on the or-
der of those standard in molecular dynamics simulations with
an empirical potential energy function.28

An important drawback resulting from the time re-
versibility is that the error/noise propagates without cancella-
tion in XL-BOMD, so that the energy drift of successive steps
tends to accumulate and cause instability of the dynamics.29

Besides the numerical errors arising from truncation in the
dynamical propagation, errors in XL-BOMD can originate
from the only finite convergence of SCF and round off errors,
which introduce inaccurate forces. Previous BOMD studies
have been limited to a few picoseconds where energy con-
servation is easier to achieve; for a very clear discussion, see
Ref. 29. The effect is expected to become more serious for
longer simulations, such as those investigated here for the first
time.

Inspired by an idea from conventional Langevin
dynamics30 (i.e., having a damping term to counteract the ef-
fects of noise and maintain thermal equilibrium) and the al-
gorithm of Kolafa et al.,31 a damping term has been intro-

duced into the propagation of auxiliary variables. This term
is a function of the electronic variables from previous steps.
With this additional term, increased stability of dynamics has
been obtained, while the acceleration of SCF convergence is
preserved.29 This method is referred to as DXL-BOMD in the
present paper.

The encouraging results from DXL-BOMD based HF
(Ref. 29) and DFT (Ref. 32) stimulated us to combine the
DXL-BOMD algorithm with the density-functional tight-
binding method (DFTB).17, 33 Such a combination is of par-
ticular importance11, 34 because the DFTB method is gener-
ally several orders of magnitude faster than the DFT method,
so that much longer simulation times can be achieved. This
makes possible the calculation of dynamics of interest for
evaluating conformational changes and the free energies of
various processes, which cannot be achieved in a reliable fash-
ion with DFT, given the present computational limitations.
Further, from a more technical viewpoint, such longer sim-
ulations can make clear the deficiencies in the DXL-BOMD
method and motivate improvements. In this paper, we de-
scribe the implementation of the DXL-BOMD algorithm with
DFTB method and present some test results.

In Sec. II, the theory of DFTB and DXL-BOMD are
summarized to make the current manuscript self-contained.
Section III presents computational details. In the Sec. IV, the
results from C2F4 and amino acid molecules are presented as
well as the comparison of algorithms based on an extrapola-
tion of charges and the Fock matrix. Results from condensed
water systems are also discussed in this section. Based on the
test results and the current implementation of DXL-BOMD,
the conclusion is made in the Sec. V.

II. THEORY

In this section, we first review DFTB theory used in the
present paper. Then, the DXL-BOMD method that were used
previously in DFT32 and Hartree-Fock BOMD.29 These are
included to make the paper self-contained.

A. Density functional tight-binding method

The DFTB method is a second-order approximation of
density functional theory (DFT) energy with respect to varia-
tion of the atomic charges.17 Mulliken charges35 are utilized
to account for the inter-atomic charge interactions due to its
simplicity. In addition, only valence electrons are explicitly
treated in the DFTB method, as in most other semiempirical
methods.15 The total energy (closed-shell) of DFTB can be
written as

E = tr(Ph0) + 1

2

∑
A �=B

γ AB�qA�qB + 1

2

∑
A �=B

V AB. (1)

Here, P is the one electron density matrix and h0 is the di-
atomic Hamiltonian matrix. The elements of h0 are param-
eterized based on diatomic calculation from density func-
tional theory. In practice, the PBE functional36 has been used
in these calculations. The matrix elements as a function of
evenly distributed interatomic distances are interpolated by
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spline functions from precomputed values on evenly dis-
tributed grids. The Mulliken charge is computed via

�qA =
AO∑
μ∈A

AO∑
v

PμνSμν − ZA, (2)

where ZA is the nuclear charge of atom A. The overlap ma-
trix S is parameterized via an approach similar to that used
for h0 and γ AB is a function that depends on the Hubbard val-
ues of atom A, B and their distance; at large distances, γ AB

converges to 1/R form (the standard Coulomb charge inter-
action kernel). VAB is the repulsive potential between atom A
and atom B, which is parameterized to match the potential
energy curves as a function of the A-B distance calculated
with DFTB to those from DFT for a set of molecules. The
repulsive potential between any two atoms is also parame-
terized on spatially evenly distributed grid points and the re-
quired values are interpolated by spline functions from these
grid point values. From the total energy expression, the DFTB
method can be considered to be a self-consistent charge ex-
tended Hückel method37 since only parameterized diatomic
one electron Hamiltonian matrix elements and overlap matrix
elements are required.

In the DFTB program, SCF starts either from zero charge
guess (ZRC), i.e., all atoms are assumed to have zero charges
at the first iteration of SCF, or from the converged SCF results
at the previous geometry (PRC). After that, the charges are
updated iteratively until the absolute total energy difference
value at successive iterations is less than a preset threshold.
In contrast to the ab initio methods or DFT methods, where
the most time consuming part is in computing the integrals to
update Fock matrix at each step, the main computational bot-
tleneck in the DFTB method (as well as for other semiempir-
ical methods) is the diagonalization of the Fock matrix, i.e.,
solving the Roothaan equations. Consequently, reducing the
number of iterations in SCF procedure can significantly im-
prove the computational efficiency.

In principle, the SCF procedure is an optimization prob-
lem, which is solved in the DFTB program with the modi-
fied Broyden method38–40 The approximate inverse electronic
Hessian is updated from information obtained from previous
iterations, i.e., a rank-n update (n is the number of previous it-
erations used). This method performs efficiently in optimiza-
tion problems of the present type and thus is used here.39–41

B. Extended equations of motion
for Born-Oppenheimer molecular dynamics
with dissipation

In our previous work,27, 29 the propagation equations for
both nuclei and the auxiliary variable(s) have been derived
from an extended Lagrangian in the limit of zero fictitious
masses associated with the auxiliary variables. An alternative
and more direct way to arrive at the same equations is given
here. The auxiliary variables are assumed to be harmonic os-
cillators that oscillate around the converged electronic vari-
ables while the nuclei propagate according to the Newtonian
dynamics on Born-Oppenheimer potential energy surface. In
the current study, the atomic Mulliken charges are used as

auxiliary variables. The equations of motion for the nuclei and
the auxiliary variables can be written straightforwardly as

MkR̈k = −∂U [R; D]

∂Rk

, (3)

C̈ = ω2 (D − C) . (4)

Here, R represents the nuclear coordinates; R̈, the second
derivative of coordinates with respect to time; and U [R; D]
is the self-consistent electronic ground state potential en-
ergy. The quantity D is the converged charge vector at the
given nuclear configuration and the symbol C represents an
auxiliary charge variable. ω is the parametric frequencies
of auxiliary variable vibrations, which will be discussed in
the following text. The Eqs. (3) and (4) are equivalent to the
Eqs. (7) and (8), respectively, in our previous study using
the extended Lagrangian formulation of Born-Oppenheimer
molecular dynamics.29 From Eq. (3), it is clear that the dy-
namics of the nuclear degrees of freedom, R, is not affected by
the auxiliary degree of freedom C. This differs from CPMD,6

and eliminates the artifacts introduced by the fictitious degree
of freedom in that approach.

Since the variable C(t) evolves in a harmonic potential
centered around the ground state solution D(t), C(t) will re-
main close to the self-consistent solution D(t) if appropriate
values of ω2 are chosen in Eq. (4). It is natural, therefore, to
use C(t) as the initial guess for D(t) at each nuclear configu-
ration in the SCF optimization procedure, i.e.,

D(t) = SCF [C(t)]. (5)

This choice often reduces the number of SCF iterations,
compared with those required when one uses as the ini-
tial guess the zero charge vector. More importantly, because
C(t) is a dynamical variable that can be integrated with a
time-reversible scheme, the SCF optimization in Eq. (5) re-
tains the time reversal symmetry in the underlying electronic
propagation.25, 27 By contrast, in regular BOMD, the SCF pro-
cedure is nonlinear and irreversible, so that the time reversal
symmetry of the electronic propagation is broken unless ex-
act convergence to the SCF value is achieved. In any case,
better convergence would be required for the same behavior
of the dynamics; this is considered in the results section.25, 27

Because the broken time reversibility of the electronic de-
grees of freedom leads to the energy drift,21, 22 it is ex-
pected that conservation of time reversibility will improve the
results.

However, a problem with the use of time reversible dy-
namics is that any noise introduced in the dynamical steps
tends to accumulate, rather than average out, and again causes
an energy drift in the simulations.29, 32 For resolving this issue,
dissipative forces have been introduced into the propagated
auxiliary variables, C, while maintaining the time reversibil-
ity as accurately as possible, so that the nuclear motion is not
significantly perturbed.29 The conservation of time reversibil-
ity in this formulation is similar to the approach used by
Kolafa et al.31 If the numerical noise is represented by η(t),
then Eq. (4) is modified to

C̈ (t) = ω2 (D (t) − C (t)) + η (t) . (6)
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Using a Langevin dynamics like approach, the noise accumu-
lation can be balanced by the addition of a dissipative force
term, Fdiss. The equation of motion of the auxiliary degree of
freedom becomes

C̈ (t) = ω2 (D (t) − C (t)) + η (t) + αμ−1Fdiss (t) , (7)

where α is a small coupling constant and the inverse mass
parameter μ−1 is introduced to give the correct dimensional-
ity. In the conventional Langevin dynamics, the Fdiss term is
chosen to be on the order of Ċ (t), but this would give rise to
large deviations from the time-reversible microcanonical dy-
namics. Thus, Fdiss is chosen to retain time reversal symmetry
to a higher order than linear, as we describe below.

Here, we reproduce the construction of Fdiss described
in Ref. 29, so that the time-reversal symmetry is broken to
only a small degree when C(t) is propagated. The construction
of Fdiss is analogous to the classical Verlet scheme. Cn−k is
expanded in a Taylor series about Cn, i.e.,

Cn−k =
M∑

m=0

(−kδt)m

m!
C(m)

n + O(δtM+1), k = 0, 1, . . . , K,

(8)
where C(m)

n = dmC/dtm at t = tn and K is the total number
of steps. From Eq. (8), it is clear that with certain coefficients,
the linear combination of the Taylor expansion of Cn−k could
be chosen to cancel the odd order terms of δt, which give
rise to the broken time-reversal symmetry. For example, in the
classical Verlet scheme, the k = ±1 are combined to remove
all odd order terms. With the appropriate linear combination,
the second time derivative of C(t) becomes

δt2C̈k = 1

dK

K∑
k=0

ckCn−k + Oeven(δt4) + Oodd (δt (2K−3)),

(9)
where Oeven(δt4) and Oodd (δt (2K−3)) are the leading even and
odd order of the error in the expansion, respectively; the con-
stant dK and expansion coefficients ck are chosen such that
Eq. (12) is satisfied (see below). If the dissipative force term
satisfies

Fdiss
n ≡ μC̈diss

n = μ

dKδt2

K∑
k=o

ckCn−k. (10)

time reversal symmetry is expected to be retained to high or-
der in δt and thus have only a minor effect on the energy con-
servation during the dynamics for sufficiently small values of
δt. The time reversal order in the dissipative force term is de-
termined by K, as shown in Eq. (10), which will be used to
distinguish different integration schemes in our analysis.

From Eqs. (7) and (10), the propagation of C(t) is given,
using the Verlet algorithm, by

Cn+1 = 2Cn − Cn−1 + κ (Dn − Cn) + α

K∑
k=0

ckCn−k,

(11)
where α now corresponds to α/dK. To employ these equations,
the parameters κ , α and ak have to be determined. As can be
seen from Eq. (12), the highest odd time order retained in the
expansion is equal to 2K−5 (only odd term contributes to time

irreversibility). In the rest of the paper, we refer to the value
of 2K−5 as the order of DXL-BOMD. For example, the al-
gorithm with K = 4 is called 3rd order DXL-BOMD. An op-
timized set was found in the previous study of DXL-BOMD
with DFT (see Table I in Ref. 29).29, 32 Using this parameter
set, it has been shown the propagation of the auxiliary vari-
ables C does well conserve the total energy of a system for the
tested time (4 ps). Here we employ the same parameters for
DFTB with the assumption that they should be appropriate for
DFTB as well as for DFT/HF. Of course, the results provide
a check on the assumption as well as a validation of DFTB.

C. Linear response theory

To interpret the observed energy drift in Section IV,
a linear response theory estimate is made.As derived
previously,28, 30, 42 the energy drift rate, Ė, of an equilibrium
system under perturbation of an external force by of the form

f (t) = Refωeiωt (12)

is equal to

Ė = |fω|2 βω2

2

∫ ∞

0
dt cos (ωt) 〈A (0) A (t)〉. (13)

In Eq. (12), ω represents the frequency of the applied force,
Re represents the real part of a complex number, and A is the
response to the applied force. In the current investigation, A
is the atomic displacement error vector of all atoms due to f(t)
and f(t) is the extra force from the finite convergence of the
SCF and/or round-off error. Although the exact form of f(t) is
not known, we assume it can be represented by Eq. (12) for
simplicity.

III. COMPUTATIONAL DETAILS

The default SCF optimization was carried out by a mod-
ified Broyden method.39, 40 The SCF convergence criterion is
based on the energy difference between successive iterations.
The default SCF energy convergence threshold criterion is
10−8 hartree, but different SCF threshold values were tested.
In current studies, threshold values in the range of 10−4 to
10−8 hartree were used. Molecular dynamics is propagated
by use of Verlet algorithm.

For the C2F4 molecule, the system was equilibrated with
the temperature kept at 500 K for 100 ps using velocity scal-
ing with a scaling probability of 10%. The SCF convergence
criterion used at each step was 10−8 hartree. The time step was
20 a.u. (0.484 fs). After equilibration, the temperature scaling
was removed, i.e., a microcanonical ensemble simulation was
performed and the system was integrated for another 100 ps
with different SCF convergence criteria and with different al-
gorithms for charge/Fock matrix extrapolation.

In addition, 20 natural amino acid molecules were tested
in vacuum, all of which are neutral with a neutralized acid or
base, if present. They include alanine, arginine, asparagine,
aspartic, cysteine, glutamic, glutamine, glycine, histidine (Nε

is protonated), isoleucine, leucine, lysine, methionine, pheny-
lalanine, proline, serine, threonine, tryptophan, tyrosine, and
valine molecules. First, 40 ps canonical ensemble simulation
was carried out for each molecule using velocity scaling to
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keep the temperature at 298 K. Then, a 100 ps microcanon-
ical ensemble simulation was performed for each molecule.
The time step was 20 a.u. (0.484 fs) for all molecules.

The liquid water system was first simulated by
CHARMM,43 in which 32 water molecules are in a periodic
cubic box. The classical TIP3P (Refs. 43 and 44) water model
was applied with the constraint of O−H bond using SHAKE

algorithm.45 First, the system was simulated for 500 ps at
298 K under NPT ensemble using Langevin piston method.46

Then, it was followed by 500 ps NVT ensemble simulation
under 298 K. In NVT ensemble simulations, the cubic box
side lengths are fixed at 9.862 Å, which is equivalent to the
experimental measured water density of 997 kg/m3. These
pre-equilibrated systems using classical force fields were
then used as starting configurations for 200 ps equilibration
under NVT ensemble using simple velocity scaling with a
scaling probability of 10% in the DFTB program. Afterwards,
500 ps NVE ensemble simulations using DFTB potential
energy functions were done, from which the latter 300 ps
segments were used in following analysis.

IV. RESULTS AND DISCUSSION

A. Conventional approaches

1. C2F4

To be able to compare with previous
investigations,21, 22, 25, 27 C2F4 is chosen as the test molecule

for the SCC−DFTB molecular dynamics study. The param-
eters for fluoride were generated and added to the existing
DFTB parameter set. Although a stringent test of the new
parameters was not performed, their quality is not important
for the present purpose.

As a criterion for the stability of the molecular dynamics
simulations, the total energy drift is plotted in Fig. 1. We note
that the time period of the dynamics is 100 ps, in contrast to
most earlier studies, which are restricted to within 10 ps.20, 21

The results using the zero charges (ZRC) (top panel) are stable
for values of the convergence criterion below 10−4 hartree;
of the latter values, large energy fluctuation occurs although
there is no overall drift. By contrast, for the PRC calculations,
although the energy fluctuations are small, there is significant
energy drift. Such behavior using methods similar to PRC has
been shown before for DFT and HF methods25, 29 and is also
known from the work of other groups.21, 22, 25, 27, 32

Equation (13) shows that in linear response theory, the
energy drift is linearly proportional to the autocorrelation
function 〈A (0) A (t)〉 of the deviation in the atomic displace-
ments. In ZRC case, since the SCF starts from zero charge, the
error in the total energy due to finite convergence in the SCF
at each step is independent of the previous steps. Correspond-
ingly, the deviation of atomic displacements from the exact
value (i.e., A) at each successive step is independent of other
steps. Thus, the energy drift remains small, although it is not
exactly zero. With PRC, in contrast to ZRC, the energy drift
increases with time. This is due to the correlation between A
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FIG. 1. Energy drift of C2F4 in Kcal/mol during 100 ps microcanonical ensemble simulation with SCC-DFTB at 500 K in the standard approach; the scales
are different in the two panels. Top and middle panels show the results from the molecular dynamics with the initial guess of zero charge (ZRC) for each atom
at every new nuclear configuration while the bottom panel shows the results with the initial guess from previous converged charges (PRC). The legends on the
left side of each panel indicate the SCF convergence criterion in unit of hartree.
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TABLE I. The average number of SCF iterations of C2F4 in microcanonical ensemble simulation using SCC-DFTB at 500 K with different extrapolated DXL-
BOMD algorithms and conventional approaches. Here, “PRC” denotes the algorithm use previous step converged charges as the initial guess of the current step
geom. “ZRC” represents the algorithm that always starts from zero charge for each atom at every time step. The number under DXL-BOMD is higher odd order
term remained in DXL-BOMD algorithms.

DXL-BOMD

SCF energy criteria [hartree] PRC ZRC 1 3 5 7 9 11 13

10−6 5 22 8.09 2.57 2.00 2.00 2.00 2.00 4.37 4.99
10−7 5.34 9.41 4.77 4.71 4.70 4.68 4.69 4.88 5.73
10−8 6.05 10.18 5.29 5.25 5.22 5.21 4.96 4.97 5.93
10−9 7.28 10.70 5.45 5.27 5.68 5.48 5.64 5.54 7.05
10−10 7.94 10.91 6.63 6.33 6.23 6.30 6.29 6.44 7.66

values at different time steps. Even with 10 −7 hartree as the
SCF convergence criterion, a significant systematic drift of
the total energy is observed (see Fig. 1). The decrease with a
tighter SCF threshold can also be understood from Eq. (13),
in which the energy drift is proportional to the square of the
force amplitude |fω|2, and the force amplitude is expected
to be linearly proportional to the SCF energy convergence
criterion.

The above results make clear that it is necessary to be
careful when choosing the SCF convergence threshold value
for the PRC case. In many studies,47, 4810−7 hartree has been
used; this is also the default value in CHARMM.49 Although
such a value does not cause a large energy drift in the current
simulation to C2F4, the energy drift continuously increases as
the simulation time increase (i.e., the energy drift over 100 ps
dynamics is about 5 Kcal/mol). We note that with PRC, even
an SCF criterion of 10−6 hartree shows no appreciable energy
drift over the “standard” 2 ps simulation time. This may in-
troduces errors in the calculated values of the system prop-
erties. Nevertheless, PRC is frequently used because it re-
duces the number of iterations relative to ZRC required to
attain a given SCF convergence value (see Table I). For all
5 different SCF energy convergence criteria studies, the av-
erage number of SCF iterations using PRC is smaller than
that using ZRC, e.g., 10−7 hartree is used as the SCF en-
ergy convergence criterion, the number of iterations required
on average is 5.3 for the PRC approach while the number is
9.4 for ZRC. As the convergence criterion is tightened, the
number of iterations will increase and the relative difference
in numbers of required cycles between PRC and ZRC will
decrease.

2. Amino acid molecules

20 natural amino acids were simulated for 100 ps
using both PRC and ZRC at 298 K. Only results
from Asn, GluH, Lys, and Tyr are shown in Fig. 2;
the other amino acids show similar features.

Use of ZRC shows some new features, as shown in
Fig. 2. For Asn and Lys the behavior is similar to C2F4,
i.e., a stable energy is achieved for all threshold values. By
contrast, GluH and Tyr appear to be very stable if a Hartree
threshold value of 10−5 or better is used. With PRC, the
results for the amino acids shown in Fig. 2 behave similarly
to those of C2F4. In all four molecules, the energy drift using

10−4 hartree threshold value increases quickly; in 10 ps the
drift is more than 100 kcal/mol. As discussed above, this is
due to errors introduced by the finite SCF convergence and
more particularly to the accumulation of errors in the succes-
sive steps, in accord with Eq. (13). When the hartree threshold
is set to 10−8, the energy drift is smaller than 1 kcal/mol in
100 ps, again similar to C2F4. From these results, it appears
that with PRC and conventional methods, a value of 10−7

hartree or smaller should be used as the SCF convergence
criteria in term of energy drift. In addition, it is noticed that
ZRC used here is similar to superposition of atomic density
guess (SAD) by Herbert et al.22 while PRC is similar to the
guess using previous MOs (PMO). The difference between
ZRC and SAD or PRC and PMO is ZRC/PRC are concerned
with charge variables while SAD/PMO are concerned with
one electron density matrix. This difference is not essential
and thus the performance are quite close to each other
between ZRC and SAD or PRC and PMO.

B. DXL-BOMD

In this section, we use DXL-BOMD method and compare
the results with those obtained in Sec. I based on the conven-
tional methods.

1. C2F4

DXL-BOMD was introduced to reduce the number SCF
iterations without introducing errors in molecular dynamics.
It does so by extrapolating electronic variables from previ-
ous steps as in Eq. (11). In Table I, the number of SCF itera-
tions required to satisfy given convergence criteria are listed
for conventional BOMD and for DXL-BOMD. From 3rd or-
der to 9th order DXL-BOMD, only two SCF iterations are
required when using 10−6 hartree as threshold values. This is
in contrast to the fact that 5.2 SCF iterations are required on
average for PRC. As total energy fluctuations are utilized as
SCF convergence criteria, two is the least possible number of
SCF iterations that is required. As a result, DXL-BOMD here
provides the optimal method that’s possible to accelerate SCF
convergence.

Certainly, when a tighter SCF energy convergence crite-
rion is applied, more SCF iterations will be required. This is
definitely true for DXL-BOMD as well. As shown in Table I,
the number of SCF iterations increases almost logarithmically
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FIG. 2. Energy drift in Kcal/mol of amino acid molecules under microcanonical ensemble simulations under 298 K using SCC-DFTB. (a) Asparagine (neutral),
(b) glutamic acid (neutral), (c) lysine (neutral), and (d) tyrosine. For each amino acid, the upper panel corresponds to ZRC while the lower panel to PRC.

with the decrease in energy convergence criterion. This result
reflects the superlinear convergence property of the modified
Broyden method applied to electronic energy optimization.39

Despite the fact that all results using DXL-BOMD con-
verged faster than PRC, there are appreciable difference be-
tween different orders of DXL-BOMD algorithms. For exam-
ple, only 5.25 SCF iterations are needed when using 5th order
DXL-BOMD, while 5.93 are needed when using 13th order
DXL-BOMD. In general, it is found that using 3rd/5th/7th or-
der DXL-BOMD requires fewer SCF iterations than other or-
ders of DXL-BOMD, i.e., 1st, 9th, 11th and 13th order DXL-
BOMD. We believe this somewhat surprising behavior arises
from a better balance between the “noise” force and the dis-
sipative force in Eq. (7) for 3rd/5th/7th order DXL-BOMD
methods than for other orders. The extrapolated variables (i.e.,
charges) are closer to the true value at the next time step for
these orders of DXL-BOMD. A similar trend is observed for
the amino acids. However, additional analysis is required to
verify this explanation.

Although it is critical to reduce the number of SCF itera-
tions in practical calculations, it is also important to maintain
the stability of the dynamics as discussed in Sec. IV A. In
Table II, the total energy drift values of C2F4 are shown. Due

to the reasons mentioned in Sec. IV A, the energy drift from
PRC is large even when using relatively higher threshold val-
ues, e.g., 10−6 hartree. Compared to PRC, all DXL-BOMD
algorithms perform much better. In fact, several DXL-BOMD
algorithms like 3rd/5th/7th order algorithms have results close
to those from ZRC. These results are consistent with those in
our previous paper. Among these DXL-BOMD algorithms,
it’s found that 3rd/5th/7th order algorithms are better than
others in terms of total energy drift. This is attributed to a
better balance between noise and damping terms retained in
3rd/5th/7th order algorithms.

2. Amino acid molecules

For the four representative amino acids, i.e., asparagine,
glutamic acid, lysine, and tyrosine, the numbers of average
SCF iterations are still less than those using PRC with the
same SCF convergence criteria (see Table III). This is con-
sistent with those results of C2F4. Since the number of SCF
iterations using the DXL-BOMD algorithms is one or two less
than that using PRC, there is a significant reduction in terms
of the total SCF time. In general, the SCF iteration number
using DXL-BOMD is only about half of those using ZRC,
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TABLE II. Total energy drift of C2F4 in microcanonical ensemble simulation using SCC-DFTB at 500 K with different extrapolated DXL-BOMD algorithms
and conventional approaches. Here, “PRC” denotes the algorithm use previous step converged charges as the initial guess of the current step geom. “ZRC”
represents the algorithm that always starts from zero charge for each atom at every time step. The number under DXL-BOMD is higher odd order term remained
in DXL-BOMD algorithms. The energy drift is taken as the different between the average energy of first 1000 steps and the final 1000 steps. The energy unit is
10−3 Kcal · mol−1 ps−1.

DXL-BOMD

SCF energy criteria [hartree] PRC ZRC 1 3 5 7 9 11 13

10−6 429.06 − 0.03 0.80 0.03 0.03 − 0.02 5.42 − 0.04 1.04
10−7 42.61 − 0.02 0.10 0.08 0.03 0.06 0.22 − 0.05 0.17
10−8 0.51 0.03 0.04 0.00 0.06 0.04 0.00 0.02 0.07
10−9 0.03 0.01 − 0.01 0.06 0.03 0.01 0.00 0.03 0.01
10−10 0.04 0.08 0.05 0.05 − 0.01 − 0.03 0.03 − 0.01 − 0.03

which is apparently favorable in terms of computational effi-
ciency concern. Here, it is found again that 3rd/5th/7th order
algorithms usually require less number of SCF iterations than
other DXL-BOMD algorithms, which is consistent with the
results of C2F4. This observation has been attributed to the

better balance between noise and damping terms from these
three algorithms.

Besides the average number of SCF iterations, the total
energy drift values are presented in Table IV. As noticed be-
fore, PRC results show significant energy drift compared with

TABLE III. The average number of SCF iterations of amino acid molecules in microcanonical ensemble simulation for 100 ps using SCC-DFTB at 298 K
with different extrapolated DXL-BOMD algorithms and conventional approaches. Here, “PRC” denotes the algorithm use previous step converged charges as
the initial guess of the current step geom. “ZRC” represents the algorithm that always starts from zero charge for each atom at every time step. The number
under DXL-BOMD is higher odd order term remained in DXL-BOMD algorithms.

ASN DXL-BOMD

SCF energy criteria [hartree] PRC ZRC 1 3 5 7 9 11 13

10−6 5.53 10.82 4.58 4.50 4.35 4.36 4.35 4.52 5.94
10−7 7.11 12.14 5.64 5.55 5.54 5.53 5.49 5.48 8.00
10−8 8.58 13.87 7.21 6.96 6.85 6.83 6.80 6.78 8.57
10−9 9.70 15.21 8.76 8.63 8.59 8.59 8.56 8.56 9.71
10−10 11.02 16.67 9.89 9.75 9.74 9.73 9.71 9.70 10.68

GLU DXL-BOMD

SCF energy criteria [hartree] PRC ZRC 1 3 5 7 9 11 13
10−6 6.10 11.29 4.52 4.31 4.20 4.18 4.27 4.58 5.48
10−7 7.59 13.25 5.93 5.81 5.78 5.77 5.76 5.78 7.83
10−8 8.98 14.75 7.89 7.61 7.56 7.56 7.53 7.44 8.89
10−9 9.94 16.16 9.36 9.27 9.11 9.08 9.09 9.06 9.91
10−10 11.41 17.33 10.41 10.21 10.16 10.21 10.18 10.21 10.79

LYS DXL-BOMD

SCF energy criteria [hartree] PRC ZRC 1 3 5 7 9 11 13
10−6 6.02 10.56 4.63 4.41 4.38 4.40 4.45 4.58 5.34
10−7 7.40 11.71 5.84 5.74 5.70 5.70 5.70 5.72 7.20
10−8 8.36 13.37 7.33 7.12 6.94 6.99 6.90 7.06 8.44
10−9 9.29 14.33 8.63 8.57 8.47 8.49 8.45 8.48 9.79
10−10 10.80 15.63 9.64 9.56 9.53 9.50 9.50 9.55 10.52

TYR DXL-BOMD

SCF energy criteria [hartree] PRC ZRC 1 3 5 7 9 11 13
10−6 5.64 10.09 4.38 4.23 4.13 4.20 4.25 4.57 5.93
10−7 7.42 11.85 5.93 5.77 5.68 5.69 5.71 5.78 7.63
10−8 8.89 14.30 7.88 7.25 7.24 7.20 7.10 7.29 8.97
10−9 10.19 15.79 9.26 9.04 8.93 8.91 8.90 8.91 10.17
10−10 11.72 17.26 10.63 10.47 10.40 10.37 10.42 10.32 11.57
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TABLE IV. Total energy drift of amino acid molecules in microcanonical ensemble simulation for 100 ps using SCC-DFTB at 298 K with different extrapolated
DXL-BOMD algorithms and conventional approaches. Here, “PRC” denotes the algorithm use previous step converged charges as the initial guess of the current
step geom. “ZRC” represents the algorithm that always starts from zero charge for each atom at every time step. The number under DXL-BOMD is higher odd
order term remained in DXL-BOMD algorithms. The energy drift is taken as the different between the average energy of first 1000 steps and the final 1000
steps. The energy unit is 10−3 Kcal · mol−1 ps−1.

ASN DXL-BOMD

SCF energy criteria[hartree] PRC ZRC 1 3 5 7 9 11 13

10−6 68.25 − 0.37 5.77 0.07 − 0.75 − 1.31 2.43 3.51 1.46
10−7 6.73 0.25 0.28 − 0.40 0.37 0.00 0.57 − 0.10 − 0.98
10−8 0.44 − 0.14 0.19 0.06 0.17 − 0.61 − 0.28 − 0.28 0.03
10−9 1.33 − 0.07 − 0.51 − 0.16 − 0.98 − 0.39 − 0.39 − 0.25 0.43
10−10 − 0.42 − 0.32 − 0.29 − 0.63 − 0.07 − 0.15 − 0.30 − 0.08 0.13

GLU DXL-BOMD

SCF energy criteria[hartree] PRC ZRC 1 3 5 7 9 11 13
10−6 303.10 0.30 14.77 − 0.44 − 0.35 0.92 6.09 11.10 − 0.12
10−7 15.16 0.84 1.99 − 0.20 − 0.89 1.00 0.04 1.30 − 0.73
10−8 1.94 0.37 − 0.92 − 0.09 0.62 0.40 2.00 − 0.85 1.65
10−9 − 0.21 − 0.58 0.08 − 0.22 0.92 − 1.41 0.42 1.25 − 1.51
10−10 1.33 1.08 0.17 0.83 0.85 1.05 0.10 − 0.79 1.11

LYS DXL−BOMD

SCF energy criteria[hartree] PRC ZRC 1 3 5 7 9 11 13
10−6 321.69 − 2.05 38.11 − 2.33 − 0.43 − 3.15 10.26 19.61 6.36
10−7 28.81 0.24 4.84 − 0.86 1.77 − 0.96 2.06 1.24 8.27
10−8 2.36 0.26 0.06 − 0.70 0.42 2.75 0.76 1.44 0.52
10−9 0.93 − 0.07 − 1.08 0.71 1.54 − 0.18 − 0.15 − 0.53 − 0.62
10−10 1.19 0.60 0.12 − 1.07 − 0.41 1.07 − 0.65 − 0.01 0.45

TYR DXL-BOMD

SCF energy criteria[hartree] PRC ZRC 1 3 5 7 9 11 13
10−6 207.20 0.42 13.27 1.27 0.49 0.08 3.99 14.21 32.82
10−7 15.22 0.57 1.97 − 0.44 0.87 − 0.47 0.61 2.74 8.01
10−8 1.51 − 0.69 0.81 0.45 0.08 0.47 0.38 0.55 0.11
10−9 0.29 − 0.44 1.14 1.08 0.85 0.05 0.35 0.37 0.95
10−10 − 1.07 − 0.15 0.51 1.30 0.68 0.39 1.20 0.40 0.01

other algorithms. Only when very small SCF threshold val-
ues, i.e., less than 10−7 hartree, are the energy drift values
comparable to other algorithms. Although 1st, 9th, 11th, and
13th order DXL-BOMD algorithms show relatively large en-
ergy drift values compared to those from ZRC when using
10−6 hartree SCF threshold value, the energy drift values from
3rd/5th/7th DXL-BOMD algorithms are favorable.

3. Fock matrix extrapolation

Although only charge extrapolation results are presented
in Secs. IV B 1 and IV B 2, any electronic variable could
be extrapolated under our DXL-BOMD scheme in princi-
ple. Beside the charge variable discussed in Secs. IV A,
IV B 1, and IV B 2 wavefunction, density matrix, Fock ma-
trix could also be selected as the extrapolated variable. How-
ever, when extrapolating wavefunctions, one should be cau-
tious to maintain a consistent gauge of the wavefunctions at
each geometric step.20, 32 The gauge consistency issue arises

due to the invariance of unitary rotations in the occupied or-
bital space. This issue is not present in charge or Fock matrix
element extrapolation.19, 32 In the current section, the results
from Fock matrix element DXL-BOMD algorithms will be
presented.

As Fock matrix elements are explicitly computed in
SCC-DFTB, it is interesting to compare the performance be-
tween the auxiliary dynamics using Fock matrix elements and
atomic Mulliken charges. In Table V, the difference of the av-
erage number of SCF iterations between Fock matrix element
extrapolation and charge extrapolation is tabulated. A nega-
tive number means using Fock matrix element extrapolation
requires fewer SCF iterations than using charge extrapolation.
In general, the two different algorithms show similar perfor-
mance. This indicates that the charge extrapolation is at least
as efficient as the Fock matrix element extrapolation in term
of the number of SCF iterations. If only 3rd, 5th, and 7th order
DXL-BOMD algorithms are considered, these two different
extrapolation algorithms have even closer performance.
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TABLE V. The average number difference of SCF iterations of amino acid molecules in microcanonical ensemble simulation for 100 ps using SCC-DFTB at
298 K with different extrapolated DXL-BOMD algorithms between for Fock matrix element and for charge (nFock−ncharge). The number under DXL-BOMD is
higher odd order term remained in DXL-BOMD algorithms.

ASN DXL-BOMD

SCF energy criteria[hartree] 1 3 5 7 9 11 13

10−6 0.07 0.07 0.20 0.15 0.43 0.55 − 0.61
10−7 0.05 0.03 − 0.01 0.00 0.24 0.89 − 1.34
10−8 0.09 − 0.04 0.02 − 0.04 0.43 1.23 − 0.33
10−9 0.10 0.07 0.04 0.04 0.30 0.65 − 0.30
10−10 0.02 0.08 0.02 0.01 0.18 0.62 0.00

GLU DXL-BOMD

SCF energy criteria[hartree] 1 3 5 7 9 11 13
10−6 0.38 0.23 0.43 0.41 0.69 0.62 − 0.09
10−7 0.12 0.08 0.18 0.10 0.43 1.16 − 0.54
10−8 0.37 0.33 0.35 0.28 0.62 1.13 − 0.20
10−9 0.01 − 0.09 0.11 0.02 0.36 0.83 0.16
10−10 0.15 0.14 0.04 − 0.02 0.27 1.03 0.69

LYS DXL-BOMD

SCF energy criteria[hartree] 1 3 5 7 9 11 13
10−6 − 0.05 0.09 0.01 − 0.07 0.22 0.31 − 0.26
10−7 − 0.10 − 0.08 − 0.05 − 0.10 0.01 0.40 − 0.62
10−8 − 0.35 − 0.41 − 0.32 − 0.37 0.30 0.56 − 0.60
10−9 − 0.15 − 0.24 − 0.20 − 0.22 0.09 0.30 − 0.81
10−10 − 0.13 − 0.21 − 0.23 − 0.25 0.04 0.36 − 0.41

TYR DXL-BOMD

SCF energy criteria[hartree] 1 3 5 7 9 11 13
10−6 0.19 0.16 0.25 0.14 0.76 0.86 − 0.41
10−7 − 0.01 0.01 0.03 − 0.02 0.38 0.81 − 0.70
10−8 − 0.22 0.12 − 0.01 − 0.04 0.86 1.15 − 0.36
10−9 − 0.02 0.02 − 0.03 − 0.14 0.44 0.80 − 0.16
10−10 − 0.02 − 0.02 0.05 0.01 0.25 0.91 0.04

In addition, the total energy drift magnitude difference
between these two extrapolation algorithms is shown in
Table VI. Although the difference can be as large as
−35.54 mKcal/mol ps−1 for 3rd order DXL-BOMD algo-
rithm of glutamic acid molecule when using 10−6 hartree as
SCF energy convergence criterion, most other difference val-
ues are relatively small in term of magnitude. This further
confirms the similarity in performance between these two dif-
ferent choices of extended dynamical variables for the elec-
tronic degrees of freedom.

In summary, the DXL-BOMD method clearly outper-
forms the conventional approach using ZRC and PRC, both
in terms of the average number of SCF iterations and the total
energy drift rate. The reason for the excellent performance
of DXL-BOMD is that the time reversibility of the auxiliary
electronic variables (here, Fock matrix element and charges),
is conserved to high orders while a dissipation term is
added to counteract the noise introduced by the finite SCF

convergence and other numerical errors. In the present cases,
the performance using Fock matrix elements or charge is quite
similar. It is found that 3rd, 5th and 7th order DXL-BOMD is
better than other (even higher order) DXL-BOMD algorithms.

C. Liquid water

Water is ubiquitous in biological environment and its
importance cannot be overstated. As liquid water has been
studied both theoretically and experimentally,48, 50–53 it is
an important test case for the new DXL-BOMD algorithm.
The results on liquid water system are complementary to
those presented in Secs. IV A and IV B, where only gas-phase
molecules are considered. Again, the emphasis is not on
the accuracy of the SCC-DFTB results for water, per se,
which has been studied by Maupin et al.,48 but rather on the
comparison of the efficiency of the DXL-BOMD algorithm
with that of the ZRC method.
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TABLE VI. Total energy drift magnitude difference of amino acid molecules in microcanonical ensemble simulation using SCC-DFTB at 298 K with different
DXL-BOMD algorithms for Fock matrix elements and for charges (|�EFock|−|�Echarge|). The number under DXL-BOMD is higher odd order term remained
in DXL-BOMD algorithms. The energy drift is taken as the difference between the average energy of first 1000 steps and the final 1000 steps. The energy unit
is 10−3 Kcal · mol−1 ps−1.

ASN DXL-BOMD

SCF energy criteria[hartree] 1 3 5 7 9 11 13

10−6 − 5.23 1.29 − 0.55 − 0.92 − 1.14 − 1.62 0.39
10−7 − 0.06 − 0.11 0.02 0.31 − 0.01 0.26 − 0.47
10−8 − 0.16 0.26 0.12 − 0.19 − 0.14 − 0.19 0.57
10−9 − 0.14 0.00 − 0.66 − 0.38 − 0.36 − 0.07 0.06
10−10 − 0.14 − 0.10 0.05 − 0.06 0.26 0.65 − 0.12

GLU DXL-BOMD

SCF energy criteria[hartree] 1 3 5 7 9 11 13
10−6 − 3.21 0.62 1.00 − 0.41 − 3.16 − 6.81 2.08
10−7 − 0.20 1.03 0.94 − 0.53 0.96 − 0.96 0.37
10−8 − 0.59 − 0.03 0.75 − 0.05 − 1.27 − 0.17 − 0.66
10−9 1.41 0.02 − 0.28 − 0.93 − 0.13 − 0.14 − 0.40
10−10 0.90 − 0.69 − 0.16 0.26 0.66 0.33 0.11

LYS DXL-BOMD

SCF energy criteria[hartree] 1 3 5 7 9 11 13
10−6 − 35.54 − 1.63 − 0.34 − 2.68 − 7.59 − 18.25 − 5.87
10−7 − 4.76 − 0.13 − 0.40 0.65 − 1.61 − 0.69 − 6.59
10−8 − 0.01 − 0.35 0.11 − 1.79 1.60 − 1.13 0.03
10−9 − 0.54 − 0.25 − 1.40 0.57 0.88 − 0.16 − 0.02
10−10 2.34 − 0.87 1.72 − 0.73 0.35 0.68 1.83

TYR DXL-BOMD

SCF energy criteria[hartree] 1 3 5 7 9 11 13
10−6 − 11.15 − 0.72 − 0.41 0.22 − 1.08 − 12.48 − 31.02
10−7 − 1.85 1.40 − 0.79 − 0.15 0.03 − 2.26 − 6.95
10−8 − 0.71 − 0.25 0.69 − 0.19 0.43 0.28 0.70
10−9 − 0.64 − 0.26 − 0.62 0.09 0.05 0.02 − 0.42
10−10 0.23 − 1.03 − 0.43 0.02 − 0.82 0.31 0.35

1. Average temperature, energy drift and SCF
iteration number

In Fig. 3, the temperature distribution for all trajectories
are shown. For each algorithm with a specified SCF criterion,
results from four different trajectories are presented. From
the plots in Fig. 3, it is clear there is no appreciable differ-
ence in the temperature distribution between the trajectories
using SCF convergence criteria of 10−6 or 10−8 hartree. In
the previous study of water with SCC-DFTB,48 the SCF con-
vergence criteria is 10−6 hartree. Also, there is also no appre-
ciable difference between ZRC algorithm and the 5th order
DXL-BOMD algorithm. The temperature has a normal dis-
tribution relative to 300 K for all trajectories, as expected in
microcanonical ensemble simulation. Table VII compares the
results obtained for the ZRC and the DXL-BOMD algorithm
with different convergence criteria. The mean average tem-
peratures usually is within 1 K of the target temperature of
300 K. The standard deviations of the mean temperature val-
ues from four different trajectories indicates that the deviation

is generally less than 2 K for different simulations under the
same specified conditions.

In Table VII, the total energy drift is calculated as the
energy difference between the average energy of the first pi-
cosecond and that of the last picosecond divided by the sim-
ulation time. Generally, the total energy drift is on the order
of 10−2 kcal/mol ps−1. The magnitude of the energy drift is
similar for ZRC and the 5th order DXL-BOMD algorithms.
The drift is always small and very similar using the differ-
ent convergence criteria. Most important, there is a signifi-
cant difference for the number of SCF iterations required for
the two algorithms for the same convergence criterion. About
half the number of SCF iterations are required for calcula-
tions using the 5th order DXL-BOMD algorithm compared
to those using ZRC algorithm for 10−6 hartree as the SCF
convergence criterion. For the 10−8 hartree SCF convergence
criterion, the reduction in SCF iteration number is somewhat
less. The relatively efficiency will be further discussed in
Sec. IV D.
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FIG. 3. Temperature distribution of 32 water molecules in a periodic cubic box with side length of 9.862 Å during 300 ps microcanonical ensemble simulation
using SCC-DFTB with time step of 1.0 fs. In each panel, there are results from four different trajectories. “ZRC” is for the algorithm using zero charge for every
atom at every step; “DXL” for the algorithm using 5th order DXL-BOMD algorithm. SCF convergence criteria is shown on top of each panel.

TABLE VII. Average temperature, average energy drift, average SCF iteration number, heat of vaporization, and diffusion coefficients calculated from Einstein
relation of liquid water (32 water in 9.862 Å periodic cubic box) in microcanonical ensemble simulation using SCC-DFTB with 5th order DXL−BOMD
algorithm and zero charge for initial charge guess, respectively. Results from two different SCF convergence criteria are shown. For each algorithm under a
specified SCF convergence criteria, four different trajectories are carried out and summarized below.

SCF criteria Average Average energy Average SCF Heat of vaporization Diffusion coefficient
[a.u.] Algorithm Trajectory temperature [K] drift [Kcal/mol/ps] iteration number [Kcal/mol] [A2]/ps

1 300.6 0.012 9.44 4.16 1.02
2 300.1 0.015 9.44 4.17 1.04

10−6 ZRC 3 298.8 0.014 9.41 4.16 1.09
4 300.6 0.015 9.42 4.15 0.98

average 300.0 0.014 9.43 4.16 1.04
standard deviation 0.8 0.001 0.02 0.01 0.05

1 301.9 − 0.005 5.13 4.14 1.06
2 298.8 0.012 5.12 4.18 1.08

10−6 DXL-BOMD 3 300.9 0.003 5.11 4.15 1.06
4 301.1 0.014 5.07 4.13 1.11

average 300.6 0.006 5.11 4.15 1.08
standard deviation 1.3 0.009 0.03 0.02 0.03

1 298.7 0.013 11.93 4.17 1.03
2 297.9 0.018 11.93 4.22 0.93

10−8 ZRC 3 299.1 0.005 11.94 4.19 0.96
4 300.7 0.021 11.94 4.14 1.08

average 299.1 0.014 11.94 4.18 1.00
standard deviation 1.2 0.007 0.01 0.03 0.07

1 299.7 0.009 8.46 4.18 1.02
2 297.4 0.007 8.44 4.22 1.06

10−8 DXL-BOMD 3 298.4 0.006 8.40 4.16 1.07
4 301.1 0.013 8.38 4.14 1.06

average 299.1 0.009 8.42 4.17 1.05
standard deviation 1.6 0.003 0.04 0.03 0.02
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FIG. 4. Liquid water (32 water in a periodic cubic box with side length of 9.862 Å) radial distribution function for (a) oxygen-oxygen, (b) oxygen-hydrogen,
and (c) hydrogen-hydrogen. “ZRC” is for the algorithm using zero charge for every atom at every step; “DXL” for 5th order DXL-BOMD algorithm. In each
panel, the upper right legend shows SCF convergence criteria. In addition, the experimental data from Soper et al. (Ref. 53) is also plotted for comparison.

2. Structure properties

The radial distribution function (RDF) for (a) oxygen-
oxygen, (b) oxygen-hydrogen and (c) hydrogen-hydrogen
were calculated and compared to experimental results,53

which are plotted in Fig. 4, respectively. Results from only
one trajectory with each algorithm and a specific SCF cri-
terion are shown. As the size of the simulation box is only
9.862 Å, the RDF curves are only plotted up to 5.0 Å. Some
features of these RDF curves are summarized in Table VIII.

The RDF curves for oxygen-oxygen in Fig. 4(a) show
that the results from all simulations are nearly identical. From
the simulations, the first peak is at 2.80 Å, which is a slightly
larger distance than the experimental value. Also, the peak is
broader than the experimental one. Beyond the first peak, the
calculated curves differ significantly from experiment. Such
differences between the experimental results and simulation

results have been observed previoulsy.47, 48 Since DFT results
do reproduce the experimental O-O RDF curve,50, 54 the dif-
ference observed here reflects the deficiencies in the current
implementation of SCC-DFTB. For O-H RDF curves in
Fig. 4(b), the difference between experimental values and
simulation results is again significant. The second maxi-
mum from the simulations is located at 1.85 Å while the
experimental value is 1.75 Å. According to Table VIII,
the number of non-bonded hydrogen atoms within the
second shell of a reference O atom from the simula-
tions is 1.74, while the corresponding number from
experiment is 1.93. These differences have also been
reported by Maupin et al.48 The H-H RDF curves in
Fig. 4(c) also shows considerable differences between the
simulation results and the experiments. Although the first
maximum is located close to the experimental value, its
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TABLE VIII. Radial distribution function features of liquid water (32 water in 9.862 Å periodic cubic box) in microcanonical ensemble simulation using
SCC-DFTB with 5th order DXL-BOMD algorithm and zero charge for initial charge guess, respectively. These results are from those trajectories in Figure 4
and experimental values are from Soper et al. (Ref. 53).

(a) O−O
SCF criteria Algorithm First maximum peak [A] First minimum peak [A] # O within first shell
10−6 ZRC 2.80 4.05 9.03
10−6 DXL-BOMD 2.80 4.05 9.04
10−8 ZRC 2.80 4.05 9.04
10−8 DXL-BOMD 2.80 4.05 9.03
Experiment 2.75 3.41 4.76

(b) O−H
SCF criteria Algorithm Second maximum peak [A] Second minimum peak [A] # H within second shell
10−6 ZRC 1.85 2.35 1.74
10−6 DXL-BOMD 1.85 2.35 1.74
10−8 ZRC 1.85 2.35 1.74
10−8 DXL-BOMD 1.85 2.35 1.74
Experiment 1.75 2.36 1.93

(c) H−H
SCF criteria Algorithm First maximum peak [A] First minimum peak [A] # H within first shell
10−6 ZRC 1.55 1.75 1.03
10−6 DXL-BOMD 1.55 1.75 1.03
10−8 ZRC 1.55 1.75 1.03
10−8 DXL-BOMD 1.55 1.75 1.03
Experiment 1.54 1.85 1.02

magnitude is more than twice the experimental value. The
numbers of hydrogen atom within the first solvation shell
from the simulations is close to the number from experiment.
(see Table VIII)

From above results and earlier work, it is clear that SCC-
DFTB does not accurately reproduce the experimental re-
sults for water. This fact could be due to the deficiency of
the present formulation of SCC-DFTB or its parameterization
scheme, or both. Although there have been some efforts to im-
prove the original SCC-DFTB method by modifying the dis-
tance dependent γ functions,55 the resulting RDF curves are
still considerably different from experimental ones.48 How-
ever, this does not invalidate the comparison between the ZRC
and DXL-BOMD in the present paper.

3. Energetic and dynamic properties

In addition to studying the structural properties of the
liquid water system, it is of interest to examine the ener-
getic results of the SCC-DFTB method. As shown by pre-
vious studies,48, 52 the SCC-DFTB method underestimates the
dimerization energy of water compared to the results at the
MP2 level, which has been attributed to the structural dif-
ferences between the dimers. Here, the heat of vaporization
energy is calculated in accord with the approach of Maupin
et al.48. In Table VII, the value of heat of vaporization en-
ergy of water from the different trajectories are listed. The
difference between ZRC and DXL-BOMD algorithms is no
larger than the difference between different trajectories us-

ing the same algorithm. Further, the difference obtained from
calculations with the two SCF convergence criteria are indis-
tinguishable from the difference using same SCF convergence
criterion. These facts demonstrate the DXL-BOMD algorithm
is as accurate as the ZRC algorithm for these properties.

Although the DXL-BOMD algorithm can well reproduce
results using the ZRC algorithm, the predicted heat of vapor-
ization from both methods is about 4.16 Kcal/mol as shown
in Table VII. This value is close to the previous study,48 but
both values are much smaller than the experimental value
[10.50 Kcal/mol (Ref. 48)]. The difference is due to the un-
derestimation of dimerization energy of water molecule men-
tioned above.

The diffusion coefficients in liquid water of oxygen cal-
culated from the Einstein relation are also listed in Table VII.
The results from ZRC algorithm and DXL-BOMD algorithm
are very similar. The small difference in the oxygen diffusion
coefficients from different algorithms and SCF convergence
criteria again support the accuracy of the DXL-BOMD algo-
rithm. The oxygen diffusion coefficients calculated here are
slightly smaller than a previous study (1.11 ± 0.04 Å2/ps);48

this result is likely due to the larger simulation box size
used in Ref. 47 according to the analysis by Dünweg and
Kremer.56 However, in all cases, the calculated oxygen diffu-
sion coefficients are much larger than the experimental value
(0.23 Å2/ps).57 This difference between calculated coeffi-
cients and the experimental value is due to the fact that the
stabilization energy of the water dimer is underestimated by
the SCC-DFTB method, as the heat of vaporization.
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TABLE IX. Timing of SCC-DFTB MD calculations using ZRC and 5th order DXL-BOMD algorithm, respectively, of neutral tryptophan molecule (27 atoms
in total). The SCF threshold value applied is 10−6 hartree. These calculations were done by a single processor of Intel Xeon 2.80GHz processor.

Method Number of MD steps Total SCF iterations Energy calculation time [s] Gradient calculation time [s]

DXL-BOMD 1000 5032 17.25 5.01
ZRC 1000 10360 35.56 4.99

D. Computation efficiency

Since the primary purpose of this paper is a comparison
of the efficiency of the ZRC method and the DXL-BOMD
method, we show in Table IX and X some timing results for
a neutral tryptophan molecule and the liquid water system.
These timing values clearly demonstrate the significant com-
putational efficiency achieved by DXL-BOMD, as compared
to ZRC algorithm.

From Table IX, the reduction in the time of the energy
calculations is directly proportional to the number of SCF it-
erations. This result is a consequence of the fact that matrix di-
agonalization for solving Roothaan equation dominates every
SCF iteration in terms of computation time and thus reduction
of the iteration number will proportionally reduce the whole
computation time. The gradient (or force) computational time
is close to the timing of one SCF iteration. Such a ratio (be-
tween gradient and one SCF iteration computation) is close to
those of Hartree-Fock or DFT method calculations. Although
the gradient calculations can be straightforwardly speed up
using modern parallel technique due to the independence of
forces on different atoms, the matrix diagonalization is hardly
accelerated by either alternative schemes, e.g., density matrix
constrained optimization, or parallelization. This indicates the
importance of SCF iteration number reduction for gas phase
molecule simulations in practice by DXL-BOMD.

The computational timings for liquid water systems are
shown in Table X. It is noted that for a convergence criterion
of 10−6 hartree, about twice as many iterations are required
for the ZRC algorithm than the DXL-BOMD algorithm. Inter-
estingly, even if with a convergence criterion of 10−4 hartree
for ZRC, reasonable values for the properties studied are ob-
tained. However, with 10−4 hartree criterion, ZRC still re-
quires significantly more iterations than DXL-BOMD (with
10−6 hartree) for convergence. In the liquid water simulations,
the Ewald component calculations, which is independent of
the SCF iterations (it is performed only once for each geome-
try), requires most of the computation time and is, of course,
independent of the convergence criterion. This clearly indi-
cates that for studying periodic systems, particle mesh Ewald
method (PME), or a similar technique,58 should be imple-
mented with SCF-DFTB to speed up the calculations. Table X

also shows that the other energy component scale essentially
with the value of SCF iterations. The other component per-
formance resembles that shown in Table IX for tryptophan.
Thus, some speedup for these components is obtained with
DXL-BOMD algorithm; the overall reduction in time would
be more significant if PME were implemented and the SCF
portion of the calculation becomes rate determining.

V. CONCLUSION

This paper has explored the time requirements of BOMD
with a Lagrangian formulation including dissipation (DXL-
BOMD) for the auxiliary variables. The use of SCC-DFTB
has made possible simulations several hundred picoseconds
in length, in contrast to previous studies using DFT, which
were limited to 10 ps or less.29, 32 The results obtained for
small molecules (i.e., the standard test system C2F4 and the
amino acids), as well as a box of 32 water molecules, show
that it leads to a significant reduction in the number of it-
erations required for convergence of the SCF, relative to a
standard method. The dynamics stability of DXL-BOMD is
better than that based on an initial guess from the previous
step converged charge (PRC), as well as from the zero charge
guess (ZRC). Interestingly, the 3rd, 5th, and 7th order DXL-
BOMD algorithms behave better than 9th, 11th, and 13th or-
der DXL-BOMD algorithms, mostly likely due to the better
balance between the noise/error (from all possible sources)
and the dissipative terms. It is also demonstrated that for the
DXL-BOMD scheme used with SCC-DFTB, either Mulliken
charges or Fock matrices can be propagated as good initial
values for the SCF of the next molecular dynamics time step.
Tests on a liquid water with 32 water molecules show that the
DXL-BOMD algorithm require fewer SCF iterations to re-
produce the structural properties and dynamical properties of
liquid water system obtained from the ZRC algorithm. Over-
all, the DXL-BOMD algorithm is numerically more efficient
(by up to a factor of two) than ZRC or PRC algorithms for
obtaining a converged SCF in BOMD simulations. Such an
improvement is significant, particularly for larger QM sim-
ulations, as well as for its extension to QM/MM molecular
dynamics calculations of proteins and nucleic acids.

TABLE X. Timing of SCC-DFTB MD calculations using ZRC and 5th order DXL-BOMD algorithm, respectively, of liquid water system (i.e., 32 water
molecules in a 9.862 Å periodic cubic box). These calculations were done by a single processor of Opteron 1.993 GHz processor.

SCF criteria Number of Total SCF Energy calculation Ewald component Other Energy Gradient calculation
Method [a.u.] MD steps iterations time [s] time [s] component [s] time [s]

DXL-BOMD 10−6 500 2584 431.5 282.3 149.3 321.4
ZRC 10−6 500 4732 559.0 282.4 276.6 322.0
ZRC 10−4 500 3535 486.1 281.9 204.2 320.7
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