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Abstract
Driven by advancements in high-throughput biological technologies and the growing number of
sequenced genomes, the construction of in silico models at the genome scale has provided
powerful tools to investigate a vast array of biological systems and applications. Here, we review
comprehensively the uses of such models in industrial and medical biotechnology, including
biofuel generation, food production, and drug development. While the use of in silico models is
still in its early stages for delivering to industry, significant initial successes have been achieved.
For the cases presented here, genome-scale models predict engineering strategies to enhance
properties of interest in an organism or to inhibit harmful mechanisms of pathogens or in disease.
Going forward, genome-scale in silico models promise to extend their application and analysis
scope to become a transformative tool in biotechnology. As such, genome-scale models can
provide a basis for rational genome-scale engineering and synthetic biology.
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1 INTRODUCTION & BACKGROUND
Genome-scale in silico models provide a powerful resource to guide rational engineering of
biological systems for applications in industrial and medical biotechnology. An accurate
genome-scale model (GEM) can help predict the system-wide effect of genetic and
environmental perturbations on an organism, and hence drive metabolic engineering
experiments. Since the development of the first GEM in 1999 (Haemophilus influenza [1]),
systems modeling approaches have worked towards efficiently utilizing increasingly
available high-throughput biological data (e.g., genomics, transcriptomics, proteomics,
metabolomics) to bring genomes to life. An important challenge in this field is to enable the
rapid development of predictive computational models for any sequenced organism by
harnessing these high-throughput experimental technologies. The compelling need for this
ability is evidenced by the gap between the number of sequenced organisms and
corresponding GEMs (Figure 1).
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Three classes of networks have been reconstructed in biochemical detail and converted into
GEMs. Metabolic GEMs quantify a cell’s metabolic potential, and thus allow researchers to
probe new phenotypes and network states [2]. Transcriptional regulatory networks (TRNs)
describe transcription-factor-promoter interactions and associated environmental influences
to provide information about environment-specific enzyme activity. As such, TRNs can be
fused with metabolic GEMs to form more predictive integrated metabolic-regulatory
network models [3–6]. The newest genome-scale network type, transcriptional-translational
models [7], captures information passage from DNA to RNA to proteins. Each network-
based GEM is built upon a stoichiometric formalism allowing for the mathematical
representation of biochemical information (see [2, 8–10]). The present review focuses
heavily on metabolic GEMs because they are the most commonly formulated and span a
broad range of applications.

Numerous constraint-based methods are available to explore the phenotypic potential of the
three GEM types, and by extension the associated biological system. To assist in
understanding the case studies discussed herein, we briefly summarize some of these
procedures (see [11] for review). In constraint-based analysis, physico-chemical and
environmental constraints are applied as balances (e.g., mass, energy) and bounds (e.g., flux
capacities, thermodynamics). These constraints define a solution space describing all
possible functions (allowable phenotypes) of the system. Flux balance analysis (FBA)
determines the distribution of reaction fluxes that optimize a biological objective function
(e.g., biomass, ATP) [12, 13]. This capability is particularly useful for simulating the effect
of genetic perturbations (e.g., gene knockouts or mutations) on the resulting metabolic
phenotype. Two extensions of traditional FBA, regulatory FBA (rFBA) [3, 6] and dynamic
FBA (dFBA) [14], enable analysis and hypothesis generation where external metabolite
concentrations and environmental conditions vary with time. Minimization of metabolic
adjustment (MOMA) assumes that, after a mutation, the organism seeks to minimize the
total metabolic change relative to the wildtype (unlike FBA, which assumes a new
optimized network state) [15]. OptKnock [16] is a computational procedure used to design
strains with enhanced capabilities by identifying gene deletions that align the cellular
objective (e.g., growth) with the engineering objective (e.g., biofuel production). The effects
of gene additions from related organisms can be included in an analogous fashion using
OptStrain [17].

This review provides detailed examples of how constraint-based GEM analysis has been
used for a broad range of applications in industrial and medical biotechnology (Figure 2). To
date, there are over 50 organism-specific GEMs (Table 1) that have been surprisingly
successful in predicting cellular behavior (e.g., the effects of gene deletions on growth or
secretion rates). In biotechnology applications, GEMs are commonly used to guide
enhancement of a particular property of interest (e.g., biofuel or pharmaceutical production)
or to better understand systemic behavior. Hence, two specific uses for GEMs are addressed:
(i) elucidation of the global properties of network structures and (ii) constraint-based
modeling for predicting the phenotypic effects of genetic and environmental perturbations.

2 INDUSTRIAL BIOTECHNOLOGY APPLICATIONS OF GENOME-SCALE IN
SILICO METABOLIC MODELS

Metabolic GEMs provide a valuable tool to harness microorganisms as cell factories to
sustainably produce chemicals and pharmaceuticals. The ability to integrate targeted
modifications within the context of the whole organism helps model-guided approaches to
minimize undesired secondary effects. An iterative model generation, hypothesis formation,
and model refinement process is central to the systems biology approach (Figure 3). Current
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metabolic GEMs for industrial biotechnology fall into four main application categories: food
production, biopolymers, biofuels, and bioremediation.

2.1 Food Production and Engineering
In the food and beverage industry, metabolic GEMs have been created to explore and
improve fermentation byproduct formation by lactic acid bacteria (LAB). In addition to
lactate, LAB produce bacteriocins, exopolysaccharides, polyols, B vitamins and compounds
that affect food texture, taste, and preservation [18].

Lactobacillus plantarum is used in industrial food fermentations and advertized as a
probiotic organism. FBA was used to compare the typical estimation method for ATP
production (based on lactate and acetate formation) to that predicted by the metabolic GEM,
and was found to match. The accuracy of the acid-formation based method had been
questioned because some inputs to lactate and acetate formation do not yield ATP. During
the ATP production analysis, it was discovered that transamination of aromatic and
branched chain amino acids contributes to ATP production. A second investigation with the
GEM investigated the discrepancy between experimental and FBA predicted growth rates
and lactate formation. FBA predicted mixed acid production (primarily acetate, ethanol,
formate) when optimized for growth, while homolactic fermentation is observed
experimentally. Additionally, the FBA-predicted growth rate was higher than expected.
These differences were thought to result from the experimental observation that L.
plantarum uses an ATP inefficient route for lactate production, and thus does not maximize
ATP production as its cellular objective (the FBA assumption used) – likely stemming from
its evolution in nutrient-rich environments. This observation was investigated further in a
study that evolved an experimental strain for growth on glycerol [19]. The poor substrate
expectedly forced the strain into optimization for growth, producing mainly lactate with an
experimental growth rate of 0.26h−1, compared to 0.324h−1 found in silico. Thus, the
experimental mutant developed to follow traditional FBA assumptions agreed better with in
silico predictions.

In addition to typical LAB production applications in the food industry, Lactococcus lactis
has applications relating to the in situ production of flavor, texture and health contributing
food components. The GEM for L. lactis was used to predict modifications for enhanced
production of diacetyl, a flavor compound in dairy products [20]. FBA and MOMA were
used to optimize for production of the intermediate 2-acetolactate. In silico predictions
starting with a known mutant strain yielded an additional deletion for increased acetate
formation. In a subsequent deletion study on the new mutant, three more gene deletions
predicted a redirect of carbon flux to 2-acetolactate production. Another application of L.
lactis has been as an oral delivery vehicle for recombinant protein vaccines. To investigate
this, the L. lactis GEM was updated to include recombinant protein synthesis reactions and
used to optimize production of recombinant proteins [21]. Specifically, this study optimized
production of Green Fluorescent Protein (GFP) (a model heterologous protein) using dFBA.
The top performing strain predictions were tested in vivo and found to have 15% increased
GFP production. The increase in expression was lower than predicted using the GEM,
however the qualitative effect was still observed.

Streptococcus thermophilus is commonly used in the production of yogurt and cheeses
involving high cooking temperatures. The metabolic GEM enabled the comparison of S.
thermophilus with L. plantarum and L. lactis metabolism [22]. Considering its evolution in
protein-rich milk environments, S. thermophilus was surprisingly found to produce 18 amino
acids. The GEM also identified a unique acetaldehyde (yogurt flavor) production pathway.
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2.2 Production of Biopolymers
Today, most synthetic materials (e.g., plastics) are produced via petroleum refining. In an
effort to reduce dependence on unsustainable processes, alternative production routes for
plastics are desirable. For example, poly-3-hydroxyalkanates (PHAs) are microbial produced
biodegradable polyesters that could potentially replace petrochemical-based plastics.

PHA production was investigated using two metabolic GEMs of Pseduomonas putida. The
first GEM was used to suggest precursor metabolites and showed that select fatty acids and
carbohydrates were the best PHA precursors [23]. This was expected since carbon sources
leading to high levels of acetyl coenzyme A (acetyl-CoA) are good PHA production
candidates. Soon after the publication of this P. putida model, a second metabolic GEM
[24], also analyzed to improve PHA production, was published. PHA and biomass (growth)
pathways utilize the same metabolic precursors, so FBA predicts no PHA production when
optimizing for growth. To overcome this, OptKnock was applied to the second GEM to
increase the pool of the primary precursor acetyl-CoA. Six mutations were predicted, one of
which demonstrated a 29% acetyl-CoA increase.

2.3 Production of Biofuels
Biofuels have potential to provide a sustainable and environmentally-friendly fuel source.
Metabolic GEMs hold great promise to guide strain design for improved biofuel production
by microorganisms [25]. In addition to the model fermentation organisms for ethanol, GEMs
for lesser-characterized organisms that naturally exhibit useful properties are attractive for
biofuel production. Currently, GEMs to improve ethanol, butanol, hydrogen and methane
production have been developed and studied. The hydrogen producing algae
Chlamydomonas reinhardtii is discussed in Section 2.5.

Acetone-butanol-ethanol production—For alcohol production, a global understanding
of metabolic behavior is critical. Microbe production of alcohols is limited by the toxicity of
these compounds at high concentration. Understanding the solution space defined by the
metabolic network reveals whether the organism has reached its maximum production
potential and is limited by toxicity (requiring engineering approaches that delve into
dynamics and regulation). If not, the stoichiometric threshold has not been reached and
alcohol production can be enhanced by redistributing carbon flux.

The E. coli and S. cerevisiae models have been used to improve ethanol production and are
discussed in Section 4. Similarly, Clostridium acetobutylicum – the natural acetone-butanol-
ethanol production organism that advantageously co-ferments pentoses and hexoses – has
two GEMs [26, 27] that can be used to increase biobutanol production. In [26], 207 lethal
reactions were found on minimal media, 140 on partially supplemented medium and 85 on
supplemented medium [27] found 194 essential reactions.

Methanogens—Methanogens anaerobically convert low-carbon substrates to methane,
and can degrade industrial, agricultural and toxic wastes containing large amounts of organic
material. A GEM was reconstructed for Methanosarcina barkeri to study methanogenesis,
representing the first archaeon GEM [28]. This model led to 55 new functional genome
annotations, was used to suggest a minimal media, and uncovered the stoichiometry of three
previously uncharacterized aspects of methane production.

Mutualistic methane production was investigated in the coupled study of Desulfovibrio
vulgaris and Methanococcus maripaludis metabolic behavior, the first demonstration of a
flux balance model for a two-organism system [29]. Though not genome-scale, it represents
an interesting application of traditional constraint-based analysis. The two-system model
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was developed by separately reconstructing the central metabolism of D. vulgaris and M.
maripaludis, and then integrating the networks as a single syntrophic system by
compartmentalization. Unlike in eukaryotic models, compartments were separated by the
extracellular environment, making transporter existence in both species critical. From this
model, it was discovered that formate was not required as an electron shuttle between the
organisms, but that growth was not possible without hydrogen transfer.

2.4 Applications in bioremediation
Bioremediation takes advantage of a microbe’s ability to reduce and potentially eliminate
toxic effects of environmental pollutants. Additionally, microbes capable of degrading
harmful waste produce useful chemicals as byproducts, and hence are intriguing production
organisms as well [30].

Acinetobacter baylyi is an innocuous soil bacterium that degrades pollutants and produces
lipases, proteases, bioemulsifiers, cyanophycine, and biopolymers. A. baylyi is easily
transformed and manipulated by homology-directed recombination, enabling
straightforward metabolic engineering. Therefore, the GEM is accompanied by an extensive
library of mutants, and was validated against wildtype growth phenotypes in 190
environments and gene essentiality data for nine environments [31].

Geobacter metallireducens reduces Fe(III) and is used in bioremediation of uranium,
plutonium, technetium, and vadium. Its ability to produce electrically conductive pili makes
it useful for harvesting electricity from waste organic matter and as a biocatalyst in
microbial fuel cell applications. Using G. metallireducens’ GEM, growth on different
electron donors and electron acceptors was investigated [32]. Model analysis revealed
energy inefficient reactions in central metabolism, and experimental data suggested that the
inefficient reactions were inactive during biomass optimization on acetate, but up-regulated
when grown with complex electron donors. Additionally, the model was tested for flux
predictions by comparison with 13C labeling flux analysis. Simulations suggested the TCA
cycle was used to oxidize 91.6% of acetate, in agreement with 90.5% in 13C labeling
experiments.

Geobacter sulfurreducens has similar industrial applications to G. metallireducens.
OptKnock was applied to the G. sulfurreducens GEM [33] to improve extracellular electron
transport [34]. Gene deletions in the fatty and amino acid pathways and in central
metabolism were predicted to increase respiration and cellular ATP demand. To study the
ATP demand increase, an ATP drain was added to the GEM. The model showed the rise in
ATP usage correlated to decreased biomass flux and increased respiration rate. Experimental
results confirmed that an ATP drain demonstrates the predicted results. Increasing electron
transfer in G. sulfurreducens has advantages in both bioremediation and microbial fuel cell
development, though increased fuel cell current was not found with this mutant strain.

2.5 Photosynthetic Organisms
The sun's energy can be captured either directly by using photosynthetic organisms as cell
factories, or indirectly through plant biomass. Photosynthetic organisms can (i) remove CO2
from the environment, thereby reducing the impact of global warming; (ii) use light to
produce carbon-based products; and (iii) create energy gradients. While there is one plant
GEM available (Nature Precedings [35]), this section will focus on photosynthetic microbes.

The algae Chlamydomonas reinhardtii is most commonly utilized for biofuel and
biohydrogen production. C. reinhardtii’s GEM was reconstructed using an iterative method
that integrates experimental transcript verification with computational modeling [36]. An
initial metabolic network revealed genes needing experimental definition and validation, the
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completion of which refines the model through verification of hypothetical transcript
existence. Resulting pathway gaps were filled by incorporating alternative enzymes,
providing the basis for further transcript verification and network modeling.

Halobacterium salinarum is an extreme halophilic archaeon capable of surviving with light
as its only energy source. It produces bacteriorhodopsin (a light-driven proton pump) – the
only known structure with non-chlorophyll based photosynthesis – for use in optical
security, optical data storage, and hologram creation. H. salinarum can also store energy
(like a battery) using a large potassium gradient. Its GEM [37] was used to investigate
aerobic essential amino acid degradation, and to integratively study energy generation,
nutrient utilization, and biomass production.

Cyanobacteria are a subset of prokaryotes that execute oxygenic photosynthesis.
Synechocystis sp. is a fresh water cyanobacterium for which powerful genetic tools are
available (e.g., transformation tools, genetic markers). As a potential biofuel production
organism, Synechocystis could convert CO2 to carbon-based products. To test this ability,
two genes were experimentally transformed into the metabolic network of Synechocystis to
complete an ethanol-producing pathway. The CO2 fixation to pyruvate was diverted to
ethanol production – allowing for direct conversion of CO2 to ethanol using only light
energy. To investigate the added pathway’s systemic effects, the two reactions
corresponding to the gene additions were added to the GEM [38]. Analysis showed that the
mutant strain should also now produce succinate and malate, as was subsequently verified
experimentally.

3 MEDICAL BIOTECHNOLOGY APPLICATIONS OF GENOME-SCALE IN
SILICO METABOLIC MODELS

In addition to applications in industrial biotechnology, systems-level metabolic modeling
has been widely utilized in medical biotechnology. To capture the potential of constraint-
based analysis and further improve drug production and target identification, metabolic
GEMs spanning a range of diseases have been formulated. Demonstrated applications are
grouped into three categories: anti-pathogen target discovery, drug and nutrient production,
and mammalian systems.

3.1 Anti-pathogen Target Discovery
Microbial strains are the causative agents of numerous human diseases. Pathogen GEMs are
thus primarily used to identify drug targets that would inhibit cellular function. Importantly,
the GEM for humans [39, 40] informs these pathogen studies by identifying enzyme targets
essential for the pathogen and not for humans. Most modeling studies of pathogens generate
sets of essential genes and reactions under conditions representing their host environment to
identify new antibiotic targets (Figure 4). A smaller number of studies report potential
chemical inhibitors of these targets, and models have even been used to predict the specific
effects of various drug compounds on the organism.

Modeling of Staphylococcus aureus, a bacteria infecting multiple regions of the body, aims
to elucidate the origin of its antibiotic resistance and to identify new drug targets. Its first
metabolic GEM was used to identify essential genes and reactions on both rich and minimal
media [41]. In this study, the authors generated a literature-derived list of potential
combative drugs (chemical inhibitors corresponding to essential reaction targets) for the
predicted targets. A later study identified metabolites essential for S. aureus survival [42]. A
second GEM was extensively validated against experimental data and used to predict 158
lethal intracellular reaction knockouts [43]. Five of these knockouts had already been
experimentally identified as lethal. Further analysis showed that biosynthesis pathways for
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glycans and lipids were particularly susceptible to deletions, making them interesting for
antibiotic development. The most recent S. aureus modeling study combined metabolic
reconstruction methods with genomic and sequence homology data to build a set of models
representing the 13 different S. aureus strains [44]. 44 genes were predicted to be
unconditionally essential across all strains. While a number of the essential genes were
reported to have roles in fatty acid biosynthesis, the majority of the 10 common synthetic-
lethal gene pairs identified belong to amino sugar biosynthesis pathways.

Respiratory Pathogens—Haemophilus influenzae causes otitis media as well as acute
and chronic respiratory infections, most often in children. Even with the H. influenzae type b
(Hib) vaccine, an estimated 380,000 to 600,000 Hib deaths sill occur world-wide each year.
Furthermore, non-typeable H. influenzae strains lacking the vaccine target are becoming a
major pathogen in both children and adults. The H. influenzae GEM was initially used to
identify 11 genes predicted as critical in minimal substrate conditions [1]. Interestingly, six
of the 11 genes were also determined to be critical in more complete substrate conditions
reflecting the human host environment of H. influenzae. A later study integrated protein
expression data with the model to predict essential enzymatic proteins in aerobic and
microaerobic conditions [45].

Mycobacterium tuberculosis is a significant cause of human disease in the third world,
killing over two million people annually. Two metabolic GEMs for M. tuberculosis exist:
GSMN-TB [46] and iNJ661 [47]. The GSMN-TB model contains five genes encoding
enzymes that are known drug targets, all correctly predicted to be essential [46]. In a later
study, FBA was combined with gene expression data to interrogate the metabolic network
and predict the effects of different drugs, drug combinations, and nutrient conditions on
mycolate biosynthesis [48]. Mycolates are key components of the mycobacterial cell wall,
and mycolate metabolism is a target of well-known antituberculosis drugs. A separate study
using iNJ661 identified mycolate as an essential metabolite [49]. Combined, these results
suggest that mycolate biosynthesis and degradation pathways are viable targets for new drug
discovery. Applying sampling and flux coupling methods to iNJ661, 50 known TB drug
targets were mapped to hard-coupled reaction (HCR) sets, where a single drug target knocks
out an entire set’s functionality [47]. Terminating the activity of other enzymes in an HCR
theoretically has the same effect, suggesting novel targets. Most recently, gene and reaction
essentiality results obtained from both GEMs were integrated into a larger in silico target
identification pipeline for M. tuberculosis that incorporates protein-protein interaction
network analysis, experimentally derived essentiality data, sequence analyses, and structural
assessment of targetability [50].

Another important respiratory pathogen studied through genome-scale modeling is
Pseudomonas aeruginosa. The ability of P. aeruginosa to form biofilms in low oxygen
environments allows it to chronically infect the lungs of cystic fibrosis patients. P.
aeruginosa is also responsible for nosocomial infections and acute infections in
immunocompromised patients. In silico gene deletions performed with its metabolic GEM
showed strong agreement with published knockout data [51].

Gastrointestinal Pathogens—Helicobacter pylori targets the gastric mucosa, leading to
diseases such as gastritis, peptic ulceration and gastric cancer. Seven essential genes were
predicted in the initial H. pylori GEM under four test conditions, representing varying
aerobic levels and nutrient availability [52]. Importantly, the overall variation between
conditions revealed that gene essentiality is dependent on the in silico environment. Using
an updated H. pylori GEM, a later study identified 128 essential genes, and the results were
validated using published experimental data [53]. Most essential genes predicted belonged
to either the cell wall or vitamin and cofactor subsystems. In a study predicting essential
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metabolites for cell growth [42], meso-2,6-diaminoheptanedioate was confirmed as a
potential target, while ADP-d-glycero-d-manno-heptose was identified as a potentially novel
target.

Salmonella typhimurium is a source of human gastroenteritis and causes systemic infection
in mice studied as a model for human typhoid fever. A variation of the typical target-
prediction approach identified potential strategies for vaccine development [54].
Specifically, gene expression data was used to infer the host environmental conditions to
which S. typhimurium might be exposed during infection. Model simulations predicted
genes essential for intracellular survival, providing potential targets for generating avirulent
attenuated strains for vaccines. A second S. typhimurium GEM showed good agreement
between simulation and experimental results for growth patterns under different substrate
conditions [55].

Pathogens Infecting Other Systems—Neisseria meningitidis causes meningitis and
meningococcal septicemia, and is classified into serogroups (groups containing a common
antigen) A, B and C. Serogroup B is common in developed countries and has no vaccine.
The membrane protein PorA has been identified as a major inducer of, and target for,
bactericidal antibodies. As genetically engineered strains expressing more than one PorA
subtype are now being produced, GEMs can aid in process development of the cultivation
step. The metabolic GEM was therefore used to define a minimal medium for N.
meningitidis growth (successfully tested in batch and chemostat cultures) [56].

Yersinia pestis infects the lymphatic system and causes bubonic plague, a disease without a
vaccine that still affects thousands of people annually. The metabolic GEM was used to
identify 74 lethal gene deletions and 39 synthetic lethals [57]. Similarly, in silico gene
deletion studies on the Leishmania major GEM [58], the first GEM for a protozoan,
revealed multiple essential genes (e.g., trypanothione reductase encoding genes) that are
absent in humans. L. major is the causative agent of cutaneous leishmaniasis in mammalian
hosts and is similar to other Leishmania species causing diffuse cutaneous, mucocutaneous
and visceral forms of the disease.

Mycoplasma genitalium is the closest known representation of the minimal gene set required
for bacterial growth. Additionally, M. genitalium is sexually transmitted and causes
nongonococcal urethritis in men, genital tract inflammatory diseases in women, and is
thought to increase the risk of HIV-1 contraction. Presently, model predictions have helped
to identify minimal media growth components [59].

Human oral pathogens such as Porphyromonas gingivalis are the leading cause of carious
and periodontal disease. Lipopolysaccharides (LPS) present in the bacterial outer membrane
trigger the human immune system. The P. gingivalis GEM identified several gene deletions
preventing LPS production [60]. One predicted strain was confirmed to suffer negative
effects, though it was still viable. Blocking LPS production would allow for control of the
negative inflammatory responses.

3.2 Production of Drugs and Nutrients
Of interest, some microbial organisms produce antibiotics and other compounds conveying
health benefits to humans (e.g., vitamins). Analysis of metabolic GEMs for both traditional
and novel drug production microorganisms serves to improve production efficiency and
assist in identifying new drug production routes.

Nutrients & Dietary Supplements—Corynebacterium glutamicum is used industrially
to produce amino acids, particularly L-lysine and L-glutamate, and can produce ethanol and
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organic acids under oxygen deprivation conditions. The first metabolic GEM assisted in
prediction of targets for improved lysine production, showing that lysine production via
direct dehydrogenase gives a higher product yield [61]. Soon after publication of the first
GEM, a second metabolic GEM was published and used to find candidate gene deletions to
increase organic acid production under oxygen deprived conditions [62]. Improving lactate
production required interruption of succinate-producing reactions. Disruption of oxidative
phosphorylation reactions also predicted improved production of lactate because NADH
oxidation demand increased. Finally, reactions in the pentose phosphate pathway were
predicted to increase lactate production because an alternative reaction was needed to
produce NADPH (malate to pyruvate) and the increase in pyruvate was converted to lactate.
Succinate production was also predicted to be improved by interrupting the lactate
producing reactions.

Pharmaceuticals—Aside from E. coli, Bacillus subtilis is one of the best-characterized
prokaryotes. Its ability to produce antibiotics, high quality enzymes and proteins,
nucleosides, and vitamins makes it an important industrial organism. Two genome-scale
metabolic models have been created, the second of which used the SEED annotation [63,
64]. Analysis showed that 79% of the reactions from the earlier model were present in the
later model, with 64% agreement in gene-reaction mapping. The newer model contains a
larger number of reactions due to improved annotation and more detailed characterization of
biomass composition.

Streptomyces coelicolor also produces antibiotics, as well as secondary metabolites such as
immunosuppressants and anti-cancer agents. It has been demonstrated experimentally that
increasing the supply of primary metabolites (those directly involved in cell function and
growth) – via decreased flux through primary metabolic pathways – leads to increased
secondary metabolite production in various Streptomyces strains. The S. coelicolor GEM
[65] was used to study the effect of reduced phosphofructokinase (PFK) activity on
increasing secondary metabolite production [66]. The model subset used showed that
applying constraints to limit secretion of other secondary metabolites (acetate, acetaldehyde,
ethanol, formate, and proline) did not increase antibiotic production when PFK activity was
reduced. The predicted decrease in specific growth rate and increase in pentose phosphate
pathway flux was observed experimentally. Another study applied flux variability analysis
to the original metabolic GEM to investigate the effects of different culture feed conditions
on glucose assimilation and antibiotic production [67].

3.3 Mammalian Systems
Metabolism is a critical aspect of human physiology, and metabolic malfunction is a major
contributing factor in many human diseases. Metabolic modeling of mammalian cells can be
used to study tissue specific function [68] and human disease [69, 70]. Mammalian cell
cultures (non-human) can also be used in the production of biopharmaceuticals such as
monoclonal antibodies and vaccines [71].

The recent completion of a global reconstruction of the metabolic network in Homo sapiens
[39, 40] represents a significant milestone in human systems biology. In addition to the
typical network capabilities determined by constraint-based modeling, Human Recon 1 has
enabled analysis of relationships between network topology and human metabolic diseases
[69]. In a more specific example, a novel computational approach was applied to the GEM
to identify biomarkers for inborn errors of metabolism [70]. This method revealed a set of
233 metabolites whose concentration is predicted to increase or decrease as a result of 176
possible dysfunctional enzymes. Human Recon 1 has also been used to explore tissue-
specific metabolism across a number of major organ systems. The model was combined
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with tissue-specific gene expression data to predict tissue-specific activity of metabolic-
disease genes and secreted metabolites [68]. An independently reconstructed human GEM
[40] revealed the potential of systems modeling in human metabolism to aid in drug
discovery [72]. Recently, efforts have focused on reconciling these reconstructions.

Mus musculus, the common laboratory mouse, has been found to have 99% similarity with
the human genes in coding regions [73]. With extensive experimental data available, the
mouse provides a terrific model organism for studying genetic systems of relevance to
humans. The M. musculus metabolic GEM was used to simulate hybridoma cell line
production of monoclonal antibodies (mAbs), and results were compared to cell culture data
[74]. The model successfully predicted growth and production of lactate and ammonia,
known byproducts of mammalian cell cultures that cause cell death and inhibit mAb
synthesis. However, the model did not predict the production of a third commonly-observed
byproduct, alanine, and did not explain the high production of lactate, ammonia, and alanine
in animal cells. In 2009, an updated GEM was the subject of in silico analysis to identify
strategies for optimizing cell density and mAb production in hybridoma cultures [75]. This
GEM produced all expected amino acids. Based on cell culture measurements under various
nutrient conditions and model simulations of internal metabolic states, potential feed-media
conditions for enhancing cell density and mAb production were suggested.

4 GENOME-SCALE IN SILICO METABOLIC MODELS WITH APPLICATIONS
IN BOTH INDUSTRIAL AND MEDICAL BIOTECHNOLOGY
4.1 Mannheimia succiniciproducens for succinate production

Succinate has importance in the food, agricultural, chemical, and pharmaceutical industries,
and can be used in the synthesis of biodegradable polymers and green solvents. Currently,
succinate is produced industrially from liquid petroleum gas via a chemical process.

To optimize microbial succinate production, a GEM was constructed for Mannheimia
succiniciproducens [76]. Simulations of three mutant strains designed to increase succinate
production were conducted. Good agreement was found between the experimental and in
silico predictions for growth rate, and for succinate and acetate production by one strain.
The prediction for formate was not in such good agreement, but the model accurately
predicted that lactate, pyruvate and malate would not be produced. The flux simulation
agreed with experiments in its prediction of the route to succinate. Two of the three mutants
were more complex and results were initially not in agreement with experiment, but were
similar after applying additional constraints to the model for one of the complex strains. The
best succinate producing strains found using FBA yielded 92.59% of the maximum possible
succinate production with only 25.50% reduction in growth rate. Constraint-based analysis
on the model was later used to identify an ideal operating range of CO2 to maximize cell
growth rate and succinate production for a given glucose uptake rate [49].

4.2 E. coli
E. coli and S. cerevisiae (Section 4.3) are two of the best studied microbial species to date
[77, 78], and serve as critically important organisms from which much about biology has
been learned. The E. coli metabolic GEM has been extensively used in a wide spectrum of
applications, including increased production of lycopene [79, 80], succinate [16, 81, 82],
lactate [16, 83], malate [84], L-valine [85], L-threonine [86], additional amino acids [87],
ethanol [88], hydrogen [17, 89], vanillin [17], and 1,3-propanediol (PDO) [16]. As one of
the earliest GEMs and most extensively experimentally studied microorganisms, the E. coli
model has been updated multiple times [90–92].
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Quadruple gene deletions proposed by OptKnock were tested experimentally and resulted in
a strain capable of increased lactate production (0.87–1.75 g/L per 2 g/L glucose) [83].
Adaptive evolution experiments on the engineered strains showed coupling of lactate
production and growth, and the new strains increased lactate secretion rates. Constraint-
based analysis of the E. coli GEM also guided strain design for increased production of the
food additive malate, predicting the addition of a M. succiniciproducens reaction [84]. In
another food engineering study, OptStrain identified three reactions to be introduced into E.
coli for vanillin production [17]. OptKnock was then used to systematically search for gene
deletions to enhance vanillin yield. For biofuels, an algorithm called OptReg [88] examined
the effects of up-regulation of genes and to those of down-regulation and gene knock-outs to
identify genes capable of enhancing ethanol production. With a focus on health applications,
a MOMA-based procedure was used to sequentially examine and select sets of multiple gene
deletions enabling optimal yields of the antioxidant lycopene, while still maintaining
sufficient growth rates [79]. In another study, comparative genome analysis of E. coli and
M. succiniciproducens was performed to predict five candidate genes to overproduce
succinate in E. coli [81, 82].

A combination of strategies was used to develop an enhanced L-valine producing E. coli
strain [85]. First, an L-valine producing strain was constructed by removing known feedback
inhibition mechanisms and attenuation controls, and amplifying L-valine biosynthetic
enzymes activity. This strain was improved in a stepwise manner using information derived
from transcriptome profiling (i.e., the identification of a global regulator and exporter of L-
valine). MOMA was applied to identify triple-knockout targets. The effect of the triple-
knockout mutation was more drastic with respect to L-valine production in a strain
overexpressing the global regulator gene and the exporter encoding gene than in a strain
without these overexpressed genes. Analysis was also performed to uncover amplification
targets for improved L-threonine production [86]. The strain was engineered to reduce
byproduct accumulation during fed-batch culture by diverting the flux to L-threonine
through overexpression of another GEM-identified gene.

Due to the inherent robustness of E. coli metabolism, only a subset of the metabolic genes
was known to be lethal in single-gene deletion experiments [93]. Alternative approaches
addressed this limitation by identifying synthetic lethals, or even higher-order lethal sets.
These efforts dramatically expanded the range of knockout candidates. These lethal
multiple-gene knockouts were identified in silico [42, 94–96], and antibacterial targets found
through metabolite essentiality analyses [95] have been further explored [42].

4.3 S. cerevisiae
The yeast S. cerevisiae is one of the most widely studied model organisms for eukaryotes;
research detailing its genetics, biochemistry, and physiology has provided a wealth of
insight into mechanisms and behavior in higher-level organisms. S. cerevisiae is also
capable of large-scale fermentation for the production of fuels, chemicals, pharmaceuticals,
materials, nutritional compounds, and food ingredients.

The first S. cerevisiae GEM [97] was later expanded to establish a fully compartmentalized
metabolic GEM [98], which was later updated [99]. An independently constructed GEM
features a more detailed description of a lipid metabolism [100]. To reconcile the
information in different models, a consensus GEM based on community knowledge has
been collaboratively reconstructed, though this network reconstruction still lacks a biomass
equation [101].

Ethanol is the predominant product in anaerobic fermentations with S. cerevisiae. With the
availability of metabolic GEMs, constraint-based analyses can now be applied in new ways
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to systematically identify genetic engineering routes to increase ethanol production. For
example, simulations predicted an insertion of the gapn gene as a strategy that could
increase the ethanol yield, both with glucose as the sole carbon source as well as with a
mixture of glucose and xylose, and experiments successfully validated this prediction [102].
Employing dFBA, another study demonstrated that the degree of compartmentalization in
GEMs can impact the predicted mutant phenotypes [103].

Also in yeast, OptGene (an improvement of OptKnock) was used to identify potential
metabolic engineering targets for increased production of succinate, glycerol, vanillin, and
sesquiterpene [104, 105]. Growth phenotype predictions made using the S. cerevisiae GEM
with simulated single-gene knockouts were consistent with experimental observations [106].
The phenotypic effects of multiple gene knockouts in the context of biological robustness
and epistasis were also explored [107, 108]. As discussed in [109], such gene knockout
studies can assist antimicrobial target discovery.

4.4 Aspergillus
Aspergillus is a filamentous fungus important to the medical and biotechnological (industrial
and agricultural) communities. Aspergillus produces mycotoxins capable of contaminating
crops, and can cause disease in immuno-compromised animals and humans. More
constructively, Aspergillus are used in the production of bulk chemicals, enzymes, and
pharmaceuticals. These applications have made Aspergillus a popular fungal species in
research.

Aspergillus niger is an industrial workhorse used to produce high yield products ranging
from citrates and gluconates to important enzymes and proteins (e.g., human interferon).
The A. niger metabolic GEM [110] was used to identify a gene deletion pair predicted to
increase succinate production [111]. This mutant was tested experimentally, and as
predicted, a significant increase in succinate production was observed when grown on both
glucose and xylose. Unexpectedly, an increase in fumarate was seen when grown on xylose
(though not when grown on glucose), suggesting that A. niger uses either the oxidative TCA
cycle or the glyoxylate shunt for succinate production. A. niger converts up to 95% of the
available carbon to organic acid, and, if unbuffered, can rapidly drop the pH to below 2. It
has been found experimentally that depending on the ambient pH, A. niger produces a
different organic acid. To study this process, the GEM was expanded to include information
relating to the number of protons released for one mole of each acid. Using this GEM, the
optimal strategy for acidifying the surrounding environment can be found computationally.
The pH levels for citrate and oxalate were reproduced, verifying in silico the hypothesis that
A. niger produces these to acidify its surrounding environment [112]. Other Aspergillus
metabolic reconstructions include Aspergillus nidulans and Aspergillus oryzae (Table 1). A.
nidulans [113] is a model organism for studying cell development and gene regulation, and
A. oryzae [114] has historically been used to produce soy sauce, miso and sake. A. oryzae is
also used for the production of fungal enzymes such as alpha-amylase, glucoamylase, lipase
and protease.

4.5 Host-Symbiote Relationships
The GEM-based study of host-symbiote relationships can shed light on the shared behavior
and provide insight into industrial production abilities of the symbiote. Host-symbiote
relationships have two primary modes of computational investigation: GEMs can be
reconstructed for each participant and analyzed alone, or they can be constructed as an
integrated network (see methanogens section). Obligate symbiotes in particular benefit from
genome-scale in silico analysis as they cannot be cultured – and thus experimental results
cannot be readily obtained.
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Buchnera aphidicola is an endosymbiote of the pea aphid whose metabolic GEM has been
constructed to investigate symbiote-host interaction [115]. Interestingly, it was found that
the B. aphidicola genome is essentially a subset of the E. coli genome [116]. Not
surprisingly, a large percentage of genes from this network were predicted to be required for
growth (84% by FBA and 95% by MOMA), showing that this organism’s metabolic
network is much less robust and complex than most. The bacterium cannot grow without
secreting the essential amino acid, histidine, for use by its host. Further, the amount of
essential amino acid produced by the bacterium in silico can be controlled by host supply of
carbon and nitrogen substrates – possibly explaining the regulation of amino acid output to
the host.

Another symbiotic bacterium, Rhizobium etli, fixes atmospheric nitrogen into ammonium. A
metabolic GEM for R. etli is of interest for plant development and in agriculture. R. etli
obtains carbon sources from the plant and in turn provides ammonium, alanine and
aspartate. Instead of using a biomass objective in its metabolic GEM [117], an objective
function was formulated containing all compounds needed for symbiotic nitrogen fixation.
This was done because the nitrogen fixation phase of the organism's life is of most interest,
and in this phase does not grow. A double gene deletion was identified with a predicted
increase in nitrogen fixation.

5 GENOME-SCALE IN SILICO REGULATORY MODELS
While genome-scale metabolic modeling strategies can be powerful, they are not completely
predictive. In addition to incomplete or incorrect aspects of the reconstructions, one reason
for failed predictions results from the lack of metabolite-level or transcriptional regulation of
metabolism. Constraint-based analysis of metabolic GEMs typically assumes all metabolic
enzymes are transcribed and available under all conditions, which is rarely the case. Thus,
there is a compelling need to use procedures that incorporate metabolic regulation.
Specifically, metabolic regulation can be categorized into two groups: transcriptional
regulation that controls enzyme expression and metabolite-level regulation (e.g., allosteric
regulation). Figure 5 illustrates the interplay between both regulation types, such as when
transcriptional regulation is itself affected by metabolite concentrations (e.g., feedback/
feedforward inhibition/activation).

TRNs enhance metabolic simulations by providing information about transcriptionally
active enzymes under different conditions. Recent efforts have attempted to reconstruct
integrated networks, comprising both metabolic reactions and the regulatory rules that
govern metabolic phenotypes, in order to more accurately represent metabolic phenotypes.
One method linking the transcriptional state of an organism with metabolism is rFBA [3, 6].
rFBA uses Boolean rules to set gene activity for an enzyme as either ON or OFF based on
the state of transcription factors and the environment.

The first integrated metabolic-regulatory network at the genome scale was reconstructed for
E. coli [4]. This integrated model included 1,010 genes: 906 from the metabolic network
[91], and 104 regulatory genes, whose products (i.e., transcription factors) together with
other stimuli control the expression of 479 of the 906 metabolic enzymes and transports. The
model predicted the outcomes of gene expression and growth phenotyping experiments,
revealed knowledge gaps, and enabled the identification of additional components and
interactions in each network. Steady-state regulatory FBA (SR-FBA), which reformulated
rFBA using mixed integer linear programming [118], was later used to search the multiple
solutions of rFBA rather than obtain only a particular flux state as with the Boolean-logic
updating method for rFBA. More recently, a matrix formalism [119] was applied to the most
updated integrated metabolic-regulatory model: among the 1260 genes in the metabolic
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model [92], 503 gene targets were regulated by the expression state of 125 transcription
factors [120]. In addition to computing the transcription state of the genome, this formalism
was used to describe intrinsic properties of the transcriptional regulatory states which could
be analyzed by methods such as Monte Carlo sampling across a subset of all possible
environments.

The first large-scale integrated metabolic-regulatory model in a eukaryotic organism was
constructed for S. cerevisiae [6], containing 55 nutrient-regulated transcription factors that
control a subset of the 750 genes in the metabolic network [98]. The rFBA approach [3]
predicted gene expression changes and growth phenotypes of gene knockout strains.

6 CONCLUSIONS
We present an extensive review of the biotechnology applications of genome-scale modeling
efforts to date, demonstrating the vast array of organisms already available for model-guided
strain design and investigation of biochemical behavior. With the rise in high-throughput
measurement technologies and the growing number of sequenced genomes, the continued
construction of in silico GEMs will provide increasingly powerful tools to investigate
biological systems. While existing models and corresponding analysis techniques have been
developed primarily for metabolism, transcriptional regulation and transcription-translation
processes are emerging. Many of the studies highlighted herein reveal the utility of GEMs
for generating predictions for experimental testing and design, as well as providing valuable
insight into metabolic function. Commonly, in silico simulations are employed to study the
effects of genetic perturbations on the stoichiometric abilities of a cell. In this way, these
studies have used GEMs to predict engineering strategies to enhance properties of interest in
an organism and/or inhibit harmful mechanisms of pathogens or in disease.

Looking forward, technology and computational method development will
continuecontinues to improve the predictive capability and usefulness of in silico GEMs.
These efforts focus on “integration,” whether in regard to heterogeneous high-throughput
data types, or different scales and scopes of biological processes. As technological advances
enable increasingly comprehensive and accurate measurements of intracellular and
extracellular metabolite concentrations [121], these data will greatly inform GEM
reconstruction and analysis, including for dynamics. Integration of cellular regulation and
signaling with metabolic information is important for predicting diverse network states. The
successes with the genome-scale TRN in E. coli [4, 5, 120] and S. cerevisiae [6] demonstrate
the potential of metabolic networks controlled by gene expression. Similarly, the recent
invention of a genome-scale transcriptional-translational network model (demonstrated in E.
coli [7]) will allow for integrated analysis of transcriptomic and metabolic states. Contrary
to these successes though, analysis of allosteric regulation between metabolites and enzymes
is still lacking in GEMS because of sparse high-throughput data and applicable
computational methods to uncover these genome-scale relationships. Similar technical
problems exist for intracellular signaling networks as GEMs, although integration of
metabolic, transcriptional regulatory, and signaling networks has been investigated [5, 122].
As network integration becomes commonplace, consistent formatting and naming
conventions must become a priority to assist in seamless melding of information. Achieving
integration of the different biochemical processes will open another avenue to ultimately
realize whole-cell simulation.
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Abbreviations

GEM genome-scale model

FBA flux balance analysis

rFBA regulatory FBA

dFBA dynamic FBA

MOMA minimization of metabolic adjustment

TRN transcriptional regulatory network

LAB lactic acid bacteria
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Figure 1.
Completed genome sequences and genome-scale models (GEMs) available to date.
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Figure 2.
Applications of GEMs in industrial and medical biotechnology.
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Figure 3.
Iterative process of model generation, hypothesis formation, and model refinement to guide
strain design for enhanced microbial production.
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Figure 4.
Iterative modeling of pathogens to identify new antibiotic targets and therapeutic strategies.
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Figure 5.
Overview of key processes governing the interplay between metabolic and transcriptional
regulatory networks, demonstrating the utility of integrated modeling.
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Table 1

Genome-scale metabolic models to date. Under “Domain”, bacteria, eukaryote, and archaea are marked as “b”,
“e”, and “a”, respectively.

Organism Domain Model Details
# rxns/# mets/# genes Refs Demonstrated/Intended Applications

Lactobacillus plantarum b 643/531/721 [19] lactate [123]

Lactococcus lactis b 621/422/358 [20] lactate [20], diacetyl [20]

Streptococcus thermophilus b 522/---/429 [22] lactate, acetaldehyde

Pseudomonas putida b 950/911/746 [23] polyhydroxyalkanoates [23, 24],
bioremediation, biocatalytic chemicals,
improvement of fossil fuel quality,
promoting plant growth, pest control

Pseudomonas putida 877/886/815 [24]

Clostridium acetobutylicum b 502/479/432 [27] acetone, butanol, ethanol, hydrogen

Clostridium acetobutylicum 552/422/474 [26]

Methanosarcina barkeri a 509/558/692 [28] methane

Desulfovibrio vulgaris b ---/---/--- [29] methane

Methanococcus maripaludis a ---/---/--- [29] methane

Acinetobacter baylyi b 875/701/774 [31] pollutant degradation, lipases,
proteases, bioemulsifiers,
cyanophycine, various biopolymers

Geobacter metallireducens b 697/769/747 [32] reducing Fe(III), bioremediation of
uranium, plutonium, technetium &
vadium, fuel cell development

Geobacter sulfurreducens b 523/541/588 [33] reducing Fe(III), bioremediation of
uranium, plutonium, technetium &
vadium [34], fuel cell development
[34]

Arabidopsis thaliana e ---/---/--- [35] photosynthetic plant cell, various
secondary metabolites, flavonoid,
polyamine metabolism

Chlamydomonas reinhardtii e 259/113/174 [36] photosynthetic green algae, hydrogen
production

Halobacterium salinarum a 711/557/490 [37] producing bacteriorhodopsin

Synechocystis sp b 831/704/633 [38] photosynthetic cyanobateria, ethanol
production [38]

Staphylococcus aureus b 640/571/691 [41] antibiotic target [41–44]

Staphylococcus aureus 774/712/551 [43]

Staphylococcus aureus (multiple strains) 1444~97/1399~1437/522~47 [44]

Haemophilus influenzae b 461/451/412 [1] antibiotic target [1, 45]

Pseudomonas aeruginosa b 883/760/1056 [51] antibiotic target [51]
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Organism Domain Model Details
# rxns/# mets/# genes Refs Demonstrated/Intended Applications

Mycobacterium tuberculosis b 849/739/726 [46] antibiotic target [42, 46–48, 50]

Mycobacterium tuberculosis 939/828/661 [47]

Helicobacter pylori b 476/485/341 [53] antibiotic target [42, 53]

Salmonella typhimurium b 1087/744/1038 [54] antibiotic target [54]

Salmonella typhimurium 1964/1036/945

Neisseria meningitidis b 496/471/555 [56] vaccine development, antibiotic target

Yersinia pestis b 1020/825/818 [57] vaccine development, antibiotic target

Leishmania major e 1112/1101/560 [58] antibiotic target [58]

Mycoplasma genitalium b 262/274/189 [59] antibiotic target [59]

Porphyromonas gingivalis b 679/564/--- [60] control of negative inflammatory
responses [60]

Corynebacterium glutamicum b 446/411/446 [61] lactic and succinate [62], L-lysine [61],
glutamate, ethanol

Corynebacterium glutamicum 502/423/277 [62]

Bacillus subtilis b 1437/1138/1103 [64] antibiotics, industrial enzymes and
proteins, nucleosides and vitamins

Streptomyces coelicolor b 971/500/711 [65] secondary metabolites (antibiotics,
immunosuppressants, anti-cancer
agents) [66, 67]

Homo sapiens e 3311/2766/1496 [39] biomarker of inborn error [70],
understanding disease comorbidity
toward diagnosis and prevention [69],
identification of mutations causing
defects in Leigh’s cells [124],
predicting tissue- specific activity of
metabolic genes [68]

Homo sapiens 2823/2671/2322 [40]

Mus musculus e 1344/1042/--- [75] mouse hybridoma cells for enhanced
production of monoclonal antibodies
[75]

Mannheimia succiniciproducens b 686/519/425 [76] succinate [76]

Escherichia coli b 2077/1039/1260 [92] lycopene [79, 80], succinate [16, 81,
82], lactate [16, 83], malate [84], L-
valine [85], L-threonine [86],
additional amino acids [87], ethanol
[88], hydrogen [17, 89], vanillin [17],
1,3-propanediol (PDO) [16], gene KO
[94–96], antibacterial target [42]

Saccharomyces cerevisiae (fully-compartmentalized) e 1412/1228/904 [99] ethanol [102, 103], succinate [104],
glycerol [104], vanillin [104],
sesquiterpene [105], gene KO [106–
108]

Saccharomyces cerevisiae (lipids emphasized) 1446/1013/800 [100]

Saccharomyces cerevisiae (consensus model) 1857/1168/832 [101]

Aspergillus niger e 1197/1045/871 [112] succinate [111], citrates and oxalates
[112], additional organic acids,
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Organism Domain Model Details
# rxns/# mets/# genes Refs Demonstrated/Intended Applications

industrial enzymes, proteins
(chymosin, human interferon)

Aspergillus nidulans e 676/733/666 [113] model organism for studies of
development biology & gene
regulation, sharing many applicative
properties of A. niger

Aspergillus oryzae e 1053/1073/1314 [114] fermented sauces, industrial enzymes

Buchnera aphidicola b 263/240/196 [115] symbiotes producing histidine [115]

Rhizobium etli b 387/371/363 [117] symbiotic nitrogen fixation [117]
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