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Abstract

This paper presents a data-centric modeling and predictive control approach for nonlinear hybrid
systems. System identification of hybrid systems represents a challenging problem because model
parameters depend on the mode or operating point of the system. The proposed algorithm applies
Model-on-Demand (MoD) estimation to generate a local linear approximation of the nonlinear
hybrid system at each time step, using a small subset of data selected by an adaptive bandwidth
selector. The appeal of the MoD approach lies in the fact that model parameters are estimated
based on a current operating point; hence estimation of locations or modes governed by
autonomous discrete events is achieved automatically. The local MoD model is then converted
into a mixed logical dynamical (MLD) system representation which can be used directly in a
model predictive control (MPC) law for hybrid systems using multiple-degree-of-freedom tuning.
The effectiveness of the proposed MoD predictive control algorithm for nonlinear hybrid systems
is demonstrated on a hypothetical adaptive behavioral intervention problem inspired by Fast
Track, a real-life preventive intervention for improving parental function and reducing conduct
disorder in at-risk children. Simulation results demonstrate that the proposed algorithm can be
useful for adaptive intervention problems exhibiting both nonlinear and hybrid character.

Index Terms

Nonlinear hybrid systems; Model Predictive Control; Model-on-Demand; optimized behavioral
interventions

[. Introduction

Hybrid systems are characterized by interaction between continuous and discrete dynamics
[1], [2]. In recent years, significant emphasis has been given to modeling and control of
nonlinear hybrid systems based on first principles models [2], [3], [4]. However, this is only
useful for small and well understood systems. On the other hand, data-driven modeling is
critical in many practical applications. Consider, for example, adaptive interventions in
behavioral health, which are receiving increasing attention as a means to address the
prevention and treatment of chronic, relapsing disorders such as drug abuse [5]. In an
adaptive intervention, dosages of intervention components are assigned based on the values
of tailoring variables that reflect some measure of outcome or adherence. In practice, these
problems are hybrid in nature because dosages of intervention components correspond to
discrete values. The dynamics of these systems can be complex and highly uncertain, with
many factors that contribute to these dynamics not well understood. Moreover, these
interventions have to be implemented on a population or cohort that may display significant
levels of interindividual variability. Thus, a data-driven modeling and control formulation
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which achieves robust performance is essential. This paper is an attempt to focus on these
issues for nonlinear hybrid systems.

Identification theory for continuous systems is well understood in the literature (see for
example [6]). However, hybrid system identification is challenging due to presence of
discrete events. A number of identification approaches for linear hybrid systems have been
proposed in the literature [7], [8], [9], [10]. An identification scheme for nonlinear hybrid
systems has been presented in [11]. However, it addresses only a particular class of
nonlinear hybrid systems which are linear and separable in the discrete variables. Moreover,
locations or modes of the hybrid systems are assumed to be known beforehand. There has
been significant interest in data-centric dynamic modeling frameworks such as Just-in-Time
modeling [12], Model-on-Demand (MoD) estimation [13], [14] and more recently, Direct
Weight Optimization (DWO) [15] for continuous systems. These modeling approaches
enable nonlinear estimation and can be a promising approach for identification of nonlinear
hybrid systems.

This paper presents a Model-on-Demand Predictive Control (MoDPC) formulation for
nonlinear hybrid systems. The proposed scheme represents a significant extension of earlier
work by the authors [4] which develops a model predictive control (MPC) formulation for
hybrid systems that is amenable for achieving robust performance. This MPC formulation
offers a multiple-degree-of-freedom tuning arrangement that enables the user to adjust the
speed of setpoint tracking, measured disturbance rejection and unmeasured disturbance
rejection independently in the closed-loop system. Consequently, controller tuning is more
flexible and intuitive than relying on move suppression weights as traditionally used in MPC
schemes. The work in this paper extends this MPC formulation to the control of nonlinear
hybrid systems that involve both state and control events using a data-centric MoD
approach. In this approach, the MoD estimator is executed at each sampling instant in order
to generate a linear local polynomial model at the current operating point from a subset of
available data as determined by a crossvalidation data measure. This model is then
converted into a mixed logical and dynamical (MLD) model [1] for linear hybrid systems,
which is used by the multiple-degree-of-freedom MPC algorithm [4]. By systematically
achieving model estimation from data through the MoD algorithm, without substantially
increasing computational burden or increasing problem complexity, the hybrid MoDMPC
approach described in this paper has the potential to make this integrated modeling and
control much more accessible in practice.

The paper is organized as follows: Section 2 develops the identification scheme for
nonlinear hybrid systems using MoD approach. MoDMPC formulation for nonlinear hybrid
systems is presented in Section 3. Section 4 discuss a case study problem of a hypothetical
adaptive intervention based on Fast Track program and simulation results. A summary and
conclusions is presented in Section 5.

Il. Identification of nonlinear hybrid system using Model-on-Demand

approach

Consider a nonlinear hybrid system that can be described by following set of differential
algebraic equations,

HO)=F[x(1), u(?), s(t)] (1)

s(=G[x(2), u(t), y(1)] (2

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2011 August 24.
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Y(O)=H[x(1)] (©)]

where x represents a vector for states, u is a vector for inputs (both continuous and discrete),
y is the measured outputs, and function vector G['] is a set of event generating functions.
The function G['] can be classified into an autonomous event generating function which is
governed by the states of the system (i.e. G[x]) and a non-autonomous (or deterministic)
event generating function that governed by the inputs and the outputs of the system (i.e.
Glu(), yOD- In (2), ‘s’ represents the discrete variables that can take finite integer values
evaluated by G[-]. Upon occurrence of an event, ‘s’ takes a new value and the hybrid system
transits from one location (or mode) to anther. Thus, a new value of ‘s’ corresponds to a new
location of the hybrid system. Each of these locations is governed by individual nonlinear
dynamics characterized by states and inputs of the system. The challenge in the
identification of hybrid systems lies in the fact that the model parameters depend on the
mode or location [11], [9]. In case of hybrid systems with only non-autonomous (or
deterministic) events, locations of the subsystems are known a priori, and the identification
problem consists of estimating model parameters for all locations. In the presence of
autonomous events, the identification problem requires the simultaneous identification of
location (or mode) of the system and estimation of model parameters, which is difficult
problem to solve due to its mixed integer and nonlinear nature.

A Model-on-Demand (MoD) approach [16] that generates a model “on demand” relevant to
the region of interest using subset of neighborhood data around current operating point can
be an useful tool for identification of such systems. Model-on-Demand is a data-centric,
nonlinear black-box estimation method which enhances the classical local modeling
problem. In MoD, an adaptive bandwidth selector determines the size of data to be used for
the local regression. The data is weighted using a kernel or weighting function. A local
regression is performed using a linear or quadratic model to estimate the plant output at each
time step; all observations are stored on a database and the models are built ‘on demand’ as
the actual need arises. Local modeling techniques such as the MoD predictor use only small
portions of data, relevant to the region of interest around current operating point defined by
regressors, to determine a model. Thus, MoD automatically considers the current operating
location of the hybrid system and correspondingly estimates the model parameters. The
variance/bias tradeoff inherent to all modeling is optimized locally by adapting the number
of data and their relative weighting. As a consequence, the non-convex and mixed integer
optimization problem associated with global modeling of nonlinear hybrid systems can be
avoided. A Matlab-based tool for MoD estimation is available in the public domain [17].

A. Model on Demand Estimation

The MoD modeling formulation is described with a SISO process based on the approach of
[16]. Consider a SISO process with nonlinear ARX structure, i.e.,

y(k)=m(p(k))+e(k), k=1,...,N )

where m(-) is an unknown nonlinear mapping and e(k) is an error term modeled as random

variables with zero mean and variance 0'%. The MoD predictor attempts to estimate output
predictions based on a local neighborhood of the regressor space ¢(t). The regressor vector
is of the form

e(t)=[y(t = 1) ... y(t —n) ut —ny) ... u(t —np —m)]" (5)

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2011 August 24.
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where ng, n,, and ni denote the number of previous outputs and inputs and the degree of
delays in the model.

A local estimate y can be obtained from the solution of the weighted regression problem

(k) =) I, )

N
B=arg min )" I(y(k) - (k). B)) X W( -
B =

(6)

where I(-) is a quadratic norm function, || u ||, = Vu”Mu is a scaled distance function on the
regressor space, h is a bandwidth parameter controlling the size of the local neighborhood,
which is determined via Akaike’s FPE criteria and W(:) is a window function (usually
referred to as the kernel) assigning weights to each remote data point according to its
distance from ¢(t) [16]. The window is typically a bell-shaped function with bounded
support. These weights can be chosen to minimize the point-wise mean square error of the
estimate. Assuming a local model structure

(1), BY=Bo+B] (¢(k) — ¢(1)) @

which is linear in the unknown parameters, an estimate can easily be computed using least
squares methods. If £y and 7 denote the minimizers of (6) using the model from (7), a one-
step ahead prediction is given by

Jh)=a+B! (k) (8)

where a=p, —ﬁ{.,p(t). Each local regression problem produces a single prediction y(k)
corresponding to the current regression vector ¢(t). To obtain predictions at other operating
points in the regressor space, the weights change and a new optimization problem must be
solved. This stands in contrast to the global modeling approach where the model is fitted to
data only once and then discarded. The bandwidth h controls the neighborhood size and
critically impacts the resulting estimate since it governs the tradeoff between bias and
variance errors of the estimate. Traditional bandwidth selectors produce a single global
bandwidth; in MoD estimation, a bandwidth is computed adaptively at each prediction.

B. From time series MoD model to MLD model

A standard practice in obtaining MIMO models involves performing identification for each
individual output of the system (as described above) and stacking these together to obtain a
MIMO model comprising multiple linear polynomials (one for each output) of the form (8).
This polynomial model can be rearranged in the following piecewise affine (PWA) form:

x(k)y=Ax(k = )+Biu(k = 1)+ f 9)

y(k)=Cx(k)+d (k)+v(k) (10)

Here A, Bq and C are state space matrices that can be generated from the elements of g,
while f is a constant affine term derived from a. d’ and v represent unmeasured disturbances
and measurement noise signals, respectively. Because disturbances are an inherent part of
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any process, it is necessary to incorporate these in the controller model that defines the
control system. It should be noted that the matrices A, By, C and f vary at each time step
based on current operating point. Hence the effect of the autonomous events are
automatically captured and the model represents the dynamics of current location of the
system. At this stage, any deterministic logical condition on inputs or outputs (i.e. non-
autonomous events) can be included in the model. These logical conditions are than
converted into linear constraints to obtain the standard MLD form [1] given below:

x(k) = Ax(k—1)+Bjutk —1)+B6(k — 1)
+Bsz(k — D+f (11)

y(k)=Cx(k)+d (k)+v(k) (12)

Es > Eyo(k—1)+E3z(k—1)
—Esy(k— 1) — Eyu(k - 1) (13)

0 and z are discrete and continuous auxiliary variables that are introduced in order to convert
logical/discrete decisions into their equivalent linear inequality constraints summarized in
(13) (for details, see [1]).

lll. Model-on-Demand Predictive Control for Hybrid Systems

The MLD model (11)-(13) estimated through a MoD approach is used to formulate the
hybrid model predictive control (MPC) law presented in [4]. The controller model (11)-(13)
lumps the effect of all unmeasured disturbances on the outputs only, which is a common
practice in the process control literature [18]. We consider d’, the unmeasured disturbance,
as a stochastic signal, described as follows,

2u(k)=Ayx,(k — 1)+ B,w(k — 1) (14)

d (k)=Cyox,,(k) (15)

where A, has all eigenvalues inside the unit circle and w(k) is a vector of integrated white
noise. Here, it is assumed that the disturbance effect is uncorrelated. Thus, B,, = C,, = | and
Ay = diag{ay, ay, -, an } Where ny is number of outputs. In order to take advantage of well
understood properties of white noise signal considering difference form of disturbance and
system models and augmenting them as follows,

X(k)y = AX(k—D+PBAuk - 1)
+BrAS(k — 1)+ PBaAz(k — 1)
+ B Aw(k — 1) (16)
Y(k)=CX(k) a7
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Here X(k)=[Ax" (k) AxT(k) Y7 (k)] . A * (k)= * (k) — (k — 1) and Aw(K) is white noise
sequence. Augmented matrices A, 4 (i = 1, 2, 3) and C are given in [4].

A. MPC Problem
In this work, we use a quadratic cost function of the form,

min J=
=1 Tscry P 1 ora 1P
L+ [0+ [2k+D]2 )}

, i=0 it )
511 Quk+i) =) I3+ 3, Il QaulAuthi) I
m:I 5 I;—l 5
+ 26” Ou(ulk+1) — uy) I3+ %” Qa(6(k+1) = 6,) Il

p-1 N
(z(k+i) — z7) |I5
+l_§0|] Q:(z(k+i) — z) II3 18)

subjected to mixed integer constraints according to (13) and various process and safety
constraints,

Ymin S Yk+1) Symax, 1 <i<p (19)
Umin < wk+i) < Uma, 0<i<m-—1 (20)
Attin < Aulk+i) < Altmax,0 < i <m—1 1)

p is the prediction horizon and m is the control horizon. Umin, Umax: AUmin: AUmax, 8Nd Ymins
Ymax are lower and upper bound on inputs, move sizes, and outputs, respectively. (-), stands
for reference trajectory and Il-ll, is for 2-norm. Qy, Qay, Qu, Qqg, and Q; are penalty weights
on the control error, move size, control signal, auxiliary binary variables and auxiliary
continuous variables, respectively.

The MPC problem (18)-(21) is governed by both binary and continuous decision variables
hence it is a mixed integer quadratic program (migp). Moreover, it requires future
predictions of the outputs and the mixed integer constraints in (13), which can be obtain by
propagating (13), (16) and (17) for p steps in future. These multi-step predictions are then
used to convert aforementioned MPC problem to a standard miqgp (for details, see [4]). This
problem can be solved using any migp solver available in the market. In this work, we have
used the Tomlab-CPLEX solver. It should be noted that the algorithm also requires
externally generated reference trajectories and estimate of (disturbance free) initial states
X(k) that influence the robust performance of the proposed formulation.

The output reference trajectory is generated using an asymptotically step (a Type-I filter per
[19]) as follows,

m_(l—(ﬂ)q l<j<n,1<i<p
= PR = =y -~

Viarget q- ai (22)

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2011 August 24.
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The setpoint tracking speed can be adjusted by choosing o/ between [0,1) for each

individual output. The smaller the value for ¢/, the faster the response for particular setpoint
tracking. Thus, setpoint tracking speed can be adjusted for each output individually.

The states of the system can be estimated from the current measurements, y(k) while
rejecting the unmeasured disturbance using a Kalman filter as follows:

X(k‘k -1) = AX(k- llk— 1)+% Aulk — 1)

+BrAS(k — 1)+ B3 Az(k — 1) (23)
X(k’k) = X(k’k -1
Ky (y(k) — CX(klk — 1
+Ky 0(6) — CXRfk - 1) o0
Here Ks is the filter gain, an optimal value of which can be found by solving an algebraic
Riccati equation. We use the parametrization of filter gain [18] as follows,
K=[0F, F." (25)
where
Fu:diag{(ﬁl)ls" . -(fu)n\} (26)
Fb:diag{(fb)ls Tt (fh)n\} (27)
(fv) (fuﬁ 1<j<
= | < j<n,
Wi =y, 7 (28)

(fa)j is a tuning parameter that lies between 0 and 1. While the unmeasured disturbances are
rejected using the state observer presented in (23)-(28), the speed of rejection is proportional
to the tuning parameter (f);. As (fa);j approaches zero, the state estimator increasingly
ignores the prediction error correction, and the control solution is mainly determined by the
deterministic model, (23). On the other hand, the state estimator tries to compensate for all
prediction error as (fy); approaches to 1, with a corresponding increase in the aggressiveness
of the control action. In practice, the judicious selection of (f5); requires making the proper
tradeoff between performance and robustness.

IV. Case Study: Adaptive Interventions

As a representative case study of a time-varying adaptive behavioral intervention we
examine the Fast Track program [20]. Fast Track was a multi-year, multi-component
program designed to prevent conduct disorders in at-risk children. Youth showing conduct
disorder are at increased risk for incarceration, injury, depression, substance abuse, and
death by homicide or suicide. In Fast Track, some intervention components were delivered

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2011 August 24.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nandola and Rivera

Page 8

universally to all participants, while other specialized components were delivered
adaptively. In this paper we focus on a hypothetical adaptive intervention described in [5]
for assigning family counseling, which was provided to families on the basis of parental
functioning. There are several possible levels of intensity, or doses, of family counseling.
The idea is to vary the doses of family counseling depending on the needs of the family, in
order to avoid providing an insufficient amount of counseling for very troubled families, or
wasting counseling resources on families that may not need them or be stigmatized by
excessive counseling. The decision about which dose of counseling to offer each family is
based primarily on the family’s level of functioning, assessed by a family functioning
questionnaire completed by the parents. As described in [5], based on the questionnaire and
the clinician’s assessment, family functioning is determined to fall in one of the following
categories: very poor, poor, near threshold, or at/above threshold. A corresponding decision
rule that can be applied is as follows: families with very poor functioning are given weekly
counseling; families with poor functioning are given biweekly counseling; families with
near threshold functioning are given monthly counseling; and families at or above threshold
are given no counseling. Family functioning is reassessed at a review interval of one
months, at which time the intervention dosage may change. This goes on for four years.

Rivera et al. [21] analyzed the intervention by means of a fluid analogy, represented in
Figure 1. Parental function PF(K) is treated as fluid in a tank, which is depleted by
exogenous disturbances D(k). The tank is replenished by the intervention 1(k), which is the
manipulated variable. The use of fluid analogy enables developing a mathematical model of
the open-loop dynamics of the intervention using the principle of conservation of mass. This
model can be described by nonlinear difference equations which relates parental function
PF(k) with the intervention I(k) as follows:

PF(k+T)=PF(k)+K,(k)I(k — ) — D(k) (29)

ndq
D(k)= » D(k)
; (30)

PF peas(k)=PF (k)+N(k) @31

PF(K) is parental function, I(k) refers to the intervention dosage (frequency of counselor
home visits), K (k) is the time-varying intervention gain, T represent the review period or
sampling time (= 1 month), &(k) represents the time-varying time delay between intervention
and its effect on parental function, PFpeas(K) is the parental function measurement. D(K) is
the source of parental function depletion and N(k) represents the measurement noise. Here
we consider both nonlinear gain and delay relationships. The gain, K| varies with parental
function PF(K) as follows,

K, (k)=be "T®1¢ (32)

(Kmin - Kma.x)

where ¢ = Kyax — b and b:—(e—a —1) - Agraphical representation of this relationship for
Kmax = 0.3, Kmin = 0.06, a = 10 is shown in Fig. 2. The delay 0 varies with parental function
PF(K) per the following rules:

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2011 August 24.
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0; O0<PF(k)<25
o= 1;  25<PF(k) <50
“] 2; 50<PF(k) <75
3; 75<PF(k) <100 (33)

Moreover, the intervention I(k) has a restriction on the frequency of counselor visits, which
requires imposing a restriction on the intervention 1(k) such that it takes only four values: 0,
|weekly biweekly gnd monthly ‘Hence the problem has inherent discreteness that can be
classified as non-autonomous (deterministic) discrete events in addition to the continuous
dynamics. Thus, system can be characterized by the nonlinear hybrid dynamical system.

In the case study an implicit NARX structure with [ng = 2, n, =2, ng = 1] is used in the
MoD estimator. A first order local polynomial and database size limit [50 240] is used as
additional parameters. This local model is then converted into its equivalent state-space form
described by (9)-(10). Further, in order to capture deterministic discrete events in the
intervention, four binary auxiliary variables, d1, d2, d3, d4 and four continuous auxiliary
variables, 14, Iy, I3, 14 are introduced and the equivalent MLD model per (11)-(13) is
obtained. The detailed description of the MLD model is not presented here for the sake of
brevity. This model is generated adaptively at each time step and used to formulate the MPC
problem.

Figure 3 compares the open-loop simulation results using the MoD approach (dashed line)
with the open-loop simulation from the actual nonlinear system (29)-(33) (solid line). It can
be seen that the MoD approach satisfactorily estimates the dynamic behavior of the system
with root mean square (RMS) error 5.62. On the other hand, the simulation result from the
linear ARX model using the same model structure as the MoD model (denoted by dotted
line in Fig. 3), yields a poor estimation result with RMS error value of 13.68.

Figure 4 documents the MPC performance using the MoD approach (solid line) with the
linear ARX model approach (dashed-dotted line) in the presence of a setpoint change in
parental function to 65% and a simultaneous step unmeasured disturbance D(k) = 4. In both
the cases, the MPC tuning parameters Qy =1, Qay = 0.1, Qu = Q¢ =Q; =0, (ar, fa) = (0,
0.3), the prediction horizon p = 40 and control horizon m = 10 are used. The Tomlab-CPLEX
solver is used to solve resulting migp optimization problems. From the figure it can be seen
that the controller designed using the MoD approach is able to quickly achieve the desired
setpoint, and stabilizes the system at the setpoint. In contrast, the controller relying on the
linear ARX model oscillates around setpoint. In addition, the proposed algorithm produces
less variation in the manipulated variable and provides uniform performance. This fact is
also confirmed by the performance matrices Je and Ja; given below:

/T
Jo=y (PF(k) - PF<! ) (PF(k) — PFeeal)
= (34)

/T

Jy=) 46 = 16 = 1) (1) = 1tk = 1)
k=1 (35)

where t represents total simulation time and T is a sampling time. The performance matrices
Je and J, represent measure of cumulative deviation of parental function from the goal and

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2011 August 24.
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measure of cumulative variation in the intervention dosages, respectively. For the MoD
approach, values of Je and J, are 7.84 x 102 and 1.11 x 104, respectively, while using the
linear ARX model based MPC, these values are 9.05 x 103 and 1.55 x 104, respectively.
Thus, it can be concluded that the proposed algorithm yields superior performance and is
suitable for the control of nonlinear hybrid systems.

V. Summary

Applications of hybrid systems are becoming increasingly common in many fields.
Recently, control engineering principles have been proposed for adaptive behavioral
interventions [21]; these systems are naturally hybrid in nature. In this work, a Model-on-
Demand Predictive Control (MoDPC) approach for control of nonlinear hybrid systems and
its application to a simulated adaptive behavioral intervention are presented. The
formulation uses a Model-on-Demand approach to obtain a local MLD model for the
nonlinear hybrid system at each time step. MoD is a data-centric approach that uses a small
neighborhood data around current operating point characterized by the regressor vector. The
local MLD model generated by MoD estimator is then used to specify a model predictive
control law that relies on multiple-degree-of-freedom tuning parameters [4]. Multiple-
degree-of freedom tuning enables the speed of disturbance rejection and setpoint tracking
affecting each output to be adjusted individually; this has intuitive appeal. The applicability
and efficiency of proposed formulation is demonstrated on a hypothetical intervention
problem intended for improving parental function in at-risk children. This problem exhibits
nonlinear dynamics with inherent discrete events. From the simulation results, it can be
concluded that the proposed MoDPC is useful for the control of nonlinear hybrid systems,
displaying acceptable performance levels while simplifying the task of modeling.
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Fig. 1.

Fluid analogy corresponding to the hypothetical adaptive intervention. Parental function
PF(K) is treated as material (inventory) in a tank, which is depleted by disturbances D(k) and
replenished by intervention dosage 1(k), which is the manipulated variable.
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Fig. 2.
Graphical depiction of the nonlinear gain relationship given in Equation 32 for K.

1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Proc IEEE Conf Decis Control. Author manuscript; available in PMC 2011 August 24.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Nandola and Rivera Page 14

100 T . . T
i
L
a
0 1 1 L L
0 50 100 150 200
time (Month)
Weekly -
S
= Bi-Weeklyf
@
o
& Monthly
=
No Visit . ]
0 50 100 150 200
time (Month)
Fig. 3.

Comparison with open-loop simulation using MoD model (dashed line) and linear ARX
model (dotted line) with nonlinear systems (solid line).
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Fig. 4.

Comparison of controller performance using the proposed MoD-MPC formulation (solid
line) and the MPC formulation relying on linear ARX model (dashed-dotted line). A
setpoint change from 10% to 65% parental function with simultaneous step disturbance D(k)
= 4 are evaluated with tuning parameter Qy =1, Qay = 0.1, Qu = Qg =Q; =0, (ay, fa) = (0,
0.3), p=40and m=10.
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