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Abstract
This study uses industrial pollution data from the Environmental Protection Agency’s Toxics
Release Inventory (TRI) and tract-level demographic data from the 2000 U.S. census to determine
whether environmental racial inequality existed in the Detroit metropolitan area in the year 2000.
This study differs from prior environmental inequality research in two important ways. First, it
offers a positive rationale for using hazard proximity indicators. Second, it uses a distance decay
modeling technique to estimate hazard proximity. This technique weights each hazard’s estimated
negative effect by distance such that the estimated negative effect declines continuously as
distance from the hazard increases, thus providing more accurate estimates of proximity-based
environmental risk than can be obtained using other variable construction techniques currently
found in the literature. Using this technique, I find that Detroit’s black neighborhoods were
disproportionately burdened by TRI facility activity in 2000 and that neighborhood racial
composition had a strong independent effect on neighborhood proximity to TRI activity.

Introduction
Over the past couple of decades, academic interest in environmental inequality has grown
dramatically, resulting in the development of a large and expanding body of research that
has attempted to determine whether minority and low income groups are disproportionately
burdened by environmental hazards (Bowen 2002; Pastor, Sadd and Morello-Frosch 2002;
Szasz and Meuser 1997). Although the methodological techniques researchers have used to
make this determination have improved considerably over time, researchers still face several
critical methodological challenges (Bowen 2002; Chakraborty and Armstrong 2001; Mennis
2002). One of the most important of these challenges is the problem of properly measuring
residential proximity and exposure to environmental hazards and industrial pollution
(Bowen 2002; Downey 2003; Liu 2001; Mohai and Saha 2006).

The problem facing researchers is two-fold. First, it is likely that the strength of an
environmental hazard’s negative effects declines continuously as distance from the hazard
increases (Liu 2001). Thus, if researchers want to accurately measure environmental
inequality, they must be able to model this continuous negative effect. Second, data
limitations force most environmental inequality researchers to use demographic data that are
tied to areal units of analysis such as census tracts and zip codes (Downey 2003). This is
problematic because the boundaries used to create these areal units of analysis, although not
designed arbitrarily, are arbitrary with respect to the distribution of environmental hazards.
As a result, environmental hazards are often located near the physical boundaries of areal
units of analysis, sometimes closer to neighboring units of analysis than to the far side of
their host unit (Downey 2003).
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This presents researchers with a real dilemma. Should they assume, as others have done, that
an environmental hazard’s negative effects are confined solely to and distributed evenly
throughout its host unit of analysis (Downey 2003; Mohai and Saha 2006)? Or should they
assume that environmental hazards negatively affect both host and non-host units? More
importantly, because it is quite likely that environmental hazards’ negative effects spread
unevenly across both host and non-host units, how should they measure these uneven
effects? And once measured how should they tie their measurements back to their
demographic units of analysis?

This article provides some new answers to these questions by using a distance decay
modeling technique borrowed from geographic information systems (GIS) analysts,
industrial pollution data drawn from the Environmental Protection Agency’s (EPA) Toxics
Release Inventory (TRI), and tract-level demographic data drawn from the 2000 U.S.
Census to determine whether environmental racial inequality existed in the Detroit
metropolitan area in the year 2000.

I begin by describing the distance decay modeling technique and justifying its use. I then run
a set of regression analyses that allows me to determine whether the distance decay
estimates produced by the GIS modeling technique are positively associated with the
percentages of Hispanics and non-Hispanic blacks in a census tract. Finally, I use these
regression results to graph the associations that exist between the distance decay variables
on the one hand and percent non-Hispanic black on the other (percent Hispanic is not
positively associated with any of the distance decay variables). This allows me to draw more
substantively meaningful conclusions about environmental racial inequality in Detroit than I
otherwise could.

Before proceeding, I should note that the distance decay technique used in this article has
two important limitations. First, it cannot overcome the aforementioned problem that
environmental inequality researchers are generally forced to use areal units of analysis such
as census tracts and zip codes. Thus, most researchers using this technique will have to
aggregate their distance decay data to the areal-unit level in order to merge it with their
demographic data. Second, because researchers do not know the actual rate at which
environmental hazards’ negative effects decline (their distance decay rate), the mathematical
functions used to calculate distance decay are based on assumptions about the distance
decay process rather than on precise knowledge of the process.

Although these are important limitations, they are not as serious as they first appear. This is
because the first limitation results from a lack of address-specific, individual-level,
demographic data, and not from any problem with the technique, and the second limitation
results from the state of academic knowledge regarding distance decay. As a result, the first
limitation can be overcome with better demographic data, and the second limitation will
become less and less problematic as academic knowledge regarding the distance decay
process improves.

Literature Review
Environmental inequality researchers have studied the distribution of social groups around a
variety of environmental hazards including hazardous waste sites, manufacturing facilities,
superfund sites, chemical accidents and air pollutants (Bowen 2002; Derezinski, Lacy and
Stretesky 2003; Morello-Frosch, Pastor and Sadd 2001; Szasz and Meuser 1997). Most
studies support the hypothesis that lower income and minority neighborhoods are
disproportionately burdened by environmental hazards. However, results have not been
entirely consistent (Bowen 2002; Pastor, Sadd and Hipp 2001). For example, although most
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researchers have found evidence of income- and/or poverty-based environmental inequality
(Ash and Fetter 2004; Derezinski, Lacy and Stretesky 2003, Downey 2003; Morello-Frosch,
Pastor and Sadd 2001), some have not (Anderton et al. 1994; Bowen et al. 1995; Brown,
Ciambrone and Hunter 1997).

Similarly, although many studies have found strong evidence of environmental racial
inequality (Hamilton 1995; Krieg 1995; Mohai and Bryant 1992; Morello-Frosch, Pastor
and Sadd 2001; Stretesky and Hogan 1998; Stretesky and Lynch 2002), some have found
evidence of environmental racial inequality for some minority groups but not others (Brown,
Ciambrone and Hunter 1997; Pastor, Sadd and Morello-Frosch 2002; Sadd et al. 1999), and
some have found only weak evidence of environmental racial inequality, inconsistent
evidence, or none at all (Anderton et al. 1994; Atlas 2002; Bowen et al. 1995; Derezinski,
Lacy and Stretesky 2003; Oakes, Anderton and Anderson 1996; Yandle and Burton 1996).

Studies have also varied according to whether they use a local (Bullard 1983; Mohai and
Bryant 1992), regional, (Bowen et al. 1995; Downey 2003, 2005; Sadd et al. 1999), or
national sample (Ash and Fetter 2004; Derezinski, Lacy and Stretesky 2003; Oakes,
Anderton and Anderson 1996). Findings from local and regional studies suggest that
patterns of environmental inequality vary from one locality and region to another (Bowen
2002), with studies of western metropolitan areas (Downey 2006; Brown, Ciambrone and
Hunter 1997; Pastor, Sadd and Hipp 2001; Pulido 2000) generally finding stronger evidence
of environmental racial inequality than studies of rust belt cities or cities in the northeast and
mid-Atlantic regions (Downey 2006; Bowen et al. 1995; Brown, Ciambrone and Hunter
1997; Downey 2005).

Proximity Indicators
Most environmental inequality researchers use residential proximity to environmental
hazards, rather than exposure or risk, to measure environmental inequality (Bowen 2002;
Sadd et al. 1999). Researchers use residential proximity data rather than exposure or risk
data because exposure data are very difficult to obtain, and until recently air pollutant
concentration data, which can be used to estimate certain kinds of health risks, have not been
readily available (Ash and Fetter 2004; Morello-Frosch, Pastor and Sadd 2001).

The field’s reliance on proximity data has been heavily criticized. For example, Bowen
(2002) argues that lack of exposure and risk data seriously undermines the quality and
usefulness of environmental inequality research because it prevents researchers from linking
environmental hazards to specific public health outcomes in specific communities. This is
problematic because it prevents researchers from determining whether environmental
inequality exists and whether exposure to environmental pollutants has negative and
inequitable public health outcomes.

Other scholars argue that lack of exposure and risk data, while problematic, is not nearly as
serious as Bowen claims. Sadd et al. (1999:109) note, for example, that:

Several epidemiological studies have… demonstrated a significant relationship
between residential proximity to urban toxic substances and/or air release facilities,
and increased health risk and disease incidence, especially among pregnant women
and infants.

Moreover, empirical evidence suggests that environmental hazards also negatively affect
nearby property values, beliefs about local health risks, psychological stress, local
employment opportunities, sense of community, and local economic activity (Downey and
Van Willigen 2005; Liu 2001; Mohai 1995; Sadd et al. 1999), outcomes that are less likely
to be affected by chemical exposure than they are to be affected by residential proximity to
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environmentally hazardous facilities, the size and visibility of environmentally hazardous
facilities, and perceptions of facility safety and neighborhood desirability. Thus, it is likely
that in many cases proximity measures are more valid indicators than chemical exposure of
environmental inequality.

This is not to say that exposure and risk data are unimportant or that the field would not
benefit greatly from an increase in their use. It is simply to say that the field would also
benefit greatly from improved proximity measures that take distance to hazardous facilities
into account and, when possible, the size and visibility of these facilities and the social
stigma that is attached to them.

Measuring Proximity and Risk
Environmental inequality researchers have employed several strategies to measure
residential proximity to environmental hazards and, when possible, to estimate
environmental hazards’ potential health risks. These strategies fall into three broad
categories, the unit-hazard coincidence method, the buffer method and pollution plume
modeling. The term unit-hazard coincidence was coined by Mohai and Saha (2006) to
describe the most commonly used method of measuring residential proximity to
environmental hazards. Researchers using this method locate environmental hazards on a
map and (1) sum the number of hazards located in each of their study area analysis units, (2)
sum the pounds of pollutants emitted in each of their study area analysis units, or (3) create a
dummy variable that indicates whether or not an analysis unit contains a hazard. All
individuals residing in an analysis unit containing an environmental hazard are considered to
be living in equal proximity to that hazard, and only people living in that analysis unit are
considered to be living in proximity to that hazard.

The unit-hazard coincidence method is problematic for several reasons, the most important
of which is that it assumes that an environmental hazard’s negative effects are confined
solely to and distributed evenly throughout its host analysis unit. Figure 1 illustrates the
problematic nature of these assumptions.

Figure 1 examines the distribution of Toxics Release Inventory (TRI) facilities in a subset of
Detroit metropolitan area census tracts in the year 2000. TRI facilities are industrial facilities
that manufacture, process or otherwise use specified toxic chemicals in specified quantities,
and are required to report this use to the Environmental Protection Agency on an annual
basis. (A more complete description of the TRI database can be found below.) Not only is it
quite evident that TRI facilities are distributed unevenly within census tracts, it is also
evident that TRI facilities are often located near the boundaries of multiple census tracts, in
many cases closer to adjacent census tracts than to the far end of their host census tract.
(Maps not shown here demonstrate that the same basic patterns hold for the region’s
hazardous waste facilities and National Priority List sites.).

Given the spatial distribution of these TRI facilities, it appears quite unlikely that their
negative effects are confined solely to their host analysis units. It is also quite unlikely that
the strength of their negative effects remains constant as the distance from each facility
increases (Liu 2001; Pollock and Vittas 1995). Nevertheless, the unit-hazard coincidence
method assumes both these things.1

1The unit-hazard coincidence method assumes that an environmental hazard’s negative effects remain constant until you reach the
borders of its host analysis unit, at which point these effects abruptly drop to zero.
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The Buffer Method
Researchers using the buffer method to determine the geographic area and population
affected by some set of environmental hazards locate these hazards on a map and then
construct circular buffers around each hazard. These buffers, which are usually the same size
for each facility,2 are matched to areal units of analysis (such as census tracts) in a variety of
ways. One approach is to define as an “affected analysis unit” any analysis unit that has at
least 50 percent of its area encompassed by the buffer. Other approaches include defining an
analysis unit as an “affected unit” if that unit’s centroid is encompassed by the buffer or if
the buffer touches or in any way covers a portion of the analysis unit (Chakraborty and
Armstrong 1997; Mohai and Saha 2006). Regardless of which approach is taken, they all
consider any individual who lives in an affected analysis unit to be residentially proximate
to all the hazards affecting that unit.

A fourth approach associated with the buffer method, the areal apportionment method,
calculates the proportion of each analysis unit that is actually encompassed by a buffer and
then assigns that proportion of the analysis unit’s population to the buffer (Mohai and Saha
2006). For example, if 22 percent of an analysis unit’s area is encompassed by a buffer, then
22 percent of that analysis unit’s population is considered to be affected, and 78 percent to
be unaffected, by that buffer’s hazard.

The buffer method offers some important advantages over the unit-hazard coincidence
method. Most importantly, the buffer method does not assume that environmental hazards’
negative effects are confined solely to host analysis units. In addition, the areal
apportionment method does not assume that environmental hazards’ negative effects are
distributed evenly within analysis units. Nevertheless, all buffer methods assume that the
strength of a hazard’s negative effects remains constant within the circular buffer drawn
around the hazard.

Pollution Plume Modeling
Pollution plume modeling techniques, such as those used to derive the data employed in Ash
and Fetter (2004) and Morello-Frosch, Pastor and Sadd (2001), do not make this problematic
assumption. These studies use air pollutant concentration and toxicity data drawn from the
Environmental Protection Agency’s (EPA) Cumulative Exposure Project (CEP: Morello-
Frosch, Pastor and Sadd) and Risk-Screening Environmental Indicator’s project (RSEI: Ash
and Fetter) to estimate health risk scores for each analysis unit in their respective datasets.

These data are unique in environmental inequality research, not only because they allow
researchers to estimate the potential health risks associated with specific environmental
hazards and specific analysis units, but also because the plume modeling techniques used to
derive these data take into account factors such as wind speed, wind direction, air
turbulence, smokestack height and the rate of chemical decay and deposition (Ash and Fetter
2004). As a result, these modeling techniques allow the concentration of air pollutants and,
therefore, the estimated health risks associated with these air pollutants to (1) decline
continuously as distance from the emitting source increases and (2) vary according to
compass direction. In addition, because the pollution plumes used to derive the risk
estimates can extend for miles in any direction (up to 44 miles in the RSEI model), this
modeling technique allows hazards and emissions in one analysis unit to affect people living
in other analysis units.

2See Chakraborty and Armstrong (2001) for an interesting exception.
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This is a clear improvement in many respects over the unit-hazard coincidence and buffer
modeling approaches. Nevertheless, the plume modeling approach is not without its own set
of limitations. First, the health risks associated with pollution exposure are not the only set
of risks associated with environmental hazards. As noted above, environmental hazard
presence can also negatively affect nearby property values, perceptions of local health risks,
psychological stress, local employment opportunities, sense of community and local
economic activity. For researchers interested in these potential negative impacts, plume
modeling data are clearly inappropriate.

Second, creating plume modeling datasets for large geographic areas is a time consuming
and expensive process. As a result, there are few large-scale plume model datasets and those
that exist are limited to specific sets of hazards. Third, because of the difficulty inherent in
estimating plume models for hundreds of thousands of releases across the entire United
States, the plume modeling techniques used in Ash and Fetter (2004) and Morello-Frosch,
Pastor and Sadd (2001) make several necessary but problematic assumptions. For example,
each facility in the RSEI database is given a single smokestack height estimate. However,
many industrial facilities have multiple smokestacks of varying height, smokestack height
estimates are often based on the median smokestack height for an entire industry (based on
the facility’s three-digit SIC code), and in the RSEI model “stack height has the greatest
impact on predicted concentrations of air pollutants.” (Bouwes and Hassur 1999:ii)
Moreover, the RSEI model assumes constant emissions rates and uses chemical decay
estimates that are not necessarily accurate.

Thus, although plume modeling data represent a significant improvement in many respects
over unit-hazard coincidence and buffer analysis data, such data are not as accurate as many
researchers might think. More importantly, their use is limited to specific research questions
(those having to do with specific public health risks) and specific hazards (those covered by
the plume models).

Thus, in the next section of the article, I describe a GIS technique for creating hazard
proximity indicators that can be used to model environmental hazards’ non-exposure related
negative effects. This technique takes into account the location and distribution of hazards
within analysis units, allows the strength of an environmental hazard’s negative effects to
decline continuously as distance from the hazard increases, and permits hazards and
emissions in one analysis unit to affect people living in other analysis units.

As noted earlier, this technique has some important limitations, and it is by no means a
substitute for pollution plume modeling. Instead, it should be viewed as an important
complement to the buffer analysis and plume modeling techniques already found in the
literature.

Distance Decay Modeling Using GIS
A GIS is a software package that unites spatial data, such as the location of factories and
census tracts, with data about the features making up the spatial database, such as the
number of people living in each census tract or the pounds of pollutants emitted from each
factory. In a GIS, data are stored as map layers that can be precisely positioned on top of
each other. There are two basic types of map layers in a GIS: vector map layers and raster
map layers. A vector map uses points, lines and polygons to represent physical features such
as cities, rivers and state boundaries. (Vector maps are what most people think of when they
think of maps.) A raster map stores and displays spatially referenced numeric data in
rectangular grids composed of square cells that are described in terms of resolution. For
example, a 25-foot resolution raster map contains square grid cells with sides that are 25 feet
long.
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In order to create the negative effects indicators used in this article, industrial facilities from
the 2000 Toxics Release Inventory were first located on a Detroit metropolitan area vector
map, and then three, 105.6-foot resolution raster grids were calculated for each facility
(105.6 feet is 1/50th of a mile). The first grid calculated the distance from the center of each
cell in the metropolitan area to the center of the cell containing that grid’s TRI facility. The
second grid was a weighting grid that provided, for each metropolitan area grid cell, a
weight (w, where 0 ≤ w ≤ 1) that indicated the relative strength of the facility’s potential
negative effect on that cell. This grid was calculated by inserting the distance values from
the first grid into a distance decay function such as the following:

(1a)

(1b)

where d equals distance in feet from the TRI facility (this and other distance decay functions
are employed in the analyses presented below).

The third grid, the relative effects grid, was calculated by multiplying each cell in the
weights grid by the total pounds of air pollutants emitted by that grid’s TRI facility in 2000.
Ideally, this grid would be calculated by multiplying each cell in the weights grid by some
measure of facility size or visibility in order to account for the fact that the strength of an
environmental hazard’s non-exposure related negative effects is likely a function, at least in
part, of the size and visibility of the hazard (see earlier discussion). However, the TRI does
not provide researchers with facility size or visibility data. Thus, I had to select a proxy for
facility size from the variables included in the TRI dataset. I selected air emissions as my
proxy because TRI facility air emissions are strongly correlated with facility size for a
subset of facilities for which facility size data are available.

The relative effects grids for all the facilities in the database were then summed together to
create a new grid in which each cell value represented the summed relative effect of all
Detroit metropolitan area TRI facilities on that cell. For example, if there had been five
facilities in the study area, and the relative effect of these facilities on grid cell A had been 0,
300, 10, 500 and 0 respectively, then their summed relative effect on grid cell A would have
equaled 0 + 300 + 10 + 500 + 0, or 810.

Finally, the cell values in the summed relative effects grid were aggregated to the census
tract level by summing together the cell values in each census tract and then dividing each
census tract total by the number of cells in that tract. The resulting indicator, the mean
relative effect indicator, provides an estimate of the relative effect of all study area facilities
on each study area census tract.3

Functional Form
One of the strengths of the variable construction technique described in the previous section
is that it allows researchers to vary the distance decay functions used to calculate the relative
effects grids in any manner they want. Unfortunately, however, the environmental inequality

3It should be kept in mind that these relative effects averages do not represent average air pollutant concentration levels, the total
pounds of air pollutants emitted in the average analysis unit grid cell, or some absolute measure of hazard impact on each analysis
unit. Instead they are estimates of the relative, non-exposure-related impact of all study area facilities on each study area analysis unit.
Thus a score of 1,000 indicates twice the estimated impact of a score of 500, but has no absolute meaning of its own (RSEI risk scores
are also interpreted relative to one another and not in absolute terms).
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literature provides researchers with little guidance on how to determine, for any potential
negative effect, the proper functional form for the distance decay equations. As a result,
there is no theoretical or empirical reason for favoring one functional form over another.

Given this problem, this article provides results for six distance decay indicators. Figure 2
presents graphs of the weighting functions used to calculate two of these indicators. Each
graph in figure 2 graphs the line created by plotting distance (in feet) from the hazard
against the weight assigned for that distance by the graph’s particular decay function. Graph
A plots a 1.5 mile curvilinear distance decay function and graph B plots a 1.5 mile inverse
curvilinear distance decay function. The curvilinear function assumes that an environmental
hazard’s negative effects decline relatively slowly at first and more quickly as distance
increases. The inverse curvilinear function assumes that an environmental hazard’s negative
effects decline relatively rapidly at first and more slowly as distance increases. In each of
these graphs, the weight reaches zero at 1.5 miles and remains at zero thereafter. However,
results are also reported below for curvilinear and inverse curvilinear functions that reach
zero at .5 miles and 2.5 miles.

The .5, 1.5 and 2.5 mile cutoff points were chosen because studies that examine the impact
of hazardous waste sites on property values have generally found that property values are
affected at distances ranging from .25 miles in some studies to more than 2 miles in others
(Mohai 1995; Liu 2001). In addition, because little is known about the spatial extent of other
potential negative effects, it makes more sense to examine how results vary across multiple
cutoff points than it does to select a single cutoff point for examination.

Finally, I ran regression models using other linear and non-linear distance decay indicators.
Results for these models are not reported in this article because they do not differ
appreciably from the regression results reported below.

Study Area
The Detroit metropolitan area is defined here as the six counties that the U.S. Census Bureau
designates as comprising the 2000 Detroit Primary Metropolitan Statistical Area (these
counties are Lapeer, Macomb, Monroe, Oakland, Saint Clair and Wayne counties). I
selected Detroit for this study because it represents one of this nation’s most important rust
belt cities and because TRI emissions and waste transfers in Wayne County, Detroit’s host
county, are among the worst in the nation. (Wayne County consistently ranks among the 10
most polluted counties in the United States.)

In contrast to studies of western metropolitan areas (Downey 2006; Brown, Ciambrone and
Hunter 1997; Pastor, Sadd and Hipp 2001; Pulido 2000), studies of rust belt cities have
generally found relatively weak evidence of environmental racial inequality (Bowen et al.
1995; Brown, Ciambrone and Hunter 1997; Downey 2005). In Detroit, this may be
explained by the fact that unlike industry, blacks have been confined primarily to the urban
core. Thus, research has shown that by 1990, industrial facilities in Detroit’s urban core
were surrounded almost entirely by black neighborhoods, while industrial facilities in
Detroit’s suburbs were surrounded almost entirely by white neighborhoods, resulting in
relatively low levels of environmental racial inequality at that time (Downey 2003, 2005;
Krieg 1995 found similar patterns in the Boston metropolitan area in 1990).

Of course, environmental inequality levels in Detroit may have changed between 1990 and
2000. For example, demographic changes may have placed a greater share of Detroit’s black
residents in suburban industrial neighborhoods than was previously the case, increasing
environmental racial inequality levels in the region. Conversely, industrial facilities may
have left Detroit’s urban core in numbers large enough to weaken environmental racial
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inequality in the region, as appears to have happened in the period between 1970 and 1990
(Downey 2005). Finally, this study may find different levels of environmental inequality in
Detroit than have previous studies simply because this study uses different hazard indicators
and a different study area definition than have previous studies.

Environmental Hazard Data
Environmental hazard data were obtained from the Environmental Protection Agency’s
2000 Toxics Release Inventory. The TRI records the number of pounds of specified toxic
chemicals released into the environment each year by industrial facilities that fall into one of
seven industrial categories (manufacturing, metal mining, coal mining, electric generating
facilities that combust coal or oil, chemical wholesale distributors, petroleum terminals and
bulk storage), employ the equivalent of 10 or more full-time workers, and manufacture,
process or otherwise use the specified chemicals in specified quantities. In 2000, the
specified quantities were 25,000 pounds for facilities that manufactured or processed TRI
chemicals and 10,000 pounds for facilities that otherwise used TRI chemicals (Rtknet
2004)4.

The TRI reports toxic chemical releases to various media, including air, land, water and
underground injection. It also provides data on off-site waste transfers and waste generated
on-site. Total air releases, which are used to calculate the relative effects grids discussed
above, are the sum of each facility’s stack and fugitive air emissions. Stack air emissions are
emissions that exit the TRI facility through a confined air stream such as a pipe or a stack.
Fugitive air emissions, such as leaks and evaporation, are air emissions that are not released
through a confined air stream (Rtknet 2004).

As noted above, total air releases is used as a proxy for facility size because the TRI
provides no direct measure of facility size and such measures are unavailable from other
sources. Dun and Bradstreet, for example, provide square footage data for many industrial
facilities, but for only 49.5 percent of the facilities included in the database used in this
article. However, when total air releases is correlated with the square footage of TRI
facilities for which square footage data is available, the correlation equals .71 (p < .0001),
providing evidence that total air releases is a good proxy for facility size. (None of the other
TRI variables are as strongly correlated with the square footage variable.)

Finally, TRI facilities were located on a map using latitude and longitude coordinates
provided by the EPA. Because the estimated accuracy of these coordinates varies from less
than 100 meters to 11,000 meters, only those facilities with coordinate accuracy estimates
less than or equal to 150 meters were included in the dataset. In other words, only facilities
estimated to be within 150 meters or less of the latitude and longitude coordinates provided
by the EPA are included in the dataset.5 The resulting dataset includes approximately 85.8
percent of the original observations.6

Demographic Data
Tract-level demographic data were obtained from the 2000 U.S. Census. Demographic
variables were selected based on their inclusion in prior studies that have attempted to
determine the relative importance of race and income in predicting environmental hazard

4See Sadd et al. (1999) and Downey (2006) for a detailed discussion of the advantages and limitations of TRI data.
5Details on the process that the EPA uses to determine TRI facility latitude and longitude coordinates and to estimate the accuracy of
these coordinates can be found at the following website: http://www.epa.gov/opptintr/rsei/docs/tech_app_d.pdf.
6Restricting the dataset to facilities with coordinate accuracy estimates of less than 150 meters would have resulted in a dataset with
only 1.5 percent of the original observations.
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presence (Anderton et al. 1994; Oakes, Anderson and Anderton 1996; Pastor, Sadd and Hipp
2001; Sadd et al. 1999). Demographic variables include percent Hispanic, percent non-
Hispanic black, median household income, the percentage of employed tract residents who
are engaged in manufacturing occupations (percent employed in manufacturing), the number
of people per square mile (population density), the percentage of tract residents living in
poverty (percent poverty), the median property value of owner occupied housing (median
property value), the median age of owner occupied housing (median housing unit age), the
percentage of residents 25 years old or older who have completed 12 or more years of
schooling but who do not have a four-year college degree (percent high school or some
college), the percentage of housing units that are vacant (percent vacant housing units), and
the distance from each tract’s average grid cell to the nearest railroad line (average railroad
distance).

Median household income, percent living in poverty and median property value were
selected because several scholars have argued that the reason minorities are overrepresented
in environmentally hazardous neighborhoods is that housing costs are relatively low in such
neighborhoods, making them attractive to lower income people who, in turn, are
disproportionately non-white (Hamilton 1995; Mohai and Bryant 1992; Oakes, Anderton
and Anderson 1996).

Percent employed in manufacturing is included because some researchers have hypothesized
that industrial facilities and industrial workers tend to locate near each other (Anderton et al.
1994a). Population density is included because manufacturing facilities are often sited in
areas with plenty of open space (Downey 2005) and because some researchers have argued
that local officials work to reduce pollution levels in areas with high population densities
(Ash and Fetter 2004; Sadd et al. 1999). Average railroad distance is included because
Detroit’s industrial neighborhoods tend to be located near the region’s railroad lines
(Downey 2005). Median housing unit age and percent vacant housing units are included
because I hypothesize that industrial facilities are overrepresented in older, somewhat run-
down neighborhoods. Finally, the education variable is included because neighborhood
education levels have been significantly associated with environmental risk levels in prior
environmental inequality research (Ash and Fetter 2004).7

Results
In order to determine whether environmental inequality existed in the Detroit metropolitan
area in 2000, Table 1 correlates percent Hispanic, percent non-Hispanic black and median
household income with the distance decay indicators discussed above. Table 1 shows that
percent Hispanic is insignificantly associated with all six distance decay indicators, that
percent non-Hispanic black is positively and significantly associated with the 1.5 and 2.5
mile distance decay indicators, but not with the .5 mile distance decay indicators, and that
median household income is negatively and significantly associated with all six distance
decay indicators. In addition, Table 1 shows that none of the significant correlation
coefficients are very large. Thus, it appears that black environmental inequality and income-
based environmental inequality both existed in the Detroit metropolitan area in 2000, but
they were both relatively weak at that time.

7I originally included two education variables in the analysis, the percentage of tract residents 25 years old and older with a college
degree or higher and the percentage of tract residents 25 years old and older with less than a high school degree. Because these
variables were both positively associated with all the dependent variables, I re-ran the regression models using the education variable
that is defined in the main text. This variable is consistently and negatively associated with the dependent variables.
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In order to determine whether percent non-Hispanic black is still a statistically significant
predictor of environmental hazard presence after controlling for other important predictors
of environmental hazard presence, I regress each of the 1.5 and 2.5 mile distance decay
indicators on percent non-Hispanic black (tables 2–3), controlling for percent Hispanic,
median household income and the other control variables discussed above. (Results are not
reported for the .5 mile distance decay indicators because neither of them is significantly
correlated or associated with percent Hispanic or percent non-Hispanic black.)

Although it is possible that percent Hispanic, percent non-Hispanic black and median
household income are linearly related to the dependent variable, this is not necessarily the
case. For example, it may be that after neighborhood incomes reach a certain point, further
income increases can only buy limited environmental improvements because environmental
conditions are already at or near perfect. Similarly, if researchers are correct in arguing that
environmental racial inequality exists because minorities have limited residential choice
(Downey 2005), then any positive association that exists between percent minority and
environmental hazard presence may level off as the percentage of minorities in a
neighborhood increases beyond a certain point. In other words, just as increased residential
choice may no longer buy improved environmental conditions beyond a certain point, it may
also be the case that decreased residential choice no longer results in worse environmental
conditions beyond a certain point.

Thus, most of the regression models presented below include logged transformations of
percent Hispanic, percent non-Hispanic black and median household income. The one
exception is found in Table 3, where percent Hispanic is employed rather than percent
Hispanic logged because the latter variable is insignificantly associated with either of the
dependent variables in either the full or reduced regression models.

Table 2 regresses each of the 2.5 mile distance decay indicators on the transformed race and
income variables, controlling for the demographic and housing variables discussed above.
Models 1–3 present results for the curvilinear indicator and models 4–6 for the inverse
curvilinear indicator. The independent variables are stepped into the equation in three stages:
models 1 and 4 only include percent non-Hispanic black logged; models 2 and 5 step in
percent Hispanic logged and median household income logged; and models 3 and 6 step in
the remaining control variables. Percent Hispanic logged and median household income
logged are stepped into the equation in the same model because inserting percent Hispanic
logged into the equation separately has virtually no effect on the coefficients found in
models 1 and 4. Thus, models 2 and 5 allow me to determine whether inserting median
household income logged into the equation weakens any of the positive associations that
exist between percent non-Hispanic black logged and the 2.5 mile distance decay indicators.
Finally, because the residuals from ordinary least squares (OLS) estimates were spatially
correlated with one another, these models, and those found in table 3, control for spatial
autocorrelation.

Table 2 shows that percent non-Hispanic black logged is significantly and positively
associated with the 2.5 mile curvilinear indicator in model 1 and the 2.5 mile inverse
curvilinear indicator in model 4. The associations between percent non-Hispanic black
logged and the two dependent variables are weakened when median household income
logged is inserted into the equation in models 2 and 5 and when the remaining control
variables are inserted into the equation in models 3 and 6. Nevertheless, percent non-
Hispanic black logged is still significantly associated with the dependent variable in both
full models. Thus, as percent non-Hispanic black increases, the 2.5 mile curvilinear and
inverse curvilinear indicators both increase, but at a declining rate.
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Table 3, which presents results for the 1.5 mile distance decay indicators, shows that percent
non-Hispanic black logged is significantly and positively associated with the 1.5 mile
curvilinear indicator in model 1 and the 1.5 mile inverse curvilinear indicator in model 4.
The associations between percent non-Hispanic black logged and the two distance decay
indicators are weakened when median household income logged is inserted into the equation
in models 2 and 5 and when the remaining control variables are inserted into the equation in
models 3 and 6. Nevertheless, percent non-Hispanic black logged is still significantly
associated with the dependent variable in model 3 and marginally associated with the
dependent variable in model 6 (p =.0585). Thus, as percent non-Hispanic black increases,
the 1.5 mile curvilinear and inverse curvilinear indicators both increase, but at a declining
rate.

As previously stated, regression results are not reported in table form for the .5 mile distance
decay indicators because neither of these indicators is significantly associated or correlated
with percent Hispanic or percent non-Hispanic black. Nevertheless, it should be noted that in
the .5 mile regression analyses, median household income logged is significantly and
negatively associated with both distance decay indicators in both full regression models.

Finally, unreported regression analyses were also run using two unit-hazard coincidence
indicators as dependent variables: the total number of TRI facilities in each census tract in
2000 and the total pounds of TRI air pollutants emitted in each census tract in 2000. In these
analyses, median household income logged is significantly and negatively associated with
both hazard indicators. However, neither hazard indicator is significantly associated with
percent Hispanic, percent non-Hispanic black or either of these variables’ logged terms.

Discussion
The results presented in the previous section demonstrate that Detroit’s black neighborhoods
were disproportionately burdened by TRI facility activity in 2000 and that the associations
between percent non-Hispanic black logged and the 1.5 and 2.5 mile hazard indicators
remained statistically or marginally significant even after controlling for a set of
theoretically relevant neighborhood characteristics. Thus, it appears that neighborhood racial
status played an important role in shaping environmental inequality in the Detroit
metropolitan area in 2000.

One could argue that the relatively weak correlation coefficients found in Table 1 and the
unreported regression results for the .5 mile hazard indicators show that neighborhood racial
status played little or no role in shaping environmental inequality in the Detroit metropolitan
area. However, as Mohai (1995) points out, it is unlikely that environmental hazards’
negative effects are ever confined to an area with a radius as small as .5 miles. In addition,
the findings in Table 1 do not negate the fact that percent non-Hispanic black logged is
significantly or marginally associated with the 1.5 and 2.5 mile hazard indicators in all four
full regression models.

But perhaps most importantly, when the relationships between percent non-Hispanic black
and the 1.5 and 2.5 mile hazard indicators are graphed out, as they are in Figure 3,
neighborhood racial composition appears to be a substantively important predictor of a
neighborhood’s mean relative effect levels.

Graphs A and B in Figure 3 were created using the results from the full models in tables 2
and 3, holding the values of the other statistically significant or marginally significant
independent variables constant at their respective means and the values of the statistically
insignificant independent variables constant at zero. The values of the dependent variables
(divided by 1,000) are listed on the y-axes and are different in each graph.
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Graphs A and B demonstrate that even after controlling for a host of other factors,
predominantly black neighborhoods in the Detroit metropolitan area had much higher mean
relative effect values than did other neighborhoods. For example, graph A shows that as
percent non-Hispanic black increases from 0 to 100, (1) the 2.5 mile curvilinear indicator
increases from 74,316 to 131,464, a 57,148 point increase, and (2) the 2.5 mile inverse
curvilinear indicator increases from 24,481 to 38,111, a 13,630 point increase. Thus, if we
consider the curvilinear and inverse curvilinear functions to represent the endpoints of a
reasonable “distance decay function continuum,” Detroit metropolitan area neighborhoods
that were 100 percent non-Hispanic black had mean relative effect values between 13,630
and 57,148 points higher than did Detroit metropolitan area neighborhoods that were 0
percent non-Hispanic black.8

Moreover, graph A shows that although much of this increase occurs in neighborhoods that
are between 0 and 10 percent non-Hispanic black, much of it does not. For example, the
inverse curvilinear indicator, which equals 24,481 at 0 percent non-Hispanic black and
31,296 at 10 percent non-Hispanic black, increases to 36,059 at 50 percent non-Hispanic
black and 37,799 at 90 percent non-Hispanic black. Similarly, the curvilinear indicator,
which equals 74,316 at 0 percent non-Hispanic black and 102,890 at 10 percent non-
Hispanic black, increases to 122,863 at 50 percent non-Hispanic black and 130,157 at 90
percent non-Hispanic black.

The substantive importance of neighborhood racial composition is further confirmed by
comparing graphs A and B to graphs C and D. Graphs C and D, which are identical to each
other, graph out the empirical distribution functions of the metropolitan area’s black and
white populations when metropolitan area census tracts are ranked (from 0 to 100) according
to the percentage of non-Hispanic blacks in each tract. These graphs show, for example, that
81.7 percent of metropolitan area whites, but only 3.7 percent of metropolitan area blacks,
live in census tracts that are 5 percent or less non-Hispanic black. They also show that 89.9
percent of metropolitan area whites, but only 5.9 percent of metropolitan area blacks, live in
census tracts that are 10 percent or less non-Hispanic black.

Thus, the graphs in Figure 3 demonstrate that the independent effect of percent non-
Hispanic black on the 1.5 and 2.5 mile hazard indicators is quite substantial. As a result, we
can safely conclude that environmental racial inequality was a serious social problem in the
Detroit metropolitan area in 2000.

An important question still remains however. How exactly does a 13,630 or 57,148 point
increase in a tract’s mean relative effect level affect tract residents? Are such increases large
enough to affect nearby property values, beliefs about local health risks, local economic
activity, psychological stress or sense of community? Are they large enough to produce
some of these negative effects but not others?

In order to answer these questions, researchers will need to carefully investigate the
relationship between residential proximity to environmental hazards and these hypothesized
negative effects. As noted above, some researchers have already begun to do so (Downey
and Van Willigen 2005; Liu 2001; Mohai 1995). However, what is needed is research that

8Comparing graphs A and B, we see that the predicted values of the dependent variables vary more when we hold these variables’
cutoff distance constant and vary their functional form than when we hold their functional form constant and vary their cutoff
distance. In other words, in these models it appears that functional form has a stronger influence on regression results than does cutoff
distance. This is a striking and somewhat surprising finding, especially when we consider that varying the cutoff distance from .5 to
1.5 miles has a substantively significant effect on correlation and regression results. Explaining why functional form matters more
than cutoff distance in the 1.5 and 2.5 mile regression models is beyond the scope of this article, but it clearly merits further
investigation.
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links these hypothesized negative effects to specific distance decay indicators and specific
mean relative effect levels.

For example, researchers could merge distance decay indicators such as those employed in
this article with survey and census data to examine the effect that environmental hazards
have on neighborhood disorder and depression. Similarly, researchers could merge distance
decay indicators with economic data to examine the impact that environmental hazards have
on nearby property values and local economic activity.

Researchers could then use their findings to link specific distance decay indicators to
specific negative effects, allowing them to determine, for each of these negative effects, (1)
how much relative effect values have to increase in order to negatively affect individuals
and neighborhoods or (2) whether there is some threshold value at which individuals and
neighborhoods are negatively affected. These results could then be combined with the kind
of results reported in this article to determine whether minority and low income
neighborhoods are disproportionately burdened by environmental hazards’ proximity-related
negative effects.

Although conducting such analyses is clearly beyond the scope of this article, the true
substantive significance of the findings reported here, and of environmental inequality
research in general, cannot be understood until researchers are able to link inequitable
proximity to specific proximity-related negative outcomes. (Bowen 2002 makes the same
point about environmental hazards’ exposure-related risks.) Because distance decay
indicators are highly flexible and provide researchers with more accurate estimates of
environmental hazards’ non-exposure related risks than can be obtained using other hazard
proximity indicators, they are ideally suited for establishing such a link.

Conclusion
As with any study, caution must be taken in interpreting the findings reported here. For
example, because the data for this study are drawn from a single metropolitan area, the
results cannot be generalized to other metropolitan areas or to the United States as a whole.
In addition, because this study uses aggregated census tract data, the cell values in the
summed relative effects grids had to be aggregated to the census tract level, resulting in a
significant loss of information and minimizing to some unknown degree the advantages of
using grid cell data (the aggregated data problem). Finally, because the literature provides
little guidance on properly estimating distance decay rates, the hazard indicators employed
in this article were calculated using a range of distance decay functions and cutoff distances
rather than a set of decay functions and cutoff distances tailored to specific negative
outcomes. As a result, the hazard indicators employed in this article do not provide as
precise a set of proximity-based risk estimates as they otherwise would.

These caveats notwithstanding, this study makes several contributions to the environmental
inequality literature. First, it introduces a distance decay modeling technique that more
accurately estimates proximity-based environmental risk than do other modeling techniques
currently found in the literature. It more accurately estimates proximity-based risk because it
does not assume that an environmental hazard’s negative effects are confined solely to its
host unit of analysis, that the strength of these negative effects remains constant as distance
from the hazard increases, or that these negative effects are distributed evenly within
analysis units; and unlike plume modeling techniques, this technique can be used to estimate
non-exposure related risks. The technique is also highly flexible, capable of incorporating
any distance decay function that researchers deem appropriate.
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Moreover, the technique’s shortcomings are not as serious as they first appear. As noted in
the introduction, the aggregated data problem results from a lack of address-specific,
individual-level, demographic data, not from any problem with the technique. The solution,
therefore, involves either gathering or obtaining appropriate demographic data or developing
techniques for apportioning aggregated demographic data across grid cells so that it can be
matched to the grid cells used in the summed relative effects grids. Mennis (2002) provides
one interesting approach for apportioning aggregated demographic data across grid cells and
researchers should consider other approaches as well.

The lack of academic knowledge regarding distance decay rates is likewise not a limitation
inherent to the technique. Rather, it results from the fact that environmental inequality is a
relatively new field of research and thus, researchers have not had the time to solve all the
important methodological issues facing them. As the field develops and researchers gain a
better understanding of the relationship between proximity and risk, the distance decay
functions researchers use will become more and more precise.

Second, this article provides environmental inequality researchers with a solid rationale for
using hazard proximity indicators. Prior to this, many researchers have argued that the only
reason to use proximity data is that proximity data are a reasonable proxy for exposure data,
which are generally unavailable to researchers (Sadd et al. 1999). This article argues instead
that proximity indicators are just as important as exposure indicators because environmental
hazards have proximity-related negative effects that are poorly captured by exposure data.

Third, this article demonstrates that environmental racial inequality can be a serious social
problem even when correlations between minority presence and environmental hazard
presence are relatively weak, suggesting that researchers need to be attentive not only to the
statistical significance of their findings but to their substantive significance as well.

Finally, the finding that percent non-Hispanic black logged is significantly associated with
the 1.5 and 2.5 mile hazard indicators, but not with the .5 mile or unit-hazard coincidence
indicators, has two important implications. First, it suggests that although neighborhoods
between approximately .5 and 2.5 miles of Detroit’s TRI facilities are disproportionately
black, neighborhoods that actually house TRI facilities or are immediately adjacent to TRI
facilities are not. This is consistent with Anderton et al.’s (1994) findings regarding
hazardous waste sites, suggesting that this may be an important residential pattern for
researchers to explain.

Second, this finding suggests that previous studies that have used unit-hazard coincidence
indicators may have underestimated the significance of environmental racial inequality. This
is important because environmental inequality researchers have used unit-hazard
coincidence indicators more often than they have used any other type of environmental
hazard indicator (Mohai and Saha 2006). Thus, this study suggests that a large body of
environmental inequality research may underestimate the significance of race in shaping
environmentally inequitable outcomes.
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Figure 1.
Detroit Metropolitan Area Census Tracts and TRI Facility Location, 2000
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Figure 2.
Distance Decay Functional Form Graphs
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Figure 3.
Regression Curves for 1.5 and 2.5 Mile Distance Decay Indicators
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Table 1

Pearson’s Correlation Coefficients for the Distance Decay Indicators and Demographic Variables

Percent Hispanic

2.5 Mile 1.5 Mile .5 Mile

Curvilinear −.0198 −.0033 .0169

Inverse Curve −.0214 −.0001 .0189

Percent Non-Hispanic Black

2.5 Mile 1.5 Mile .5 Mile

Curvilinear .2031*** .1057*** .0436

Inverse Curve .1787*** .0981*** .0403

Median Household Income

2.5 Mile 1.5 Mile .5 Mile

Curvilinear −.2364*** −.1541*** −.0902**

Inverse Curve −.2147*** −.1467*** −.0894**

*
p < .05

**
p < .01

***
p < .001
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