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Neuronal development, function and repair critically

depend on axonal transport of vesicles and protein com-

plexes, which is mediated in part by the molecular motor

kinesin-1. Adaptor proteins recruit kinesin-1 to vesicles

via direct association with kinesin heavy chain (KHC), the

force-generating component, or via the accessory light

chain (KLC). Binding of adaptors to the motor is believed

to engage the motor for microtubule-based transport. We

report that the adaptor protein Sunday Driver (syd, also

known as JIP3 or JSAP1) interacts directly with KHC, in

addition to and independently of its known interaction

with KLC. Using an in vitro motility assay, we show that

syd activates KHC for transport and enhances its motility,

increasing both KHC velocity and run length. syd binding

to KHC is functional in neurons, as syd mutants that bind

KHC but not KLC are transported to axons and dendrites

similarly to wild-type syd. This transport does not rely on

syd oligomerization with itself or other JIP family members.

These results establish syd as a positive regulator of

kinesin activity and motility.
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Introduction

Neurons are extremely polarized cells with specialized

domains including a long axon and multiple dendrites.

Most proteins needed to function in axons and dendrites

are synthesized in the cell body and transported to their

final destination. This intracellular transport is essential for

neuronal development, maintenance, and function. The

kinesin family of motor proteins primarily drives the ante-

rograde transport of cargoes towards distal areas of the

neuron. Kinesin uses the energy of ATP hydrolysis to generate

the motile force that moves cargo towards the plus-end of

microtubules. The neuronal kinesin-1, known as conven-

tional kinesin, drives the transport of a variety of molecules

including protein complexes, vesicles, RNA granules, and

cytoskeletal components (reviewed in Guzik and Goldstein,

2004; Goldstein et al, 2008 and Hirokawa et al, 2009).

Kinesin-1 conventionally refers to a tetramer of two heavy

chains (KHC or KIF5), which harbour the motor domain, and

two accessory light chains (KLC), which do not posses any

motor activity (Verhey and Hammond, 2009). The association

of cargoes to kinesin-1 is mediated by adaptor proteins

that directly bind either KHC or KLC (Hirokawa et al,

2009). Over 20 adaptor proteins have now been identified.

Adaptor proteins that interact with KHC directly to mediate

the transport of diverse organelles and protein complexes

include Milton (Glater et al, 2006), mRNP complex (Kanai

et al, 2004), syntabulin (Su et al, 2004; Cai et al, 2005),

SNAP25 (Diefenbach et al, 2002), DISC1 (Taya et al, 2007),

GRIP1 (Setou et al, 2002), Fez1/unc76 (Gindhart et al, 2003;

Blasius et al, 2007), RanPB2 (Cho et al, 2007), mNUDC

(Yamada et al, 2010), and bicaudal D1/D2 (Grigoriev et al,

2007). Adaptor proteins also interact with KLC to mediate

transport and include the JIP family of proteins (Bowman

et al, 2000; Verhey et al, 2001; Kelkar et al, 2005; Nguyen

et al, 2005), APP (Kamal et al, 2000), kiddins/ARMS (Bracale

et al, 2007), alcadein (Araki et al, 2007), CRMP2 (Kimura

et al, 2005), caytaxin (Aoyama et al, 2009), calsyntenin

(Konecna et al, 2006), nesprins (Roux et al, 2009), and

Hsc70 (Terada et al, 2010). The Fragile X mental retardation

protein (FMRP) interacts with KLC to mediate the transport of

mRNA granules in mouse neurons but does not require KLC

in Drosophila S2 cells (Ling et al, 2004; Dictenberg et al,

2008). The growing number of identified KLC and KHC

binding partners is thought to reflect the complexity of the

molecular machinery controlling kinesin-1’s cargo selectivity.

The binding of adaptors to kinesin-1 is also believed to

promote activation of the motor for microtubule binding and

motility. When not transporting cargo, kinesin-1 is thought to

be inactive due to a folded conformation positioning the KHC

tail domain near the enzymatically active motor domain,

thereby preventing ATP hydrolysis (reviewed in Verhey and

Hammond, 2009). The KHC tail has also been shown to

contain an ATP-independent microtubule-binding domain,

which was suggested to ‘park’ kinesin on microtubules

when not transporting cargo (Dietrich et al, 2008; Seeger

and Rice, 2010; Watanabe et al, 2010). Additionally, in the

folded state, KLC is thought to contribute to the autoinhibi-

tion of kinesin-1 by pushing the KHC motor domains apart

(Verhey et al, 1998; Cai et al, 2007). Binding to both KHC and

KLC appears to be required to release the inhibition and to

activate microtubule-dependent transport of kinesin-1

(Blasius et al, 2007; Verhey and Hammond, 2009). These

findings, together with studies in KLC-deficient animals

(Gindhart et al, 1998; Rahman et al, 1999), suggest that

KLC may have a role in regulating kinesin-1 activity.

However, several lines of evidence indicate that KLC is not

essential for kinesin-1 activity and has a role in only some

kinesin-1 transport events. Indeed, the tetrameric configura-

tion is not obligatory and multiple lines of evidence suggest
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that kinesin-1 exists and functions as a dimer of two heavy

chains lacking the light chains: (i) KHC dimers can bind to

membrane organelles in the absence of KLC (Skoufias et al,

1994); (ii) A small pool of KHC not associated with KLC has

been found in various cultured cells and shown to possess

motor properties of conventional tetrameric kinesin-1

(DeLuca et al, 2001; Gyoeva et al, 2004); (iii) In the retina,

KLC does not fully colocalize with KHC and even appears to

be absent from photoreceptors (Mavlyutov et al, 2002); and

(iv) Cellular cargoes can be transported by direct interaction

with KHC, without requiring KLC. For example, the adaptor

protein syntabulin was shown to interact directly with KHC

but not with KLC to promote the transport of syntaxin-

containing vesicles (Su et al, 2004) and mitochondria

(Cai et al, 2005). In Drosophila, the adaptor protein Milton

attaches KHC to mitochondria in a KLC-independent manner

(Cai et al, 2005; Glater et al, 2006) and mRNA transport is

also KLC independent (Palacios and St Johnston, 2002;

Loiseau et al, 2010).

In the absence of KLC, KHC activation relies on relieving

the autoinhibition mediated by the KHC tail on the motor

domain (Friedman and Vale, 1999; Coy et al, 1999a; Hackney

and Stock, 2000, 2008; Cai et al, 2007; Cho et al, 2009; Wong

et al, 2009). Recently, native cellular cargoes that are able to

activate KHC directly have been identified. The Ran binding

protein 2 (RanBP2) interacts with KHC (Cai et al, 2001;

Cho et al, 2007) and activates the ATPase activity of KHC

(Cho et al, 2009). The Drosophila Pat1 protein interacts with

KHC and functions as a positive regulator of KHC motility for

the transport of oskar mRNA and dynein in Drosophila

oocytes (Loiseau et al, 2010).

To further understand KHC function within neurons, we

examined the interaction of KHC with the adaptor protein

Sunday Driver (syd). syd was identified in Drosophila in a

genetic screen for axonal transport mutants and was shown

to interact directly with KLC (Bowman et al, 2000). syd is a

member of the JIP family of proteins, which interact with the

c-Jun N-terminal kinase (JNK), and is thus also known as

JIP3 (Kelkar et al, 2000) or JSAP1 (Ito et al, 1999). The

C. elegans homologue of syd/JIP3 (unc-16) also integrates

JNK signalling and kinesin-1-dependent transport (Byrd et al,

2001; Sakamoto et al, 2005). All known JIP family members

interact with KLC (Bowman et al, 2000; Verhey et al, 2001;

Kelkar et al, 2005; Nguyen et al, 2005; Sakamoto et al, 2005).

The interaction between syd and KLC relies on syd’s Leucine-

Zipper (LZ) domain and on the KLC tetratricopeptide repeats

(TPR domains) (Kelkar et al, 2005; Nguyen et al, 2005;

Hammond et al, 2008). Given its interaction with kinesin,

syd was proposed to mediate the axonal transport of at least

one class of vesicles (Bowman et al, 2000). In C. elegans, syd/

unc16 is involved in synaptic vesicle localization (Byrd et al,

2001; Sakamoto et al, 2005) and in synaptic membrane

trafficking (Brown et al, 2009). Recently, we identified two

different vesicle populations—endosomes and small antero-

gradely moving organelles—as syd cargoes in mouse axons

(Abe et al, 2009). Here, we show that syd interacts directly

with the tail domain of KHC in addition to and independently

of its interaction with KLC. Using an in vitro motility assay,

we show that syd activates KHC for microtubule-based

transport and promotes efficient motility of KHC along micro-

tubules, increasing both processive run length and velocity.

Importantly, syd binding to KHC is functional in neurons, as

syd mutants that bind KHC but not KLC are transported

to axons and dendrites similarly to wild-type syd. syd’s

KHC-dependent transport does not rely on oligomerization

with endogenous JIP family members. This work establishes

syd as an adaptor for both kinesin-1 chains and as a positive

regulator of kinesin-1 motility.

Results

syd interacts with KHC independently of KLC

To determine if syd’s interaction with kinesin-1 is entirely

dependent on KLC, we performed GST-pulldown assays

combined with syd deletion analyses. N-terminal syd

(N-syd), but not C-terminal syd (C-syd) was able to pull

down both KLC and the neuron-specific kinesin heavy

chain KIF5C, hereafter referred to as KHC (Figure 1A and

B). VAMP3, an endosomal protein that does not bind to

kinesin-1, is used as a negative control. Deletion of the LZ

domain (N-sydDLZ) resulted in loss of interaction with KLC1

and KLC2 (Figure 1C), consistent with previous observations

(Verhey et al, 2001; Kelkar et al, 2005; Nguyen et al, 2005).

However, N-sydDLZ retained the ability to interact with

KHC (Figure 1C). Deletion of the JNK binding domain or

coiled-coil domains 2 and 3 did not prevent syd’s interaction

with either KLC or KHC (Figure 1C). Since KLC1 and KLC2

have almost identical TPR regions (Rahman et al, 1998) and

interact with wild-type and mutant syd in a similar manner

(Bowman et al, 2000), we focused our study on KLC1.

To define the region interacting with KHC, we tested three

N-syd fragments for their interaction with KHC and KLC.

syd240–540, which contains the LZ domain, interacted with

both KLC and KHC (Figure 1D). syd541–772, which lacks the

LZ domain, did not interact with KHC or KLC (Figure 1D).

However, syd3–239, which lacks the LZ domain, was not

associated with KLC, as expected, but retained the ability to

interact with KHC (Figure 1D), indicating that this syd frag-

ment interacts with a KHC dimer lacking KLC.

To determine if a pool of KHC lacking the light chain exists

in brain extract, we performed sucrose density centrifugation

analysis. Similarly to what has been reported previously in

cultured mammalian cells (DeLuca et al, 2001), we detected a

population of KHC lacking the light chain in brain extracts

(Figure 1E). The light chain was not degraded in these

extracts and was detected in fractions of higher density

along with a subset of KHC (Figure 1E). Quantification

of KHC in the two distinct pools indicates that about 14%

of KHC lacks the light chain. These results suggest that syd

can associate with the pool of KHC that lacks KLC.

To determine the residues required for syd interaction with

KHC, we generated a series of truncation mutants. This

analysis revealed that aa50–80 was required to promote

syd’s interaction with KHC (Figure 2A and B). To determine

if aa50–80 (hereafter referred to as Kinesin-1 Heavy Chain

Binding Domain, KBD) represents the minimal domain pro-

moting syd–KHC interaction, we performed a deletion analy-

sis. Deletion of the LZ domain abolished syd’s interaction

with KLC but not with KHC (Figures 1C and 2C). Deletion of

the KBD did not prevent syd’s interaction with tetrameric

kinesin-1, consistent with the LZ domain interacting with

KLC (Figure 2C). Since GFP–sydDLZ binds to KHC dimer and

GFP–sydDKBD interacts with tetrameric kinesin-1 via KLC,

deletion of both the KBD and LZ domains was required to

syd/JIP3 regulation of kinesin motility
F Sun et al

&2011 European Molecular Biology Organization The EMBO Journal VOL 30 | NO 16 | 2011 3417



prevent syd’s interaction with kinesin-1 (Figure 2C), indicat-

ing that the KBD is necessary for binding to KHC.

The C-terminal tail domain of KHC (aa807–956) mediates

its interaction with several cargoes (reviewed in Hirokawa

et al, 2009). To test whether syd binds the KHC tail domain,

we conducted a GST-pulldown assay using a GST-tagged KHC

tail (aa807–956). syd interacted with the GST–KHC tail, but

not with GST alone (Figure 2D). To test whether syd directly

binds to the KHC tail domain, we performed an in vitro

binding assay using GST-tagged KHC tail (aa807–956), and

His-tagged syd fragments. All three syd fragments containing

the KBD interacted directly with the GST–KHC tail

(Figure 2E). To determine whether the affinity between syd

and KHC is similar to what has been previously measured

between syd and KLC (Bowman et al, 2000), we performed a

binding assay. Similarly to what has been reported (Bowman

et al, 2000), we measured a Kd of 0.33±0.08 mM between syd

and KLC1-TPR (Figure 2F). The syd–KHC tail interaction

displayed a lower affinity, with a Kd of 1.83±0.43 mM

(Figure 2G). Given the lower affinity of syd for KHC tail

compared with KLC-TPR, syd may bind to a kinesin-1

tetramer containing both KHC and KLC, and syd binding to

KHC may relieve or alter its autoinhibitory activity.

However, kinesin-1 does not always exist as a tetramer,

suggesting that syd can bind directly to a population

of KHC that lacks KLC. Together, these results reveal an

alternative and KLC-independent interaction between syd

and kinesin-1.

syd’s direct interaction with KHC is functional

To determine whether syd’s interaction with KHC is func-

tional, we analysed the dynamic properties of GFP-tagged syd

by total internal reflection fluorescence microscopy (TIRF),

as previously described (Blasius et al, 2007). COS cells
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Figure 1 syd interacts with KHC independently of KLC. (A) Schematic illustration of full-length or truncated syd constructs used. Domains of
known function located within the amino-terminal portion of syd (N-syd) are indicated. cc: coiled-coil domains; JBD: JNK binding domain; LZ:
leucine-zipper domain (KLC binding domain). (B) Mouse brain lysate was used in pulldown experiments using recombinant GST, GST N-syd,
or GST C-syd. Western blot analysis was performed with the indicated antibodies. VAMP3 was used as a negative control. Both KHC and KLC
are pulled down with GST N-syd, but not with GST C-syd. (C) As in (B), but the indicated N-syd deletion mutants were used. N-syd lacking the
KLC binding site (N-sydDLZ) interacts with KHC but not KLC. The asterisk points to non-specific reaction with molecular marker loaded in this
lane. (D) As in (B), but the indicated syd fragments were used. The syd fragment aa3–239, which does not contain the LZ domain is sufficient
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condition. Input for (B–D) is 10% of total starting material. (E) Active microtubule-bound kinesin-1 was released by ATP. The soluble kinesin-1
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A population of KHC is detected in lighter fractions at the top of the gradient, which does not contain KLC.
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were chosen for their low amounts of endogenous kinesin-1

(Cai et al, 2007) and were used to express the desired GFP–

syd constructs or Flag–KHC. Cell lysates containing either

Flag–KHC or GFP–syd were mixed before the motility assay,

thereby ensuring identical amounts of KHC in each condition

(Figure 3A). When lysate expressing GFP–syd wild-type (wt)

was mixed with Flag–KHC lysate, motile events were

observed (Figure 3B–D; see Supplementary Movie S1).

However, when non-transfected cell extract was used in

place of the Flag–KHC lysate, the absence of Flag–KHC

dramatically reduced the number of motile events

(Figure 3C and D; see Supplementary Movie S2), indicating

that the low level of endogenous kinesin-1 in COS cells

does not have a significant role under these conditions.
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The movement of GFP–syd observed in these conditions is

thus mainly mediated by its interaction with Flag–KHC. We

measured a velocity of 0.62±0.02 mm/s for GFP–syd wt

(Figure 3E), which is similar to the velocity reported for

kinesin-1 under comparable conditions (Blasius et al, 2007).

The average run length we measured (3.21±0.24 mm;

Figure 3F) was greater than previously reported for kinesin-

1 under comparable conditions (Blasius et al, 2007), but

similar to purified recombinant kinesin-1 (Dixit et al, 2008).

We then tested whether GFP–syd3–239 binding to KHC was

sufficient for motility. GFP–syd3–239 displayed motile

events, albeit with reduced frequency compared with GFP–

syd wt (Figure 3D; Supplementary Movie S3). Surprisingly,

we observed that in addition to a reduced frequency of motile

events, the velocity and run length decreased significantly for

GFP–syd3–239, to 0.39±0.03mm/s and 2.11±0.17 mm/run,

respectively (Figure 3E and F). The reduced run length could

be attributed to GFP–syd3–239 detaching from KHC sooner as
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movement on a microtubule over time (in seconds), bar: 2 mm. (C) Cell lysate expressing the indicated GFP–syd construct was mixed with
lysate expressing Flag–KHC or non-transfected lysate as a control. Kymographs were generated from movies recorded for the indicated
GFP–syd construct in the presence or absence of Flag–KHC. Vertical bar¼ 50 s, horizontal bar¼ 2 mm. (D) The proportion of motile versus non-
motile events observed for each condition is shown. The difference in the probability for being motile or non-motile in each condition was
analysed with w2 analysis. Data represent results of 3–4 independent experiments. One asterisk, Po0.05; compared with GFP–syd wt with KHC.
(E) Calculated transport velocity for each condition. Velocity values represent mean±s.e.m. of 15–101 motile events from 3 to 4 independent
experiments. Compared with GFP–syd wt with KHC (Student’s t-test), three asterisks, Po0.001. (F) Calculated run length for each condition.
Run length values represent mean±s.e.m. of 15–66 motile events from 3 to 4 independent experiments. Two asterisks Po0.01; compared with
GFP–syd wt with KHC.

syd/JIP3 regulation of kinesin motility
F Sun et al

The EMBO Journal VOL 30 | NO 16 | 2011 &2011 European Molecular Biology Organization3420



compared with GFP–syd wt. However, the reduced velocity

observed for GFP–syd3–239 compared with GFP–syd wt

suggests that other syd structural elements may participate

in KHC regulation.

syd enhances KHC motility along microtubules

To directly determine whether syd regulates KHC motility, we

next observed the movement of KHC–mCit in the presence or

absence of Flag-tagged syd wt (Flag–syd wt; Figure 4A).
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When mixed with non-transfected extracts, KHC–mCit dis-

played few motile events (Figure 4B and C), probably reflect-

ing activation by endogenous adaptors in COS cells.

We, however, collected sufficient motile events to analyse

KHC–mCit motile properties. We measured a velocity of

0.33±0.03mm/s and a run length of 1.94±0.39 mm/run

(Figure 4D and E; see Figure 4F and G for the raw distribu-

tion; and Supplementary Movie S4), which is comparable to

what has been reported previously for full-length kinesin-1

motility in similar assays (Sung et al, 2008; Loiseau et al,

2010). In the presence of Flag–syd wt, we observed a dramatic

increase in the number of motile events (Figure 4B and C).

Remarkably, we also observed a significant increase in velo-

city (1.01±0.03mm/s) and run length (5.54±0.28 mm/run)

(Figure 4D and E; see Figure 4F and G for the raw distribution

data and Supplementary Movie S5). The velocity and run

length of Flag–KHC in the presence of GFP–syd wt (Figure 3E

and F) were found to be lower than that for KHC–mCit in the

presence of Flag–syd wt (Figure 4D and E). This difference

may result from the position of the tag, rendering Flag–KHC

not as efficient as KHC–mCit. However, importantly, in both

cases the presence of syd wt increased KHC motility. This

increase in motility is likely due to syd binding to the KHC

tail, since Flag–sydDKBD only minimally affected KHC moti-

lity (Figure 4D and E; see Figure 4F and G for the raw

distribution data; Supplementary Movie S6). This velocity is

comparable to what has been measured for purified tail-less

kinesin-1 (Hackney et al, 2003; Yildiz et al, 2008; Shastry and

Hancock, 2010), indicating that syd’s binding to the KHC tail

is effective in relieving the inhibition of the motor domain

by the KHC tail. However, the enhanced run length in the

presence of syd is significantly greater than the run length

reported for purified tail-less kinesin-1 (Dixit et al, 2008;

Yildiz et al, 2008; Shastry and Hancock, 2010). Similarly to

what we observed with GFP–syd3–239 motility (Figure 3E

and F), we observed that Flag–syd 3–239 was able to activate

KHC motility, but with reduced velocity and run length

compared with Flag–syd wt (Figure 4D and E; see Figure 4F

and G for the raw distribution data; Supplementary Movie

S7). Together, these results indicate that binding of syd to

KHC activates kinesin-1 for microtubule-dependent motion,

enhancing both KHC velocity and run length, and that syd

structural elements beyond the KHC binding site likely parti-

cipate in KHC regulation. It is also possible that a small

proportion of the observed motile events is mediated by a

KHC–KLC tetramer. Indeed, we found that a small fraction of

expressed KHC–mCit in COS cells can interact with endogen-

ous KLC (Supplementary Figure S1). The relatively small

increase in KHC velocity provided by Flag–sydDKBD

(Figure 4D) may thus represent an effect of Flag–sydDKBD

on a kinesin-1 tetramer via its interaction with KLC.

syd direct interaction with KHC promotes transport

in neurons

To determine whether syd binding to KHC is sufficient for

transport in neurons, we examined the localization of GFP–

syd wt and mutants in cultured hippocampal neurons.

Previous evidence suggests that syd localizes predominantly

to axons during development and mostly to the cell bodies

and dendrites in adult brain (Akechi et al, 2001; Setou et al,

2002). In agreement with these previous observations, we

found that in cultured embryonic hippocampal neurons,

endogenous syd is highly enriched at the tips of developing

axons (Figure 5A). Similarly, expressed GFP–syd wt accumu-

lated mostly at the tip of axons (Figure 5B, upper panel and

5E). GFP–sydDLZ, which binds KHC, or GFP–sydDKBD,

which interacts with tetrameric kinesin-1 via KLC was

transported equally to the axon tip (Figure 5B middle two

panels and Figure 5E). GFP–syd wt, GFP–sydDLZ, and GFP–

sydDKBD all displayed a similar low level distribution along

dendrites (Figure 5C and E). In contrast, GFP–sydDD failed to

exit the cell body (Figure 5B and C bottom panel and

Figure 5E) and was confined to the perinuclear region in

proximity of the Golgi apparatus (Figure 5D). Lack of trans-

port due to GFP–sydDD misfolding is unlikely since GFP–

sydDD retains the ability to oligomerize with JIP family

members in cells (Figure 6). Therefore, syd’s interaction

with KHC does not appear to specify axonal versus dendritic

transport. Together, these results suggest that syd’s interac-

tion with KHC can mediate transport in neurons in the

absence of the KLC binding site, as deletion of both KHC

and KLC binding sites is required to prevent syd transport to

axon tips.

syd/JIP family members are known to homo- or hetero-

oligomerize (Yasuda et al, 1999; Kelkar et al, 2000, 2005;

Kristensen et al, 2006; Hammond et al, 2008). To determine

whether oligomerization with endogenous JIP family mem-

bers bound to KLC mediates the transport of syd mutants, we

first tested the ability of GFP-tagged syd mutants to oligomer-

ize with Flag–syd wt. Flag–syd wt was co-transfected with

GFP, GFP–syd3–239, GFP–syd wt, or GFP–sydDD in N2A cells

and immunoprecipitation was performed with anti-GFP anti-

bodies. Flag–syd wt co-immunoprecipitated with GFP–syd3–

239, GFP–sydDD and GFP–syd wt but not with GFP alone,

revealing that both GFP–syd3–239 and GFP–sydDD can oli-

gomerize, similarly to syd wt (Figure 6A). However, despite

its ability to oligomerize with Flag–syd wt, GFP–sydDD failed

to exit the cell body (Figure 5C and D). Therefore, oligomer-

ization of GFP–sydDD with endogenous syd does not appear

to be sufficient for its transport in neurons. We next examined

the localization of mCherry–syd3–239 in cortical neurons

prepared from mice lacking syd (Kelkar et al, 2003).

Immunofluorescence of cultured cortical neurons

(Figure 6B) and western blot analysis of brain lysates

(Figure 6C) confirmed the lack of syd expression in syd�/�
animals. We observed an enrichment of the syd mutants that

bind KHC but not KLC, mCherry–syd3–239 and GFP–sydDLZ,

at the axonal tips of neurons lacking syd (Figure 6D–F).

These results further exclude that oligomerization with

endogenous syd mediates transport of syd mutants that

bind KHC but not KLC.

syd can form hetero-oligomers with some JIP family

members. In particular, syd can oligomerize with JIP2 and

JIP1 (Kelkar et al, 2000; Hammond et al, 2008), but it does

not oligomerize with JIP4 (Kelkar et al, 2005). While GFP–syd

wt and GFP–sydDD retained the ability to oligomerize

with Flag–JIP2, GFP–syd3–239 failed to do so (Figure 6G).

In contrast, all three constructs, GFP–syd wt, GFP–syd3–239

and GFP–sydDD displayed the ability to oligomerize with

myc–JIP1. Yet, despite its ability to oligomerize with myc–

JIP1, GFP–sydDD failed to exit the cell body (Figure 5C and D).

This is in agreement with the results from Hammond et al

(2008), showing that the formation of a JIP1/syd/KLC

complex is necessary for efficient JIP1 or syd transport in
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neuronal cells. Thus, GFP–sydDD and GFP–syd3–239 may be

unable to be stably incorporated in a complex with JIP1 and

KLC. Oligomerization with JIP1 may thus not fully account

for the transport of syd lacking the KLC binding domain

(GFP–syd3–239, Figure 6E). Although we cannot exclude that

other yet unknown kinesin-1 binding proteins may be

involved in syd transport in neurons, these results, together

with our motility experiment, suggest that syd’s interaction

with KHC promotes transport in neurons.

Discussion

We report here that syd, a previously known KLC adaptor

(Bowman et al, 2000), is also capable of interacting directly

with KHC independently of KLC. Binding of syd to KHC not

only activates kinesin-1 for microtubule-dependent transport,

but also enhances KHC velocity and run length. Binding of

syd to KHC is functional in neurons, since mutant syd that

interacts with KHC only is targeted to axons and dendrites

similarly to wt syd. Thus, syd–KHC interaction promotes

transport but does not appear to determine transport

specificity. Together, these data establish syd as a novel

KHC binding partner capable of positively regulating

kinesin-1 motility.

Regulation of kinesin-1 activity

Kinesin-1 is a processive motor, which takes multiple steps

along microtubules before dissociating. How kinesin-1 acti-

vation for microtubule transport is controlled in live cells is

not well understood, but recent studies couple kinesin-1

activation for microtubule transport with the binding of

cellular partners (Blasius et al, 2007; Cho et al, 2009;

Loiseau et al, 2010). A proposed regulatory mechanism for

kinesin-1 activation is the transition from a ‘folded’ inactive

state to an ‘open’ active state. In the inactive folded con-

formation, the KHC tail domain interacts with both the motor

domain and the microtubules to prevent kinesin motion

(Friedman and Vale, 1999; Hackney and Stock, 2000;
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Cai et al, 2007; Dietrich et al, 2008; Watanabe et al, 2010).

Activation of kinesin-1 for transport requires a conforma-

tional change in which motor and tail domains are separated

and the motor domains come closer together (Cai et al, 2007).

Our in vitro motility results indicate that syd, but not

sydDKBD, which lacks the KHC binding domain, increased

the number of motile events (Figure 4), suggesting that syd

binding to the KHC tail domain efficiently relieves the inhibi-

tion by the KHC tail domain, activating or opening KHC to

bind microtubules for long-range motility. These results place

syd alongside Pat1 (Loiseau et al, 2010) and RanBP2

(Cho et al, 2009) as cellular regulators of kinesin-1 activity.

In the case of tetrameric kinesin-1, it has been proposed

that binding of both KLC and KHC is required for motor

activation (Blasius et al, 2007). It will be interesting to

determine in future studies whether syd may fulfill activation

of a KHC/KLC complex via its ability to interact with

both KHC and KLC. Alternatively, similar to the JIP1–Fez1
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complex (Blasius et al, 2007), syd may require additional

interacting partners for the activation of tetrameric kinesin-1.

Regulation of kinesin-1 motility

Kinesin-1 stepping along microtubules is believed to involve

concerted conformational change and diffusive movement of

the tethered head to the next binding site. The precise

mechanisms regulating the speed and the distance that

kinesin-1 can achieve are fairly well understood for purified

kinesin-1. Yet less is known about how kinesin-1 motility is

regulated in a cellular environment. The observation that

different kinesin-1 cargoes move at different rates in a cellular

environment illustrates the complexity of in vivo motor

regulation (Araki et al, 2007). The increase in KHC velocity

and run length in the presence of full-length syd and syd3–

239 suggests that syd binding to the KHC tail relieve the

‘brake’ provided by the tail binding to the microtubule

(Dietrich et al, 2008; Seeger and Rice, 2010; Watanabe et al,

2010), thus allowing efficient forward movement. A recent

study indicates that the Drosophila Pat1 protein interacts with

KHC and functions as a positive regulator of KHC motility for

the transport of oskar mRNA and dynein in Drosophila

oocytes (Loiseau et al, 2010). In the absence of Pat1, both

kinesin-1 velocity and run length are reduced (Loiseau et al,

2010). The Ran binding protein 2 (RanBP2) activates the

ATPase activity of KHC (Cho et al, 2009), suggesting that

RanBP2 may also regulate kinesin-1 velocity and processivity.

These observations support the notion that adaptors contri-

bute to regulate kinesin-1 motile properties, in addition

to their roles in recruiting cargoes.

KLC-independent functions of KHC

Our results indicate that syd is capable of associating with

both tetrameric and dimeric kinesin-1. This result is consis-

tent with studies indicating that kinesin-1 exists and func-

tions as a dimer of two heavy chains lacking the light chains,

in addition to its conventional tetrameric conformation. KLC-

independent transport has been reported for mitochondria

(Cai et al, 2005; Glater et al, 2006), syntaxin-containing

vesicles (Su et al, 2004), and RNA particles (Palacios and

St Johnston, 2002; Kanai et al, 2004; Loiseau et al, 2010), in

agreement with earlier studies reporting that KHC dimers can

bind membrane organelles in the absence of KLC (Skoufias

et al, 1994). Furthermore, a small pool of KHC not associated

with KLC has been found in cultured HeLa cells and bovine

brain (Hackney et al, 1991; DeLuca et al, 2001; Gyoeva et al,

2004) and we obtained similar results from mouse brain

(Figure 1E). Degradation of KLC during kinesin-1 isolation

can be excluded, since we detected KLC in our experiment

(Figure 1E). Furthermore, significant molar excess of KHC

over KLC has been reported in CV-1 cells (Gyoeva et al,

2004). It is thus conceivable that spatially and temporally,

KHC and KLC do not always fully colocalize. Indeed, it has

been shown that KLC is absent in photoreceptor cells and that

throughout the retina, KLC does not fully colocalize with KHC

(Mavlyutov et al, 2002), suggesting that at the cellular and

subcellular levels KHC localization does not fully overlap

with KLC. In addition, during brain development, KHC and

KLC decline after the first week of postnatal life, but the

decline in KLC appears to be more pronounced (Morfini et al,

2001). Therefore, it is possible that syd interacts with tetra-

meric kinesin-1 via KLC, while in cells or subcellular regions

where KLC is absent syd instead interacts and regulates the

activity of a kinesin-1 dimer. Our observation that syd inter-

acts with KHC in addition to and independently from its

known interaction with KLC is not inconsistent with the data

published so far. In C. elegans, the localization of UNC-16

(syd) depends on both UNC-116 (KHC) and KLC (Sakamoto

et al, 2005). Furthermore, syd transport to neurite tips in

differentiated CAD cells is mostly, but not completely depen-

dent on KLC (Verhey et al, 2001; Hammond et al, 2008).

Similarly to syd, the FMRP was found to bind KLC

(Dictenberg et al, 2008), and also KHC in a KLC-independent

manner (Ling et al, 2004).

Syd role in axonal transport

Kinesin-1 drives different sets of cargoes to axons or den-

drites, but how kinesin-1 distinguishes between axonal or

dendritic cargoes for directional sorting remains poorly un-

derstood. Previous studies suggested that there was a den-

dritic preference for KHC cargoes and an axonal preference

for KLC linkage (Setou et al, 2002; Hirokawa and Takemura,

2005). Our results showed that regardless of its mode of

association with kinesin-1, syd is predominantly targeted to

axon tips (Figure 5). It is thus more likely that the uploaded

cargoes, and not the adaptor–motor complexes, determine

the destination of kinesin-1 and its adaptor. We have recently

shown that syd mediates the transport of at least two distinct

types of vesicles in axons: endosomes and small anterogra-

dely moving vesicles (Abe et al, 2009). It will be interesting to

define in future studies the nature of the syd cargoes trans-

ported by KLC-dependent or KLC-independent interaction.

Indeed, KLC isoforms have been proposed to mediate target-

ing of KHC to proper cargo (Stenoien and Brady, 1997;

Khodjakov et al, 1998; Gyoeva et al, 2000; Wozniak and

Allan, 2006), but KHC can also associate with membranous

cargo in the absence of KLC (Skoufias et al, 1994).

The propensity of JIP family members to form homo or

hetero-oligomers (Yasuda et al, 1999; Kelkar et al, 2000, 2005;

Kristensen et al, 2006; Hammond et al, 2008; Koushika, 2008)

suggests that syd may be transported via oligomerization.

Indeed, Hammond et al (2008) reported that syd and JIP1

require each other for efficient transport of JIP1 or syd in

non-neuronal cells. Such cooperative transport is due to an

interaction between JIP1 and syd as well as distinct binding

sites on the KLC-TPR domain. We found that despite its

ability to oligomerize with myc–JIP1, GFP–sydDD failed to

exit the cell body (Figure 5C and D). Thus, GFP–sydDD may

be unable to be stably incorporated in a complex with JIP1

and KLC. Oligomerization with JIP1 may thus not fully

account for the transport of the syd mutant GFP–syd3–239

lacking the KLC binding domain. Although we cannot ex-

clude that other yet unknown kinesin-1 binding proteins may

be involved in syd transport in neurons, our results suggest

that syd’s interaction with KHC may promote transport in

neurons and that oligomerization may provide additional

layers of regulation of syd-dependent transport.

In summary, we identified syd as an adaptor for kinesin-1

heavy chain and we determined that syd enhances KHC

motility along microtubules. Future studies are needed to

determine the precise mechanisms by which syd regulates

kinesin-1 activation and processivity, and examine whether

the distinct modes of syd interaction with kinesin-1 provide

syd/JIP3 regulation of kinesin motility
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specificity for cargo selection and delivery to particular sub-

celullar destinations.

Materials and methods

Antibodies and reagents
syd antibody was previously described (Bowman et al, 2000). The
antibodies are as follows: anti-GFP (Invitrogen), anti-VAMP3
(Synaptic System), anti-kinesin heavy chain (KIF5C; Xia et al,
2003), anti-KLC1 (Santa Cruz), anti-KLC1–KLC2 (63–90) (gift from
Dr Scott Brady), anti-His6 (Qiagen), anti-Flag (Sigma), anti-b-
tubulin (Sigma), anti-myc (Cell Signaling), anti-b-actin (Chemicon),
anti-giantin (Abcam), anti-MAP2 (Chemicon), and anti-tau (Milli-
pore). syd knockout mice were previously described (Kelkar et al,
2003). For wild-type animals, C57B6 mice were used.

Plasmid construction
KHC–mCit and myc–JIP1 were obtained from Dr Kristen Verhey and
were previously described (Cai et al, 2007; Hammond et al, 2008).
Full-length mouse syd cDNA was purchased from Open Biosystems
(Huntsville, AL). Constructs for GST fusion proteins (N-terminal
syd (aa 3–772), C-terminal syd (aa 773–1337), syd3–239, syd240–
540, syd541–772, syd3–80, syd3–160, syd50–239, syd101–239,
syd150–239, 201–239, syd429–459, syd50–82, KIF5C 807–956) were
generated by inserting their coding sequences in-frame into the
EcoRI and XhoI sites of the pGEX-4T-1 vector. Full-length clone of
KHC (KIF5C) was isolated from a mouse cDNA library generated
from adult mouse brain and inserted in-frame downstream of
sequences encoding Flag in the pcDNA3 vector. To generate poly-
histidine-tagged KLC1, KLC1-TPR (KLC1 177–413), syd3–80, syd3–
160, syd3–239, KHC 807–956, the individual coding sequences were
inserted into XhoI and EcoRI sites of pET-28a(þ ) vectors. GFP–syd
and GFP–syd3–239 were obtained by ligating the coding sequences
into XhoI and EcoRI sites of the pEGFP-C1 vector. mCherry–
syd3–239 was generated by cloning syd3–239 into the mcherry-C1
vector. Flag–syd wt and mutants, and Flag–syd3–239 were
generated by inserting their coding sequence in-frame downstream
of sequences encoding a Flag tag in the pcDNA3 vector. A PCR-
based overlap extension method (Pérez-Pinera, 2006) was used
to construct the in-frame deletion mutants N-sydDLZ (D429–459),
N-sydDKBD (D50–82), N-sydDD (D50–82 and D429–459),
N-sydDJBD (D200–218), N-sydD266–315, N-sydD384–424, GFP–
sydDLZ, GFP–sydDKBD, and GFP–sydDD. All plasmids were
sequenced and confirmed.

Recombinant protein purification
GST and His6 fusion constructs were expressed in E. coli BL21 cells.
For GST purification, following IPTG (0.5 mM) induction of protein
expression, cells were harvested, resuspended in ice-cold PBS with
5.0 mM DTT and 1.0 mM AEBSF, and lysed with sonication. After
addition of Triton X-100 (0.2%), the lysates were mixed at 41C for
40 min, and the insoluble material was removed by centrifugation at
16 000 g for 30 min at 41C. The clear lysates were then mixed with
Glutathione Sepharose 4B beads (GE Healthcare) for 30 min at room
temperature. The beads were washed with PBS three times, and
GST fusion proteins were eluted with 20 mM reduced glutathione in
Tris buffer (50 mM, pH 8.0). His6-tagged proteins were purified
using PrepEase His-tag resin (USB Corporation, Cleveland, OH).
Briefly, cells were resuspended in LEW buffer (NaH2PO4 50 mM,
NaCl 300 mM, AEBSF 1.0 mM, pH 8.0), sonicated and incubated
with Triton X-100 (0.2%) for 40 min at 41C. The lysates
were clarified by centrifugation at 16 000 g for 30 min at 41C and
then mixed with resin at room temperature for 30 min. After three
washings with LEW buffer, the bound His6-tagged proteins are
eluted with 250 mM imidazole in LEW buffer. The eluted
recombinant proteins were dialysed in PBS or ultrafiltered for
buffer exchange before their application.

GST pulldown and immunoprecipitation

GST pulldown. Mouse brains were homogenized in ice-cold lysis
buffer (Tris–HCl 20 mM, NaCl, 200 mM, EDTA 1 mM, 0.5% Nonidet
P-40, pH 8.0). The homogenate was centrifuged at 16 000 g for
20 min at 41C, and the supernatant (1–2 mg) was incubated with
Glutathione Sepharose 4B and equal molar amounts of purified GST
fusion proteins or purified GSTas negative control overnight at 41C.

The beads were collected by centrifugation at 500 g for 5 min at 41C
and washed three times with ice-cold PBS. Bound material was
eluted by boiling beads in sample buffer for 5 min and analysed
by western blot.

Immunoprecipitation. Dynabeadss Protein A Magnetic Beads
(Invitrogen) were coated with anti-GFP antibody or rabbit IgG as
a negative control, or with anti-myc with mouse IgG as a negative
control. N2A cells were lysed in ice-cold lysis buffer 24 h after
transfection and the lysate was incubated with coated magnetic
beads for 2 h at 41C on a rotating wheel. Beads were then washed
three times with ice-cold PBS. The bound material was eluted by
boiling beads in sample buffer for 5 min and analysed by western
blot.

Protein binding assay. GST-tagged proteins were incubated with
Glutathione Sepharose 4B beads for 30 min at room temperature,
washed with PBS, and incubated with His6-tagged proteins at 41C
on a rotating wheel for 90 min. Beads were washed three times with
ice-cold PBS and bound material was eluted by boiling beads in
sample buffer for 5 min and analysed by western blot. This assay
was used to determine the dissociation constant between syd
and KLC1-TPR and between syd and KHC tail, as previously
described (Bowman et al, 2000). We used a fixed concentration of
recombinant GST–syd N-terminal (50 nM) and various concentra-
tions of the ligands His–KLC-TPR or His–KHC tail over a 3000-fold
range. The relative amount of bound KLC1-TPR or KHC tail was
analysed by western blot and quantified using ImageJ. The
dissociation constants were measured by plotting the band intensity
of bound kinesin for each concentration and using the first order
binding equation: fraction of bound¼ [kinesin]/(Kdþ [kinesin]) to
fit the data.

Sucrose density centrifugation
Mouse brains were homogenized in PIPES buffer (50 mM PIPES,
1 mM EGTA, 1 mM MgSO4, and protease inhibitors, pH 6.9). The
homogenate was then centrifuged at 100 000 g for 30 min at 41C to
obtain a clear brain lysate. Glycerol (20%) and GTP (1 mM), taxol
(20 mM) and AMP-PNP (2.5 mM) were added to brain lysates and
incubated for 30 min at 371C. The lysates were centrifuged at
100 000 g for 30 min at 221C to pellet down microtubules and the
associated kinesin motor. The resulting pellet was rinsed once with
PIPES buffer with AMP-PNP (0.1 mM) and Taxol (20mM). To release
the motor from microtubules, the microtubule pellets were
resuspended in ATP-containing buffer (100 mM PIPES, 1 mM EGTA,
1 mM MgSO4, and ATP 20 mM, pH 6.9), and incubated for 1 h on
ice. The re-suspension was then centrifuged as described above to
collect the supernatant. The supernatant containing released motor
proteins was loaded onto a sucrose gradient (5–50% in PIPES
buffer), and centrifuged with a SW41 swinging bucket rotor for
14 h at 200 000 g at 41C. Fractions were collected for western blot
analysis with KHC and KLC antibodies.

In vitro motility assay
Twenty-four hours after transfection with the indicated constructs,
COS cells were lysed with PIPES buffer with the addition of 1 mM
EGTA and 0.1% Triton X-100. The supernatant was collected by
centrifugation at 16 000 g for 15 min at 41C. The in vitro motility
assay was conducted as previously described (Dixit et al, 2008).
Briefly, flow chambers were assembled from a glass slide and
silanized coverslip attached using double-sided adhesive tape
(chamber volume B15 ml). In all, 250 nM microtubules were
introduced in a flow chamber coated with 0.5% monoclonal anti-
b tubulin antibody (Tub 2.1 clone, Sigma, St Louis, MO) and then
blocked with 5% Pluronic F-127 (Sigma). COS cell extracts
supplemented with 2 mM ATP, an oxygen scavenging system
containing glucose oxidase, catalase, and glucose, and 10 mM DTT
were subsequently flowed into the chamber. Single syd–GFP or
KHC–mCit molecules were visualized at 251C using TIRF micro-
scopy outfitted on an inverted microscope (Olympus IX81). TIRF
excitation was achieved using 488 and 532 nm diode-pumped solid-
state lasers (Melles Griot) to visualize GFP and rhodamine,
respectively. Low power laser (2 mW) allowed to track fluorescent
particles over long distances. Images were captured with a back-
thinned electron multiplier-CCD camera (ImagEM, Hamamatsu) at
1 s intervals. Non-transfected cell lysates were used for control
experiments in parallel on the same day. The motion of GFP–syd or
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KHC–mCit was analysed using kymographs generated with
Slidebook (Intelligent Imaging Innovations). Vertical lines in
kymographs were defined as non-motile events, while diagonal
lines were defined as motile events. Only lines spanning more
than two frames were counted as events. For non-motile events,
only vertical lines with a fluorescence intensity similar to motile,
diagonal lines were counted, to avoid inclusion of aggregates bound
to microtubules.

Cell culture, transfection, and image analysis
N2A and COS-7 cells were grown in DMEM medium supplemented
with 10% FBS, 1 mM sodium pyruvate, 2 mM L-glutamate, 0.1 mM
non-essential amino acids and 1% Pen/Strep. Cells were grown on
T25 flasks overnight before transfection using Lipofectamine 2000
(Invitrogen). Primary hippocampal and cortical cultures were
prepared from mouse embryos at embryonic day 18 (E18).
Hippocampi or cortices were treated with papain and DNase
for 30 min, and triturated in neurobasal medium with 0.1% FBS.
Dissociated neurons were cultured on coverslips coated with poly-
D-lysine in Neurobasal medium containing 2% B27, 0.5 mM
L-Glutamax and 1% Pen/Strep. About 5–6�104 neurons were
plated per well in 24-well plates. Amaxas Nucleofections was used
to transfect neurons before plating. After 5–6 days in culture,
neurons were fixed in 4% paraformaldehyde in PBS with 4%
sucrose for 10 min. Neurons were permeabilized and blocked with
10% goat serum, 0.1% Triton X-100 in PBS and incubated with the
indicated primary antibodies and Alexa Fluor-conjugated secondary
antibodies. Nuclei were stained by DAPI in the Prolong anti-fade
mounting medium (Invitrogen). The images were acquired with
fluorescence microscopy (Nikon, Eclipse TE 2000-E) and analysed
with Nis-Element software.

Statistical analysis
Statistical analyses were performed using Student’s t-test, except
that w2 analysis was used to determine the statistical differences
in motile frequency. For the motility experiments, the Kolmogorov–
Smirnov test was used to test for normality of distribution. If the
distribution was not normal, then statistical analysis was performed
with the Kolmogorov–Smirnov test.

Supplementary data
Supplementary data are available at The EMBO Journal Online
(http://www.embojournal.org).
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