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Summary
In randomized clinical trials, the use of potentially subjective endpoints has led to frequent use of
blinded independent central review (BICR) and event adjudication committees to reduce possible
bias in treatment effect estimators based on local evaluations (LE). In oncology trials, progression-
free survival (PFS) is one such endpoint. PFS requires image interpretation to determine whether a
patient’s cancer has progressed, and BICR has been advocated to reduce the potential for
endpoints to be biased by knowledge of treatment assignment. There is current debate, however,
about the value of such reviews with time-to-event outcomes like PFS. We propose a BICR audit
strategy as an alternative to a complete-case BICR to provide assurance of the presence of a
treatment effect. We develop an auxiliary-variable estimator of the log-hazard ratio that is more
efficient than simply using the audited (i.e., sampled) BICR data for estimation. Our estimator
incorporates information from the LE on all the cases and the audited BICR cases, and is an
asymptotically unbiased estimator of the log-hazard ratio from BICR. The estimator offers
considerable efficiency gains that improve as the correlation between LE and BICR increases. A
two-stage auditing strategy is also proposed and evaluated through simulation studies. The method
is applied retrospectively to a large oncology trial that had a complete-case BICR, showing the
potential for efficiency improvements.
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1. Introduction
Randomized clinical trials are the gold standard for shaping clinical practice by providing
definitive evaluation of treatment efficacy. While overall survival (i.e., time-to-death) is the
preferred endpoint in life-threatening diseases, it is not always feasible in some settings.
Often, alternative endpoints are potentially subjective and may not be measured consistently.
One such endpoint in oncology is progression-free survival (PFS), defined as time to disease
progression or death. Disease progression is evaluated radiographically, and is defined as
development of new lesions or a greater than 20% increase in the sum of the longest
diameters of existing target tumor lesions from the post-randomization nadir value
(Eisenhauer et al., 2009). Determination of progression is complicated by many factors,
including variability in measuring the size of the target lesions(s), the selection of different
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target lesions, failure to detect a new lesion, and different interpretations about changes in
non-target and nonmeasurable lesions. If disease evaluations are influenced by knowledge of
patients’ treatment assignments, estimators of treatment effect may be biased (reader
evaluation bias). In a borderline case, for example, a type of reader evaluation bias might
occur when the treating (“local”) clinician is more likely to call “progression” earlier
amongst patients receiving the control treatment, with the intent of switching the patient’s
therapy to one that is (potentially) more effective. Blinded independent central review
(BICR) has been advocated to mitigate the potential for biased evaluation of treatment
efficacy. BICR typically involves complete retrospective review of all images for all study
patients, by readers blinded to treatment assignment. Regulatory agencies have advocated
the use of such reviews when PFS is the primary endpoint for drug approval trials (FDA,
2007; EMEA, 2008).

BICR is costly and there is an ongoing debate about the value and use of BICR in oncology
(Dodd et al., 2008). One concern is that patient treatment is typically guided by local
evaluation (LE). Therefore, progression by LE causes a patient to be withdrawn from the
study with no further protocol scans. If BICR does not confirm progression at this last scan
then the patient’s data become censored at the time of the last LE. This may result in
informative censoring since this patient is more likely to have progression sooner than the
remaining at-risk patients. Informative censoring of this type tends to produce a more
optimistic PFS curve. In oncology trials with progression-free survival, patients are
generally late-stage, and the experimental therapy is hoped to be at least as good as the
control. Hence, a concern is that LE is more likely to call progression earlier (than the real
time) on the control arm than on the experimental arm, resulting in a biased (LE) estimator
of treatment effect that favors the experimental therapy (Dodd et al., 2008). In this case, the
BICR-based estimator of treatment effect would have relatively more (informative)
censoring in the control arm, resulting in an estimator of treatment effect biased in favor of
the control arm. The potential bias in estimating the treatment effect by LE due to reader
evaluation bias and the potential bias in the BICR-based estimator due to informative
censoring go in opposite directions. Therefore, agreement between BICR and LE estimates
provides reassurance about lack of substantive reader evaluation bias.

We propose a BICR-based audit strategy to provide assurance of the LE estimators of
treatment effect. The primary goal of the audit is to provide an estimator of the BICR-based
hazard ratio when only a subset of patients have BICR of their scans. In the following
section, we propose an auxiliary variable estimator of the BICR log-hazard ratio that
simultaneously uses LE data and available BICR data. The use of auxiliary population
information to improve an estimator based on a sample from the population is a common
technique in sample survey methodology (Cochran, 1977; Korn and Graubard, 1999). We
provide analytical results describing the efficiency of this method relative to the standard
estimator, which uses only BICR audit data, and use these results to develop a two-stage
algorithm for auditing. In section 3, the estimator and two-stage algorithm are evaluated via
simulation studies. In section 4, we apply the method retrospectively to a large randomized
trial in advanced breast cancer. We conclude with a discussion.

2. Methods
We assume an underlying proportional hazards model for the continuous unobserved
progression-free survival data. We take as the formal target of inference the true log-hazard
ratio of the centrally reviewed data under the given trial conditions (evaluation schedule and
censoring pattern).
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We assume that the goal of the clinical trial is to demonstrate superiority of an experimental
treatment, and that BICR will only be conducted when the LE hazard ratio indicates a
clinically meaningful and statistically significant effect in favor of the experimental
treatment. The proposed audit is a retrospective sample of m (out of N total) subjects, taken
as a simple random sample, for whom BICRs of all images are conducted. The goal of the
audit is to provide assurance about the LE-determined treatment effect, through estimation
of the true log-hazard ratio under BICR and the corresponding upper bound of a confidence
interval for this parameter.

Throughout, let θ ̂ denote an estimator of the log-hazard ratio (based on the proportional
hazards model). We use the convention that θ < 0 indicates superiority of the experimental
therapy. Because we need to identify whether the source of the data is from the audited or
non-audited subsets and from the local or central evaluation processes, we use additional
subscripts. For example, θ ̂L denotes the log-hazard ratio estimator based on PFS times
generated from local evaluations, which is further partitioned into θ ̂LA and θ ̂LĀ to indicate
the estimators based on the audited and non-audited subsets, respectively. Likewise, θ ̂CA
denotes the log-hazard ratio estimator based on PFS times generated under central review
amongst the audited subset. We let δ(= m/N) denote the proportion of study participants
audited. Because this is a survival-model setting, the number of events determines variances,
and the number of events in the audit will be proportional to the sampled audit size.
Therefore, we denote the variances of the θ ̂LA, θ ̂LĀ and θ ̂CA as , and VCA,
respectively.

2.1 Estimator
The standard estimator based on the sampled data θ ̂CA is one estimator of θC, the log-hazard
ratio under a BICR with an infinite sample size. We consider a more efficient estimator,
which is a linear estimator of the form: θ ̄C = θ ̂CA − λθ ̂LA + λθ ̂LĀ, where we select λ to
minimize the variance of this estimator. The variance of θ ̄C is:

(1)

with ρ denoting the correlation between θ ̂LA and θ ̂CA. This variance is minimized when

, which gives

(2)

We note here that under asymptotic multivariate normality of θ ̂CA, θ ̂LA, θ ̂LĀ and known ρ,
VCA, VL, the maximum likelihood estimator of θC is θ ̄C.

If we assume that ρ, VCA and VL are known, then θC is asymptotically unbiased for θC.
Specifically, as the trial size N → ∞ (with m/N = δ), the first term in (2) has E(θ ̂CA) → θC
and the expectation of the second term goes to 0, i.e., E(θ ̂LA − θ ̂LĀ) → 0. Observe that the
weight of second term in (2) depends on the correlation, having greater weight when ρ is
higher. When ρ = 0, the estimator is simply θ ̂CA. The second term also has greater weight
when the variance is relatively higher under the BICR (than LE).
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The variance of θ ̄C, for known ρ, VCA, and VL, is VCA{1 − ρ2(1 − δ)}. This can be compared
to the variance of the estimator θ ̂CA, VCA. Figure 1 displays the relative efficiency for θ ̄C
relative to θ ̂CA for different audit sizes and correlations. The relative efficiency of the
proposed estimator is greater for higher correlations and smaller audit sizes.

An estimator of θ ̄C can be obtained by substituting θ ̂LA, θ ̂LĀ, θ ̂CA, and the corresponding
estimators of the variances and ρ into (2). To obtain an estimator of ρ, we suggest a
bootstrap approach. Within the audited subset of size m, m subjects are sampled with

replacement. Using both LE- and BICR-determined PFS times, the estimators  and  are

computed. This is repeated B times; the sample correlation coefficient  provides
the estimator of ρ. Substituting ρ̂, V̂L, and V̂CA gives our estimator:

(3)

The estimator (3) requires patient-level data, because of the need to estimate ρ.

2.2 Inference
To obtain a standard error of θ̃C we propose the following variance estimator. First observe
that the variance of θ̃C can be written as follows:

Asymptotically, the expectation in (b) is θC, a constant, so that its variance is asymptotically
zero. The first term (a) is E[V̂CA{1 − ρ̂2(1 − δ)}]. Hence, a reasonable variance estimator is
V̂CA{1 − ρ̂2(1 − δ)}. The properties of this variance estimator are evaluated via simulation
studies in section 3.

We propose using the upper bound of a one-sided 95% confidence interval for θC as the
basis for providing assurance about the treatment effect. This upper bound can be estimated
assuming asymptotic normality of θ̃C, using the proposed variance estimator. Because large
effect sizes with an endpoint such as PFS are typically needed to conclude clinical benefit,
in some applications, the burden of proof will require stronger evidence than simply ruling
out the null hypothesis of no improvement. A more stringent threshold, based on what is
considered a minimal relevant improvement in PFS, should be determined. We refer to this
threshold as the clinical irrelevance factor (CIF). If the upper bound of the confidence
interval for θC is below the CIF, then we conclude that the BICR audit has confirmed the LE
findings.

2.3 Determining the audit size and a two-stage testing procedure
Assuming θ ̂L is asymptotically normal, and that the LE and BICR results are similar, it is
possible to approximate the audit size so that the upper bound of a one-sided (1−α)
confidence interval for θC has probability 1 − β of being below the clinical irrelevance
factor, denoted γ. For a log-hazard ratio θ ̂L, its standard error  (based on the complete-
case dataset), and known ρ, the corresponding audit size is given as:
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(4)

where , and Zλ denotes the λ quantile of a normal distribution. To obtain audit

sizes less than 1,  2 must be greater than (Z1−α + Z1−β)2. If not, then the effect
size may be to small to have power 1 − β even with a complete-case audit. Under a given
trial design alternative, one can compute the probability δ is less than some proportion,
conditional on a significant LE result. For example, under a design alternative corresponding
to one-sided type I error of 0.025 and power of 90%, with the audit one-sided α = 0.05 and
power of 90%, P(δ < 0.7|significant LE effect) = 0.50, 0.53, 0.58, 0.69, and 0.83, for ρ = 0.5,
0.6, 0.7, 0.8, and 0.9, respectively. In practice, an estimate of ρ is required to obtain a δ. A
preliminary estimate of ρ can be obtained by performing an initial BICR, using the
bootstrap. Let δ0 denote the BICR proportion, based on this initial estimate of ρ. As there is
no point in conducting an audit that is almost 100%, in practice we recommend setting a
threshold, denoted δ1, for which if δ0 ≥ δ1 a complete-case BICR is conducted.

A two-stage testing procedure is proposed that utilizes the Hochberg procedure to adjust for
multiple comparisons (Hochberg, 1988). At the first stage, with audit size δ0, the upper
bound of a 1 − α/2 confidence interval is computed. If the bound is below the CIF, the
procedure stops and consistency of the treatment effect is concluded. If the result is above
the CIF, the audit proceeds to the second stage, which is a complete-case BICR. At the
second stage, the upper bound of a 1− α/2 confidence interval on the complete-case BICR is
computed; if it is below the CIF, the procedure stops. If the bound is above this threshold,
then upper bounds of 1 − α% confidence intervals for both δ0 and the full audit are
estimated. If both these bounds fall below the CIF, then consistency of the treatment effect is
concluded. If the upper bounds fail to satisfy this criterion, consistency of the treatment
effect cannot be concluded. More details about this algorithm are provided in the appendix.

3. Simulations
We conducted several simulation studies to evaluate the proposed auxiliary variable
estimator and the two-stage auditing procedure. Although PFS is a combination of
progression and death, we focus on the progression time, which was taken to have an
underlying exponential distribution. Because progression is measured at intervals, we
discretize progression times according to the following process. We assume that for the first
year, patients undergo evaluations every six weeks, followed by visits every three months.
We further assume that patients undergo evaluations not at their scheduled times, but arrive
within a +/− 2 week period of the scheduled visit, using a uniform distribution. The true
observed event time is not observed until its following evaluation time. The time of the
observed “true” discretized event was then subjected to the errors associated with
radiologists’ evaluations. We assume that LE and BICR have a probability of detecting the
true event that is a multinomial distribution around the true discretized time. Multinomial
probabilities, multi(p−3, p−2, p−1, p0, p1, p2), describe the likelihood of calling a progression
around the true event time as follows: p0 describes the probability of calling progression at
the true time, while p−3, p−2, and p−1 give probabilities of calling a progression for each of
the three evaluation times prior to the event, and p1, p2 give the probability of calling
progression for the each of two time points after the true event.

We generate data for 360 patients in each treatment arm, assuming patients are enrolled
uniformly over 2 years, with an additional follow-up of 26 weeks after enrollment. The
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underlying median PFS in the control arm was set to 24 weeks. We consider four different
treatment-effect sizes: none, small, moderate and large, corresponding to log-hazard ratios
of 0, −0.288, −0.511, and −0.773 (hazard ratios: 1, 0.75, 0.6, 0.46). For each of these, we
consider settings with no, small and large reader-evaluation bias. The multinomial
probabilities are the same for both treatment arms under the no reader-evaluation bias model
for both the local evaluation and BICR. Under scenarios with small and larger reader-
evaluation bias, the probabilities in control arm changes (for the local evaluations only) so
that progression times are more likely to be called earlier. Table 1 describes the assigned
probabilities for each of the simulations presented here. For example, under the scenario
with no bias, the probability of calling an event three evaluation times before the true time,
p−3, is 2.5% in both treatment arms. Under “large” bias, the probability increases to 10% in
the control arm, but remains 2.5% in the experimental arm. In all simulations, the
probabilities given to the BICR are specified in the “None” row in table 1. For each
scenario, we generated 10,000 data sets. The initial BICR sample to estimate ρ was chosen
to ensure about 100 events total. For each effect size, this meant the initial sample was 19%,
20%, 21% and 22%, for the null, small, moderate and large effect sizes, respectively.

Table 2 provides results about the disagreement rates in the time of progression or censoring
for the LE and BICR. If the times agreed within a +/− 6 week interval, this was considered
an agreement. Without reader bias, the disagreement rates were 32% in the control arm, but
range from 32% to 23% in the experimental arm, depending on the effect size. Observe that
the disagreement rates differ by treatment arm even without reader-evaluation bias. The
disagreement rate decreases in the experimental arm with increasing effect size because
more subjects become undergo administrative censoring. For the control arm, with small
reader bias, the disagreement rate was 46%, while with large reader bias the disagreement
rate was 56%. The correlation between the LE and BICR log-hazard ratios is given in the
last column of Table 2, ranging from 0.70 to 0.84.

To evaluate the properties of the proposed estimator in (3), Table 3 summarizes simulations
irrespective of whether the LE results were significant. Results are summarized for the
estimators of the log-hazard ratio based on the LE, full BICR, the sample audited BICR data
(without the auxiliary variable incorporated) and the proposed auxiliary variable-based
estimator. The true log-hazard ratio that generated the continuous event times is presented,
along with the approximate asymptotic BICR log-hazard ratio. The true BICR log-hazard
was computed empirically by generating 1 million observations per treatment group.
Observe that with no reader bias, the estimators of the effect size for all methods are
approximately unbiased. Under the audit, however, the auxiliary-variable estimator is
approximately twice as efficient as the simple audit estimator (last column). With reader-
evaluation bias, the LE results are biased in favor of the experimental therapy. However,
because of the impact of informative censoring, the BICR-based log-hazard ratios are biased
towards superiority of the control treatment as compared to the true effect size. The
proposed variance estimator of θ̃C performs well, as is seen by the agreement of the
simulated mean of  and the empirical SD of the θ̃C. Finally, note that the standard
deviations of the BICR and LE differ slightly, even without reader-evaluation bias. This is
because, under the BICR, events are censored when a LE event time is called before the
BICR event time. As can be seen in the simulations, this does not cause bias in the estimates
of the log-hazard ratios (when there is no reader bias).

Table 4 summarizes results from the two-stage audit approach, comparing it to a full BICR.
We set δ1=0.7. The proportion of LE results that reject the null hypothesis H0: θ ≥ 0, used a
one-sided 0.025 level test. Because the BICR is not prompted unless the LE result is
significant, for the full BICR and the proposed two-stage BICR strategy, we report the
proportion of times both the LE and the BICR results reject H0: θ ≥ 0. For a full BICR, α =
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0.05, one-sided. We applied the Hochberg procedure as described in section 2.3, with α =
0.05. As expected, under the null hypothesis (θ = 0), with “small” and “large” amounts of
reader bias, the type I error for the LE is inflated considerably; rejection rates are 31% and
65% for these two scenarios, respectively. However, under a full BICR and the two-stage
audit strategy, the overall rejection rates are conservative. Indeed, the full BICR and the
BICR audit never reject the null hypothesis in these cases. This is because informative
censoring, which occurs when an early progression call by LE cannot be confirmed by
BICR, biases BICR estimators towards superiority of the control treatment. The resulting
reduction in power from this bias towards the null hypothesis (under BICR) is also observed.
Finally, note the slight loss in power of the BICR audit relative to the full BICR in two
scenarios (in the small bias and moderate effect size setting; and in the large bias and large
effect size setting). Under the large reader bias and large effect size setting, the full BICR
rejected 86% of the time, while the audit procedure rejected 81% of the time. This is the cost
of the two-stage procedure selected for these simulations. A more stringent α-level may be
preferred for the initial audit, which would reduce power loss, but increase the audit size.

4. Application: E2100
We apply the methods above retrospectively to E2100, an open-label, randomized phase III
trial in metastatic breast cancer (Miller et al., 2007). The trial randomized 722 women to
paclitaxel or paclitaxel plus be-vacizumab, with a progression-free survival primary
endpoint. A retrospective, complete-case BICR was conducted and the log-hazard ratios for
LE and BICR were similar: −0.724 (95% CI −0.914 to −0.534) for LE, and −0.608 (95% CI
−.820 to −0.396) for BICR. We apply the auxiliary-variable estimator with and without the
two-stage approach to this dataset. For simplicity, the analyses ignore stratification factors,
but results are similar (Gray et al., 2009). In practice, one might want to implement the audit
with stratification according to important factors. Because we had a complete-case BICR,
we applied the audit process repeatedly (10,000 times). The estimators θ̃C and θ ̂CA with a
25% audit produced average estimates of θ̃C = −0.611 (average : 0.174) and θ ̂CA =
−0.613 (average : 0.209), showing the efficiency benefits of using the auxiliary variable
approach.

Table 5 describes results using the two-stage approach. An initial audit of 25% was chosen
to ensure 100 events in the initial sample BICR. The formula (4) was then used to select the
audit size specifying clinical irrelevance factors (CIFs) of 0 and log(0.9), log(0.8), and
log(0.7). For these four cases, the two-stage approach provided assurance of the LE estimate
of treatment effect. The average audit sizes were 28%, 34%, 54% and 80% for CIFs of 0,
log(0.9), log(0.8), and log(0.7), respectively. The 99th percentile of the 95% CI upper bound
for the log hazard ratio is shown to give a sense of how precisely the upper bound is
estimated relative to the CIF.

5. Discussion
Our proposed audit strategy is based on estimating the expected value of the BICR log-
hazard ratio (with an infinite sample size), and not the log-hazard ratio that would be
observed from a complete BICR. In particular, as the audit size increases to include the
entire study sample, the standard error of the estimated log-hazard ratio should not converge
to zero. Rather, it should converge to the standard error of the log hazard ratio that would be
observed for a complete BICR. This type of audit is distinct from a typical accounting audit,
where a complete audit would yield standard errors of zero.

The auxiliary variable estimator we have proposed is known as a “regression estimator” in
the classical sample survey and auditing literature (Kaplan, 1973; Cochran, 1977).
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Regression estimators use the individual-level audited data to calculate the required
correlation coefficient between the primary-variable estimator and the auxiliary-variable
estimator. In our context, we have used the bootstrap to estimate the correlation between the
primary-variable (BICR) hazard-ratio estimator and the auxiliary-variable (LE) hazard-ratio
estimator, but in the simpler classical setting of estimating means or totals, the Pearson
correlation of the primary and the auxiliary data would be used.

There are two types of data that could be considered missing in auditing applications with
survival data: data not available because the case was not selected for the audit and data
excluded due to censoring at the last time of observation. For a number of reasons, including
regulatory reasons, the current standard in clinical trials with a PFS endpoint is a 100%
central review audit and analysis based solely on the primary-variable audited data. That is,
there is no attempt to improve efficiency by imputing the censored data using the auxiliary
data. Our regression estimator, which reduces to the primary-variable estimator with a 100%
audit, improves efficiency without attempting to impute for censored data. Auxiliary
variable estimators that improve inference for proportional-hazards model parameters of
censored primary-variable survival data have been developed (Pepe et al., 1994; Robins and
Finkelstein, 2000; Hsu et al., 2006; Lu and Tsiatis, 2008). These estimators may provide
efficiency gains beyond our estimator. However, such additional efficiency gains will
invariably depend on the appropriateness of the assumptions made. Finally, we note that
stratified sampling (by event status) may result in efficiency gains. These are all areas of
future research.

An alternative target of inference is the difference in the expected values of the complete
BICR log-hazard ratio and the LE log-hazard ratio. One could estimate this target by
calculating the difference between the simple BICR log-hazard-ratio on the audited sample
(no need for the auxiliary variable estimator) and the LE log hazard ratio; the standard error
of this difference could be estimated by a bootstrap. However, this alternative target does
not take into account how large the treatment effect is, which is relevant in deciding whether
the differences in hazard ratios are clinically important. For example, the same size LE-
BICR difference in log hazard ratios may be cause for concern with a moderate treatment
effect but not important with a large treatment effect. We believe estimation of the BICR
hazard ratio, and comparing it to the clinical irrelevance factor provides a better answer to
the clinical question of interest.

In our analyses we assumed that a patient’s BICR data is censored at the time of progression
by LE, if the BICR does not confirm the progression and there are no later scans available
for BICR. A later death time may be available for some of these patients, suggesting
possible incorporation of these death times into the analysis. This issue is not restricted to
the auditing context, as death times may frequently be available for patients who are lost to
(progression) follow-up. In the general context, the US Food and Drug Administration has
suggested, as a sensitivity analysis, considering a death that occurs after a patient is lost-to-
follow-up as a PFS event, provided it occurs within less than two regularly scheduled
assessment times (FDA, 2007). Alternatively, modeling assumptions can be used to
incorporate into the analysis death times that occur after patients are lost to follow-up (Ruan
and Gray, 2008). These same approaches could be considered in the auditing context. Issues
related to measurement error in PFS assessments are also important, and are discussed in
Korn et al. (2010).

In summary, we propose a retrospective BICR audit of images from a subset of patients as a
means for providing reassurance (or the lack thereof) in locally-determined estimator of
treatment effect, in settings in which the LE estimates are both statistically significant and
clinically meaningful. The retrospective approach requires the ability to ultimately access all
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images collected in a trial, when the decision to proceed to a complete BICR is made. To
improve efficiency, we develop an estimator of the log-hazard ratio that incorporates
auxiliary variable information from the LE, and a two-stage audit approach. After one gains
experience with this procedure in certain settings, it is possible that typical values of ρ may
be used to estimate audit size, rather than performing the initial sample to estimate ρ. This is
an area of future research.
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7. Appendix: Two-stage procedure algorithm

We denote the standardized difference  as Δ ̂.

1. If Δ ̂ > Z1−α + Z1−β, proceed with steps below. Otherwise, proceed to complete-case
BICR. An alternative strategy, under the latter situation is to consider a larger β for
which Δ̂ exceeds Z1−α + Z1−β and determine whether an audit is worth considering
for that power.

2. Perform an initial BICR on a random sample of proportion δ0.

3. Bootstrap LE and BICR results to estimate ρ.

4. Substitute ρ̂ into equation (4) and estimate the audit size, δ.

5. If δ ≤ δ0, the size of the initial sample (to estimate ρ) was sufficiently large for the
audit. Hence, the estimator θ̃C and the upper bound of its (1 − α/2)% confidence
interval are computed.

a. If the upper bound is below the CIF, stop and conclude that consistency of
a treatment effect has been appropriately verified.

b. If the upper bound is not below the CIF, continue to a full-sample BICR to
estimate θC and the upper bound of its (1 − α/2)% confidence interval.

1. If this upper bound is below the CIF, stop and conclude that
consistency of a treatment effect has been appropriately
verified.

2. If this upper bound is not below the CIF, compute upper
bounds for both the initial audit and the full BICR using a (1
− α)% confidence interval for each. If both of these upper
bounds are below the CIF, conclude that consistency of a
treatment effect has been appropriately verified.

6. If δ ∈ (δ0, δ1], audit an additional proportion δ − δ0 and estimate θ̃C along with the
upper bound of its (1 − α/2)% confidence interval. Repeat steps (5a) – (5c).

7. If δ > δ1, proceed to a full audit to estimate θ̃C along with the upper bound of its (1
− α/2)% confidence interval.

a. If the upper bound is below the CIF, conclude that consistency of a
treatment effect has been appropriately verified.

b. If the upper bound is not below the CIF, compute upper bounds for both
the initial audit and the full BICR using a (1 − α)% confidence interval for
each. If both of these upper bounds are below the CIF, conclude that
consistency of a treatment effect has been appropriately verified.
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Figure 1.
Efficiency of proposed estimator relative to standard estimator for different audit sizes and
correlations.
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Table 2

Summary of average disagreement rates and correlations for simulation scenarios. Agreement is defined as
same date of progression or censoring within +/− 6 week interval.

Reader Bias Effect Size

Disagreement rate

ρControl Arm Experimental Arm

None Null 0.32 0.32 0.84

None Small 0.32 0.29 0.84

None Moderate 0.32 0.26 0.84

None Large 0.32 0.23 0.84

Small Null 0.46 0.32 0.76

Small Small 0.46 0.29 0.76

Small Moderate 0.46 0.26 0.77

Small Large 0.46 0.23 0.77

Large Null 0.56 0.32 0.70

Large Small 0.56 0.29 0.71

Large Moderate 0.56 0.26 0.71

Large Large 0.56 0.23 0.72
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Table 5

Application of two-stage strategy to Phase III trial in metastatic breast cancer for clinical irrelevance factors
(CIFs). Confidence intervals were computed using the Hochberg procedure described in section 2.3, with an
overall one-sided α = 0.05.

CIF 99th percentile of CI Upper Bound Average Audit Size

log(1.0)= 0 −0.016 0.28

log(0.9)=−0.11 −0.112 0.37

log(0.8)=−0.22 −0.227 0.54

log(0.7)=−0.36 −0.358 0.80
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