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Abstract

Genome-wide, high-throughput methods for transcription start site (TSS) detection have shown that most promoters have
an array of neighboring TSSs where some are used more than others, forming a distribution of initiation propensities. TSS
distributions (TSSDs) vary widely between promoters and earlier studies have shown that the TSSDs have biological
implications in both regulation and function. However, no systematic study has been made to explore how many types of
TSSDs and by extension core promoters exist and to understand which biological features distinguish them. In this study,
we developed a new non-parametric dissimilarity measure and clustering approach to explore the similarities and stabilities
of clusters of TSSDs. Previous studies have used arbitrary thresholds to arrive at two general classes: broad and sharp. We
demonstrated that in addition to the previous broad/sharp dichotomy an additional category of promoters exists. Unlike
typical TATA-driven sharp TSSDs where the TSS position can vary a few nucleotides, in this category virtually all TSSs
originate from the same genomic position. These promoters lack epigenetic signatures of typical mRNA promoters and a
substantial subset of them are mapping upstream of ribosomal protein pseudogenes. We present evidence that these are
likely mapping errors, which have confounded earlier analyses, due to the high similarity of ribosomal gene promoters in
combination with known G addition bias in the CAGE libraries. Thus, previous two-class separations of promoter based on
TSS distributions are motivated, but the ultra-sharp TSS distributions will confound downstream analyses if not removed.
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Introduction

The recruitment of the pre-initiation complex (PIC) to the

transcription start site (TSS) is a complex interplay of many

factors, including binding of transcription factors and epigenetic

signals such as nucleosome occupancy and modification of histone

tails [1]. Since the TSS can be regarded as the focal point in the

activation of transcription, much effort has been invested in

experimental and computational methods to identify TSSs and

core promoters. The completion of several genomes of higher

eukaryotes has prompted the development of accurate genome-

wide methods based on capturing capped transcripts and

sequencing the first 20–30 nt from the 59 end of these using

high-throughput DNA sequencers. Examples of these include Cap

Analysis of Gene Expression (CAGE) [2], massively parallel Paired

End Tag (PET)-tagging [3] and Oligocapping [4]. These 20–

30 nucleotide (nt) long tags are then mapped back to the genome

to indicate the location of TSSs, with nucleotide-level resolution

[5]. Importantly, the number of tags mapping to a certain genomic

region can be regarded as a measure of the amount of

transcription initiation from this region, and these techniques

can also be used to identify promoters that are only used in certain

tissues [6].

These methods have been used to provide the scientific

community with promoter maps over multiple genomes and

tissues [2,3,7], dissect core promoter architecture on nucleotide

level [2,8,9,10,11,12], explore alternative promoter selection and

transcription initiation diversity [6,13,14,15,16], unravel promot-

er-based regulatory networks [17,18], assess evolutionary con-

straints of regulation [19,20] and more.

On a more fundamental level, the methods have shown that

most core promoters have an array of initiation sites that are used

with different intensities, instead of a single initiation site governed

by a TATA-box [10]. Therefore, the initiation sites of a promoter

are better described as a TSS distribution (TSSD), where some

TSSs are used more than others. TSSDs are generally conserved

over species and tissues [10], although notable exceptions exist

where the distribution shifts between cells [13,19]. Moreover,

within a promoter, the initiation site propensity can be predicted

by the surrounding DNA sequence [21]. Carninci et al. [10]

showed that the shape of the TSSDs in human and mouse is

correlated to both sequence content and tissue expression. The

study tried to make sense of this phenomenon by dividing the core

promoters into four arbitrarily defined classes based on their

TSSDs, using a simple rule-based classification system (broad,

multi-modal, broad-with-peak, and sharp promoters), and then

analyzed the features of the four classes. Subsequent studies have

often reduced these classes to simple ‘‘broad’’ and ‘‘sharp’’. Similar

rule-based systems have been proposed for Drosophila melanogaster

promoters [16].

In human and mouse, promoters with many start sites (‘‘broad

promoters’’) are generally less conserved, more ubiquitously
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expressed, CpG-rich and TATA-depleted compared to the

promoters with one or a few densely aggregated TSSs (‘‘sharp

promoters’’) (reviewed in [1,22,23]) and these promoters also use

distinct strategies in nucleosome organization and chromatin

structure [24]. These findings complement studies splitting

promoters based on normalized CG content [25] or according

to the surrounding epigenetic signals at TSSs of the promoters

[26], and make it clear that the division of core promoters based

on their TSS distribution is meaningful since different modes of

gene regulations are used in the different classes, which will

confound downstream analysis if not separated.

A potential problem with all of these studies is that the TSSD

classes are arbitrarily defined: we do not know whether it is the most

relevant to assume there are two, four or even more subclasses of

promoters. As noted in [22], a relevant promoter classification is

important for the experimental and computational detection of

regulatory mechanism including cis-elements and trans-acting factors,

as much of the noise is due to indiscriminate mixing of classes. This is

the goal of the current study: we extend previous studies further by

using a unsupervised learning framework to explore different TSSDs

in mammalian genomes, in order to i) ascertain if the classification

systems of precious studies are justified, ii) find out if further subclasses

exist, and what sets these apart from a biological viewpoint.

Results

In this section we will describe a quantitative metric to measure

how dissimilar a TSSD is from another, a two-level clustering

exploration using this metric and finally an analysis of the three

promoter classes that emerged using both sequence and epigenetic

features.

Representation of core promoters by TSSDs
The activity of a core promoter can be described as a

distribution of TSS usage within a small genomic region. In this

study, we focus on the distribution of CAGE tags since this is the

largest data set to date from multiple tissues: in particular, we use

the FANTOM3 CAGE data from 22 tissues in mouse, provided

by Carninci et al. [10]. Besides being a large and diverse set this

also gives us the opportunity to directly compare our results with

the four-class grouping introduced in that study. As discussed

below, we also use other CAGE datasets from other tissues and

species in order to generalize our findings (Table S1).

In Carninci et al. [10], nearby TSSs on the same strand were

clustered into ‘‘tag clusters’’ based on tags overlapping with at least

one nucleotide, and the distribution of TSSs within these genomic

clusters were assessed for clusters having at least 100 tags. In this

study, we used the same clusters, with a few modifications to

reduce ‘‘tiling’’ artifacts in the borders of the distributions (see

Methods). In total, our primary data set consists of 7,752 TSSDs

containing 5,463,328 uniquely mapped CAGE tags.

We will avoid the term ‘‘tag cluster’’ in the rest of the text and

instead refer to these collections of tags as TSS distributions

(TSSDs), since we will later cluster TSSDs and form larger

aggregates (in other words clusters of clusters). For clarity, in the

rest of the text we will refer to clustering as a process or an

assignment of a set of TSSDs into subsets according to its common

use in cluster analysis. We also refer to clusters as the subsets

generated by a clustering and refer to partition as a collection of all

subsets in one clustering.

Measuring the dissimilarity between two TSSDs
In order to define clusters of TSSDs one first needs a metric that

defines how similar or dissimilar TSSDs are to each other. This

should be robust and intuitive in order to give meaningful results.

In our case, it is more likely that the shape of the TSSD rather

than the magnitude of expression (which is influenced by many

external factors) is indicative of core promoter organization and

we therefore normalized the CAGE tag count of each TSSD to

sum to one.

We experimented with various measures (See Methods) and in

the end chose a non-parametric distance measure based on

Minimum Difference of Pair Assignments (MDPA) [27], which is

similar to the Earth Mover’s Distance (EMD) [28] and is a true

metric. As TSSDs can have different lengths, we modified the

method slightly (See Methods) and called our modified distance

measure ‘‘Generalized Minimum distance of distributions’’ (GM-

distance; see Methods). An intuitive description of GM-distance is

that it measures the dissimilarity between two TSSDs A and B by

counting the number of one-nucleotide ‘‘shifts’’ of tags that have to

be performed within distribution A to make it into distribution B.

The more similar two TSSDs are, the less moving steps are needed

and the less distance is between them. Given this method, we

calculated the dissimilarities between all pairs of TSSDs, forming a

775267752 dissimilarity matrix.

Cluster analysis indicates a gradient of TSS distributions
Using the dissimilarity matrix defined above, we first explored

the TSSD relationships by using hierarchical clustering (see

Methods), motivated by that the method in itself does not define a

specific number of clusters. A standard way to obtain clusters from

a dendrogram produced by hierarchical clustering is to ‘‘cut’’ the

dendrogram at a defined depth where a cut line close to the root

will generate relatively few large clusters and conversely a cut close

to the leaves of the dendrogram will give many smaller clusters.

We explored the consistency of the clustering by first imposing cuts

that gave k~1,2,:::,kmax clusters, where k~1 represents the

original data set without partitioning. The choice of k is arbitrary

depending on how deep we want to investigate into the

dendrogram structure. For explorative purposes, we set kmax to

500 in order to include a large number of possible partitions while

still maintaining reasonable sizes of the clusters. We then

measured the intra-cluster (mean) dissimilarity of the TSSDs

within all produced clusters. The intra-cluster dissimilarity is

computed by averaging all the pairwise dissimilarities of the

TSSDs in that cluster. Lower intra-cluster dissimilarity indicates

increased homogeneity of the cluster. We find that sub-clusters

with high homogeneity only emerge from previously defined

clusters at a late stage when we increase the number of clusters to

large values; in other words the boundaries between most classes

are not very sharp and there are no immediate outliers that

emerge early. As an illustration of this, we constructed a

dendrogram based on 100 randomly sampled TSSDs from the

primary data set (Figure 1A). Ten partitions were produced by

cutting this dendrogram into k~1,2,:::,10 clusters. In this

example, homogenous clusters only occur when k is larger than

8, and these clusters can be divided to even more homogenous

sub-clusters (not shown). This indicates that overall, the data set is

highly heterogeneous, and one needs to place the cut line far from

the root to identify partitions with more homogeneous clusters.

We can then select different values of k and deduce what

number of groups that fits the data best. One common method to

assess the performance of a clustering model is to measure either

the explained variance or the residual variance of the model. Since

the total variance is constant for a given dataset, models with small

total residual variance (close to 0) or large total explained variance

(close to 100%) is optimal in explaining most of the variation (and

thus the heterogeneity) in the data. Figure S1A shows the
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percentage of variance in the data that is explained as a function of

the number of clusters (k).

With the increasing number of clusters, the explained variance

tends to increase, whereas the additional variance explained in

each step usually decreases. We find around 50% of the total

variance is explained by the two-cluster solution, and approxi-

mately 80% is explained by the ten-cluster solution. To determine

the optimum number of clusters, an elbow criterion is typically

employed - the optimum number of clusters is taken where a

sudden change occurs in the graphical curve. Figure S1A indicates
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Figure 1. Clustering of transcription start site distributions (TSSDs). (A) Example of the heterogeneity of TSSDs in clustering based on
dissimilarity alone. We clustered 100 randomly sampled TSSDs using hierarchical clustering, shown as a dendrogram on the left. The heatmap
represent the different partitions that can be produced by placing a cut-line vertically in the dendrogram at various places: the second column shows
the two-cluster partition (k~2), the next the three cluster partition (k~3), etc. The color intensity indicates the mean dissimilarity between all the
TSSDs within one cluster (darker means higher homogeneity). Note that most clusters are inhomogeneous when k is low: clusters with high
homogeneity only emerge when moving the cutline closer to the leaves. (B) Correlation between the mean cluster peakedness and the cluster
stability. The scatter plot compares the cluster stability scores resulting from the bootstrap resampling to the intra-cluster peakedness scores. R
denotes the Pearson’s correlation coefficient of the scores (r~0:934). (C) Distribution of intra-cluster peakedness scores of 500 TSSD clusters
generated by hierarchical clustering. The Y-axis shows the intra-cluster peakedness scores. The red lines indicate offsets for defining three larger
clusters using k-means. Each box represents one TSSD cluster.
doi:10.1371/journal.pone.0023409.g001
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that the elbow [29] can lie anywhere between 2 and 10 clusters.

Thus, it is hard to define the number of clusters based on the

dissimilarity alone. This characteristic is not specific to the

clustering method: we observe the same heterogeneity if using k-

medoids clustering instead of hierarchical clustering (see Text S1).

To address this, we next assessed how statistically robust the

proposed groups are: will the same groups be discovered if we only

have a randomly resampled dataset? Using a bootstrap method

[30], we resampled the 7752 TSSDs with replacement from the

original data set and performed the same hierarchical and k-

medoids clustering on the new data as described above, producing

k~2,:::,kmax partitions for each resampling. For each k, we

calculated the weighted mean of the cluster mean Jaccard

coefficients, which will correspond to the overall stability of the

clustering (see Methods).

As shown in Table S2, the cluster stability is high for k~2 and it

gradually decreases as k is increased. This is unsurprising because

for a larger k there are a greater number of possible solutions that

are close to the global optimum, and therefore the stability

remains moderate. The stability does not decrease monotonically

as k increases, with some maxima slightly peaked locally in

stability values such as for k~4 by hierarchical clustering and

k~7 by k-medoids clustering (see Methods). However, the stability

values show some variation between the different clustering

methods, so it is unclear whether these maxima are robust.

In summary, the dataset has weak clustering tendencies using

this dissimilarity measure alone: this is corroborated both by the

fact that no clear groups are standing out near the root of the

clustering tree and there is no particular set of clusters that is more

stable than the others. Since our dissimilarity measure is

measuring how similar TSSDs are in terms of number of tags

that have to be moved, this indicates that the dataset consists of a

shallow gradient of distributions. At the same time, the

dissimilarity method might not detect some of the most relevant

features in the data for the problem at hand: for instance, two

TSSDs that each have two major peaks but where these peaks are

spaced differently would be considered dissimilar with our

measure, since an entire peak would have to be ‘‘moved’’. We

will revisit the possible reasons for the large variation in TSSDs

below.

To confirm that the lack of clustering is not a consequence of

the origin of the data, the stability analysis was also carried out on

two mouse CAGE libraries from different tissues and also two

human CAGE data sets (Table S3A–B). The cluster stability is

once again high for k~2 and slowly decreases as k is increased,

suggesting that our cluster stability arguments also apply to data

sets from other tissues and species.

Two-level clustering categorizes TSSDs into three primary
types: scattered, dense and ultra-dense TSSDs

In the process of investigating the stability above, we made two

observations: firstly, some highly stable child clusters will not

emerge from their parent cluster until the total number of clusters

(k) is high (or, equivalently, when the cut line is close to the leaves

of the dendrogram). Secondly, we noticed that the most stable

clusters are characterized by TSSDs where most TSSs originate

from a few nucleotides, which makes intuitive sense. We then

examined whether this correlation was true for the entire dataset

by first calculating a ‘‘peakedness score’’ (see Methods) for each

TSSD.

At first, we tried to use the peakedness scores as a replacement

for our distance measure described above, however, this did not

produce meaningful results (data not shown). This is likely due to

that the peakedness score in itself only captures the weight of the

highest peak and the broadness of the distribution, but ignores the

actual shape of the distribution (which the original distance

measure captures). For instance, two TSSDs may have the same

peakedness scores but overall different distributions. Therefore we

considered combining the peakedness measure with previous

clustering based on the shapes of the distribution.

We introduced the term of ‘‘intra-cluster’’ (mean) peakedness

and started with the comparison of the intra-cluster peakedness of

TSSDs within a cluster with its stability defined by the mean

cluster Jaccard coefficients (see Methods), and concluded that

there is a strong and significant correlation between these statistics

given k~100 (Figure 1B) (Pearson correlation coefficient

r = 0.934, P,2.2e-16, cor.test in R). Conclusively, the intra-cluster

peakedness is a reasonable approximation of the intra-cluster

stability. More important, this stability approximation captures

both the peakedness and the structure of the hierarchical

clustering, by averaging the individual peakedness scores in a

cluster-wise assignment. Using this approximation is also sensible

in terms of computational cost since the stability calculations by

bootstrapping are computationally expensive.

Since clustering based on dissimilarity alone could not identify

highly stable clusters without increasing k to large values, which

produces many clusters and some of them have very few TSSDs,

we reasoned that including the peakedness of the proposed clusters

as an additional feature would identify the most stable clusters at a

early stage during cluster analysis and generate fewer clusters with

more TSSDs.

To achieve this, we first conducted a hierarchical clustering (1st-

level clustering) based on the dissimilarity measure by GM-

distance, and obtained one 500-cluster partition given a cutoff of

k1~500 as described above. We calculated 500 intra-cluster

(mean) peakedness scores of all clusters in this partition. Plotting

the distribution of these intra-cluster peakedness scores show a

clear separation of TSSD clusters where most have low peakedness

(Figure 1C). To separate these from each other in a systematic

way, we used k-means to divide the TSSD clusters based on their

intra-cluster peakedness scores (a second-level clustering), i.e.

aggregating the 1st-level clusters based on their cluster peakedness

measure and producing 2nd-level clusters. We tested what number

of 2nd-level clusters (k2) that explained the variance in peakedness

best. We found that when setting k2~3, 99% of the variance

could be explained, while larger values of k2 gave no substantial

improvement (Figure S2). Therefore the clusters from the 1st-level

clustering are aggregated further into three 2nd-level clusters:

composed of 1, 4, and 495 1st-level clusters, respectively

(Figure 1C).

The analysis directly results in two stable clusters, i) ‘‘dense

TSSDs’’ where many, but not all TSSs are co-localized (334

TSSDs, 4%) and ii) ‘‘ultra-dense TSSDs’’ where virtually almost

all TSSs originate from the same nucleotide (323 TSSDs, 4%), and

finally one cluster which is large but has low peakedness and low

stability, identifying TSSDs with scattered TSS distributions that,

as discussed above, are too diverse to be easily clustered to smaller

clusters. The last cluster is dominating the data set, covering 91%

of the total number of TSSDs (Table S4). Properties of the classes

and examples of TSSd of each alss are shown in Figure 2. We

made a further study on possible ways to sub-cluster the scattered

set below.

We compared these proposed clusters to the original four classes

suggested by Carninci et al. [10] (Table 1). As expected, more than

90% of dense and ultra-dense TSSDs were labeled ‘‘single peak

(SP)’’ under Carninci’s four-class scheme; while the scattered

TSSDs were labeled of BR, MU, PB and SP with slight preference

to BR promoters. However, many of the original SP–class

Clustering of TSS Landscapes
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promoters are labeled as ‘‘scattered’’, probably reflecting that

some of these have substantial tiling effects (where a substantial

number of tags are overlapping each other by a few nucleotides,

thus creating a wide distribution) that were reduced but not

completely removed by our pre-filters, as shown in Figure S3. In

Carninci et al [10] this problem was sidestepped by the rules of

their hierarchical assignment strategy – single peaks assignment

was based on percentiles within a sliding 4-nt window, which is not

highly affected by tiling effects.

Biological features of different TSSD clusters
Next, we wanted to see what biological features set these

different TSSDs and associated promoter regions apart. In

particular, since we have a considerable overlap with the four-

class classification by Carninci et al. [10] as discussed above, we

wanted to see if the correlations reported in that study holds in the

new classification.

Sequence patterns, tissue expression and evolutionary

sequence conservation. We started by investigating typical

promoter-associated sequence patterns within or close to the

TSSDs, including the INR pattern, the TATA-box and CpG

islands using sequence logos, position weight matrices and UCSC

genome browser annotation (see Methods) (Figure 3). Since we

know that TATA-boxes are positively correlated by ‘‘tissue

specific’’ promoters while CpG islands are associated with

ubiquitously expressed genes, we also investigated the tissue

specificity in the TSSDS by computing the relative entropy of the

tags over the tissues [31] (Figure 3D) (see Methods). Consistent

with the ‘‘broad’’ class of Carninci et al. [32], the scattered

promoters have clear preference of a pyrimidine-purine (PyPu)

initiator sequence at 2/+1 sites (Figure 3A). These promoters are

highly enriched for CpG islands, but despite this, a reasonable

number of them have TATA-boxes, although the distribution of

the TATA boxes are more spread than the ‘‘dense’’ class described

below. Compared with the other classes, these promoters are the

least tissue-specific as measured by relative entropy (Figure 3D; see

Methods) and the most conserved in the promoter region,

particularly 2/+300 of the TSSs (Figure 3E; see Methods), as

reported in [20]. Likewise, the ‘‘dense’’ class has many similarities

with the ‘‘sharp’’ group suggested with Carninci et al. [32]: TATA-

boxes are over-represented at the canonical location (233 to 228

upstream of the TSS) in the dense group and CpG islands are less

commonly overlapping these promoters. These promoters are

more often tissue specific and tends to have higher evolutionary

conservation upstream of the TSS compared to the other classes,

consistent with previous studies [20]. Thus, the dense and

scattered TSSD groups are roughly behaving as the SP and BR

class of Carninci et al. [32]. The ‘‘ultra-dense’’ promoters do not

have the pyrimidine at 21 but has a much stronger guanine at the

+1 site. The guanine is very likely an artifact form the CAGE

protocol, as described in [10]. These promoters are depleted of

canonically placed TATA-boxes, and CpG islands are under-

represented. This class is somewhere intermediate between the

scattered and dense group in terms of tissue specificity (Figure 3D).

Interestingly, these promoters are highly conserved downstream of

the TSS but not upstream (Figure 3E and discussed further below).

Epigenetic patterns. We then assessed if the pattern of

epigenetical marks around the TSSs of the three types of TSSDs

are different by taking advantage of publically available ChIP-seq

data sets, including DNA methylation from [33], histone

modification and RNA polymerase II occupation from

[34,35,36] and finally the overall nucleosomal positioning data

from [37]. For all these sets, we examined the mean number of

ChIP-ed tags for all nucleotides in the 2/+5000 nt flanking region

around the dominant peaks of the TSSDs and plotted the pattern

at representative regions (Figure 4). An important caveat with this

analysis is that while the CAGE data originates from many tissues,

the ChIP data are from specific cells including human CD4+ T

cells, mouse ES and NP cells for histone marks; human CD4+ T

and mouse ES cells for RNA Pol II binding and human CD4+ for

nucleosome occupancy. In cases where we use human ChIP data,

we transferred CAGE tags from mouse to human using whole

genome alignments (see Methods). While the cell sources differ, we

see similar results for respective mark regardless of what cells that

were used for the epigenetics experiments (Figure S4).

We find that RNA Pol II ChIP-seq data validates the difference

in the widths of TSSDs, as the RNA Pol II distribution around the

TSS of the ‘‘dense’’ promoters are more clearly defined and more

condensed around the dominant peak (at the ‘‘TSS’’ position of

the x-axis), than that of the ‘‘scattered’’ promoters (Figure 4A).

RNA Pol II enrichment at the TSS and slightly downstream are

clearly visible in both groups, although the dense group usually

have slightly lower mean intensities, perhaps reflecting that many

of these genes are tissue-restricted as noted above and therefore

will be silent in the ChIP-ed cells. Interestingly, the RNA Pol II

binding signal is almost suppressed in the ultra-dense promoters

(discussed further below).

Likewise, we find that the DNA methylation around the

dominant peak is strongly suppressed in scattered promoters, and

slightly suppressed in dense promoters, while ultra-dense promot-

ers show no distinct methylation patterns (Figure 4C). This agrees

with the elevated signal of the CpG islands (Figure 3C) in the

Table 1. Comparison of the three-class TSSD with Carninci’s
four-class scheme.

Carninci’s class scattered (%) dense (%) ultra-dense (%) Total

BR 2647 (37.3%) 0 (0.0%) 0 (0.0%) 2647

MU 1473 (20.8%) 2 (0.6%) 0 (0.0%) 1475

PB 1758 (24.8%) 2 (0.6%) 0 (0.0%) 1760

SP 1215 (17.1%) 329 (98.5%) 293 (90.7%) 1837

- 2 (0.0%) 1 (0.3%) 30 (9.3%) 33

Total 7095 (100.0%) 334 (100.0%) 323 (100.0%) 7752

Comparison of TSSD clusters identified by two-level clustering with Carninci’s
four-class scheme (Carninci et al. [32]). TSSDs with missing labels in Carninci’s
scheme are denoted by ‘‘-’’.
doi:10.1371/journal.pone.0023409.t001

Figure 2. Properties of ‘‘scattered’’, ‘‘dense’’ and ‘‘ultra-dense’’ TSSD clusters. (A) Examples of individual TSSDs of respective class:
scattered TSSDs(left column), dense TSSDs (middle column) and ultra-dense TSSDS (right column). The X-axis shows the relative genomic position
with the 59 end of the distribution is placed at coordinate 1. The Y-axis shows the fraction of the tags. The text above each distribution gives gene
names or transcriptional unit identifiers of the TSSD in FANTOM3 database and the TSSD identifier is in brackets. The inset gives the width of the
TSSD. (B) Distribution of the TSSD widths. The width distribution characterizes how dense the TSSDs are. Scattered, dense and ultra-dense TSSDs are
in the top, middle, bottom panels, respectively. The X-axis shows the width of the TSSDs in unit of nt. Scattered TSSDs are mainly in the range from
20 nt to 200 nt; dense TSSDs are generally less than 20 nt long; ultra-dense TSSDs are in most cases 1 nt wide. (C) Box-plots showing the distribution
of peakedness scores of individual TSSDs. Scattered, dense and ultra-dense TSSDs are in the left, middle, right boxes, respectively.
doi:10.1371/journal.pone.0023409.g002
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scattered promoters and the suppressed histone variant H2A.Z

mark in dense/ultra-dense promoters (Figure 4D), since CpGs in

promoters are commonly unmethylated (and therefore not

repressed) [38] and H2A.Z signal is mutually exclusive to DNA

methylation [39].

Similarly, we find the nucleosome positioning patterns

(Figure 4B plots the inferred center position of nucleosomes from

[37]) are strongly enriched in the scattered and dense promoters

while depleted in the ultra-dense promoters. Interestingly, while

both scattered and dense promoters show strong nucleosomal

positioning for the nucleosomes positioned immediately down-

stream of the TSS (the so-called +1 nucleosome), the dense group

has an additional peak immediately upstream of the TSS. This

indicates that the TSS regions in many of these promoters are

Figure 4. Epigenetic features of ‘‘scattered’’, ‘‘dense’’ and ‘‘ultra-dense’’ TSSD subclasses. The genomic positions relative to the
dominant TSS of each TSSD are labeled on the X-axis. The signal strength from respective epigenetic mark/feature is shown on the Y-axis, counted as
ChIP tags/TSSD (or equivalent for non-ChIP approaches). The profiles are (A) RNA Polymerase II (B) Nucleosome positioning (center of nucleosome);
(C) DNA methylation; (D) Histone variant H2A.Z; (E)–(L) Histone modifications. The RNA Pol II binding profile is from mouse ES cell while the
epigenetic marks are from human CD4+T cell and mapped to mouse genome. See main text for discussion and Figure S5 for additional data.
doi:10.1371/journal.pone.0023409.g004

Figure 3. Sequence and expression features of ‘‘scattered’’, ‘‘dense’’ and ‘‘ultra-dense’’ TSSD classes. For each class, the TSSDs are
aligned at their dominant peaks (labeled ‘‘TSS’’ at X-axis). (A) Sequence properties of promoters divided by TSSD class. Sequence logos [68] of the
DNA sequence of the TSSDs aligned at the dominant TSS. The x-axis shows the relative genomic positions, +1 indicates TSS. The y-axis shows the
information content measured in bits. (B) TATA-box density of promoters divided by TSSD class. The count of predicted TATA sites flanking the
dominant TSS (+/2100 nt) of the TSSDs. The X-axis shows the positions of the first T of the TATA site relative to the dominant TSS in the +2100
region; the Y-axis shows the number of predicted sites per TSSD. Note that the absolute frequencies of predicted sites are strongly dependent on the
cutoffs, but the relative difference between different TSSDs are not cutoff-dependent. TATA sites are strongly over-represented at around 232 nt in
the dense group (middle panel) but are less defined in the scattered group (top panel). The ultra-dense group (bottom panel) shows a small TATA
signal located at either 232 nt or around 220 nt. (C) CpG island coverage of promoters divided by TSSD class. The coverage of CpG islands is
illustrated in the flanking region (+/21000 nt) around the TSSs. The X-axis shows the genomic position relative to the TSSs; the Y-axis shows the
number of nucleotides covered by a CpG islands/TSSD. (D) Tissue specificity of TSSD classes. The box-plots show the distribution of the overall tissue
specificity, given the class of the TSSD, calculated as the KullbacK-Leibler divergence. The smaller the distance is, the lower is the tissue specificity. (E)
Sequence conservation. Sequence conservation is represented as mean PhastCons scores over all sites in the 2/+1000 nt flanking region around the
TSSs. PhastCons scores vary from 0 to 1, with 1 indicating high conservation. The X-axis shows the genomic position relative to the TSSs; the Y-axis
shows the mean PhastCons scores. (F) Occurrence of repetitive elements in promoters divided by TSSD class. The X-axis shows the genomic position
relative to the dominant peak of the TSSD; the Y-axis shows the number of nucleotides covered by respective repetitive elements, normalized by the
number of TSSD. The transposable elements: LINE (top), LTR (middle) and SINE (bottom) are overrepresented in the ultra-dense core promoters (in
blue) around the dominant TSS.
doi:10.1371/journal.pone.0023409.g003
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occupied by a nucleosome, and that the eviction of this

nucleosome is likely an important part in their regulation. The

scattered promoters have much less nucleosomal signal upstream

of the TSS, and might therefore be dominated by open chromatin

or at least have little nucleosomal positioning signals. These

findings fit well with the tissue specificity findings above since the

dense promoters need to be tightly controlled while the scattered

promoters are often broadly expressed. This finding mirrors the

suggestions made by Rach et al. [24], but the tendency here is

stronger as the nucleosomal upstream peak was not shown by

Rach et al since they focused on H2A.Z instead of generic

nucleosomes.

We also find that the distributions of respective epigenetic marks

around the dominant peaks of the scattered promoters are

consistent with mRNA promoters as previously reported

[34,35,36]. The scattered promoters (red in Figure 4) have

elevated marks associated with transcription activation including

H3K4me1/me2/me3 are highly enriched surrounding the TSS

with a dip at the TSS (Figure 4E–G); this is also true for

acetylation marks (Figure S5). The H3K79me3 mark, associated

with active promoters in a narrow region surrounding TSS, has a

very strong signal in the scattered promoters starting right at the

TSS and continuing over the gene body (Figure 4H). The

H3K36me3 mark, associated with elongation, is as expected

strongly enriched at the transcribed region instead of at the TSS

(Figure 4K). As these transcription activation-associated marks are

strong in the scattered promoter class, it is logical that marks

associated with transcriptional repression are depleted, e.g.

H3K27me3 and H3K9me3 marks (Figure 4 I–J). The only

exception to this is the H4K20me3 mark, a repressive mark in

gene silencing mechanisms in mammals and associated with

pericentric heterochromatin [40], has strong signal in the scattered

promoters (Figure 4L). This may either be due to that some of the

scattered promoters are silenced in the CD4 cells. Additional

epigenetic mark distributions are shown in Figure S5.

The dense promoters have roughly the same epigenetic patterns

as the scattered class, but a general trend is that the overall signal

strength of respective marks is lower. This observation may be due

to a lesser dependency of nucleosomal placement (as suggested in

[24]), but may also be due to that the dense promoters to a much

larger extent than the scattered promoters are expressed in

restricted tissues, and therefore have few signals in the CD4 cells .

As with TATA/CpG patterns, both typical activating and

silencing promoter marks have little or no signal within the

ultra-dense promoters (discussed further below).

Sub-clustering of scattered TSSDs by number of peaks
As were surprised by the large diversity of distributions within

the scattered class (which comprise about 90% of the dataset), we

wondered if further subgroups exist within the data sets and what

biological features that are responsible for these. We first

investigated if these TSSds could be easily separated in sub-

clusters based on simple distribution properties including peaked-

ness, kurtosis and skew [41], without success(data not shown).

Instead, we subdivided these TSSDs by how many clear peaks

they have using a simple peak-calling algorithm (See Methods).

We found that almost all (.99%) of these TSSDs could be

classified as having 1 (,34%), 2 (,43%) ,3 (,20%) or 4 (3%)

peaks, and we focused on these in the below study. We then sought

to investigate what biological features that were responsible for the

number of peaks and their placement. The two most likely

candidates are: i) the actual DNA sequence composition, as this in

many cases can identify the most used TSS within a distribution

[42]; ii) chromatin features, in particular nucleosome placement.

If the sequence content in the core promoter is the main

underlying signal, we would expect a high over-representation of

Pyrimidine-Purine (PyPu) dinucleotides at the +/21 position,

defined around respective peak(s), and possible also TATA-boxes,

as these are the two motifs that have the greatest impact on TSS

usage [42]. This is the case: there is a high PyPu signal pinpointing

the peaks; regardless of the number of peaks: 80–90% of the peaks

have this dinucleotide, compared to ,22% for other positions

(Fig. 5A). TATA-boxes are generally under-represented in the

multi-peak TSSds but occurs more often in those scattered TSSds

with only one peak(Figure S7). One interpretation of this is that

the existence of a TATA box will make additional peak locations

unfavorable.

At the same time the nucleosome occupation plots around the

peaks show that the typical higher nucleosomal signal after a TSS

(typically at around +110) is shifted so that it generally occurs after

the last peak if multiple peaks exist (Figure 5B). The nucleosomal

signal upstream of the peaks is generally very low, also for the most

59 peak. This indicates that for scattered TSSDs with multiple

peaks, most of the region is accessible for PIC formation, and the

epigenetical signals are not indicative of the TSSD peak

placements. Thus, the diversity observed in the scattered TSSDs

is most likely explained by differences (and diversity) on sequence

level between the different TSSDs in this group.

Ultra-dense TSSDs are associated with ribosomal protein
pseudogenes

The fact that the ultra-dense TSSDs lack both sequence and

epigenetic features typically associated with promoters raised the

question whether the ultra-dense TSSDs are caused by method-

ological noise, such as PCR bias and/or incorrect capture of

cDNAs that are not full-length. One argument against random

noise is that these TSSDs in most cases are composed of tags

originating from more than one CAGE library (316 of the 323

ultra-dense TSSDs are composed of CAGE tags from 2 or more

libraries). Another possible explanation is that these tags are

mapping artifacts as we found that LINE, LTRS and SINE repeat

elements are over-represented around the dominant TSS of

TSSDs (Figure 3F) (see Methods).

If the DNA regions around ultra-dense TSSs are duplicated and

identical, it would not be possible to map tags to them with the

mapping protocol used, because only CAGE tags that map to a

unique location are considered (we use the same mapping as in

Carninci et al. [32] for consistency). Thus, one possibility is that a

large part of the promoters are duplicated except for the ,20 nt

long window where the tag in the ultra-dense TSSD map

uniquely, which would explain the sharp peak. We found that

20-mers in the region upstream of the TSS of ultra-dense regions

are as mappable as 20-mers upstream of the two other classes,

while mappability is decreased to ,60% for tags starting one

nucleotide downstream of the TSS (Figure S6). The reason for this

is discussed further below.

We then investigated whether other experimental data supports

the ultra-dense promoters, by overlapping them with publically

available annotation data from GenBank [43], including 59 EST

and mRNA data (see Methods). While substantially fewer of the

ultra-dense TSSDs are supported by RefSeq 59 ends than dense

and scattered TSSDs (8.67%, 54.79% and 88.26% of respective

promoter set have at least one RefSeq 59 end at the same strand

within +/2300 nt of the dominant peak of the TSSD (Table S5)),

136 (46%) of the ultra-dense TSSDs that are not supported by

mouse RefSeq annotations are supported by 59 ends from mouse

EST or mouse mRNA data, and 75 of them are also supported by

59 ends from RefSeq genes of other species mapped to the mouse
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genome (the ‘‘Other RefSeq’’ track of the UCSC genome browser;

see Methods and Table S5).

We noticed that 25 of the ultra-dense TSSDs that had no

RefSeq support in mouse are overlapping ribosomal protein (RP)

gene annotation from other species. In most of these cases, these

genomic regions are processed pseudogenes, as the downstream

gene has no introns and the indicated transcribed RP gene is in

mouse mapping to another location – examples are shown in

(Figure 6A).

Previous studies have identified 79 transcribed RP genes [44]

and over 2000 RP pseudogenes [45] in the human genome. We

noticed that the transcribed ribosomal genes in most cases had

either a scattered or dense TSSD, while the pseudogene only had

an ultra-dense TSSD. An important part of the explanation of this

observation is that RP gene promoters have a substantially

different promoter architecture compared to other genes in terms

of sequence content with a CT-rich (oligopyrimidine tract) region

around the TSS with transcription always started at a C residue

(reviewed in [44]). Since the CT-rich region is a general feature of

RP gene promoters, it will be harder to uniquely map CAGE tags

to this region, which explains both the drop in mappability and

higher evolutionary conservation in the immediate downstream

region discussed above and shown in Figure S6 and Figure 3E.

There are two possible explanations for the ultra-dense TSSDs

at the RP pseudogenes: either the pseudogene is transcribed as

discussed in [46] or the ultra-dense TSS is erroneously mapped

and in reality belongs to the genuine, transcribed RP gene.

While the first explanation cannot be ruled out completely using

computational methods, it is unlikely since virtually all other

promoters display a variance in their selection of TSSs – other

ribosomal genes promoters generally have scatted or dense

TSSDs. Moreover, the TSSDs lack epigenetic patterns reminis-

cent of expressed promoters (Figure 4).

We investigated the alternative explanation by aligning the core

promoter region of pairs of a pseudogene and its corresponding

transcribed RP gene. We found that in all 25 cases, there is one

Figure 5. Sequence and expression features of subclasses within the scattered TSSDs. The plots show the scattered TSSDs (shown in
Figure 2–4) divided by how many peaks they have. For each subclass, the TSSDs are aligned at their identified peak(s), denoted by green arrow(s),
with the distance between two adjacent peaks rescaled to the same width in order to be comparable. The X-axis shows the genomic position relative
to the peaks (TSS). The Y-axis shows the normalized signal per TSSD as in Figure 3. (A) Density of Pyrimidine-Purine (PyPu) dinucleotides, extended
250 nt at 59 of the first peak and +50 nt 39 of the last peak. Note that the PyPu dinucleotide enrichment is always positioned at 21/+1 nt of the
peak(s), regardless of the number of peaks within the TSSD. (B) Density plot of nucleosome positioning, extended 2100 nt at upstream of the first
peak (the most 59) and 300 nt downstream of the most 39 peak. The nucleosome binding profile is from human CD4+T is plotted as in (Figure 4B). As
in panel A), the distances between the TSSD peaks are rescaled to be the same in all TSSDs. In addition, d denotes the distance between the position
of the highest nucleosome signal and the first peak. s denotes the scores of the binding intensity. Interestingly, the nucleosomal signal which is as
expected at ,+110 in the single peak TSSD is gradually shifted 20–30 nt downstream. In general, with more peaks the total nucleosomal positioning
signals appears less distinct.
doi:10.1371/journal.pone.0023409.g005
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nucleotide edit distance between the corresponding region

(+1,+20 nt around the dominant peak of the ultra-dense TSSD

promoters) in the pseudogene and the transcribed RP gene

promoter. Of the cases , 24 have this 1-nt difference located the

dominant peak of the pseudo promoter, in most cases located

immediately upstream of the CT tract. In general, the pseudogene

had a G instead of the original nucleotide in the transcribed gene

(usually a C) (Figure 6A–B and Figure S8A–Y). The CAGE

protocol has a known bias, where many CAGE tags have a

nonspecific G at the most 59 end, attributed to the template-free

59-extension during the first-strand cDNA synthesis [47]. This

would explain at least some of the ultra-dense TSSs found:

pseudogenes that by chance has incorporated a G in or around the

duplicated CT tract will have higher mapping scores than the

originating region for tags having an added G, and this will result

in a ultra-dense TSSD: tags mapping upstream of the transcribed

RP gene will map to the correct, transcribed location since the

upstream regions are dissimilar between gene and pseudogene

while downstream tags might not be mapped at all, since the

regions are almost identical. Thus, the ultra-dense TSSD is most

probably originating from the dense or scattered distribution of the

actual transcribed gene. Supporting this, the tissue distributions of

CAGE tags in pseudogene and corresponding transcribed genes

are highly correlated (Figure 6C and Table S6).

Analysis on other data sets
To make sure our results are not specific to the dataset analyzed,

we analyzed four additional sets: two tissue libraries from the

FANTOM3 set in mouse from liver and embryo (2656 core

promoters in liver set and 1341 core promoters in embryo set), the

whole set of CAGE tags from human in FANTOM3 (5298 core

promoters), and finally the FANTOM4 data set with 9201 core

promoters from cell line THP-1 produced by a different

sequencing technology (Table S1). Applying the same analysis as

above, we in each of these sets identified the ‘‘scattered’’, ‘‘dense’’

and ‘‘ultra-dense’’ TSSDs (Table S4). We did not observe any

substantial differences between these sets, suggesting that the

results are stable over tissues, species and sequencing techniques.

Discussion

In this study we systematically investigated TSSDs to see how

many stable groupings of such distributions that the data supports

and compared these groups to previous classifications. Finally we

examined what the biological properties of these groups were.

Our results indicate that in general, the three broad classes (BR,

PB, MM) in [10] are in reality a gradient of distributions where it

is hard to specify stable sub-classes. One way to interpret this

diversity is that the actual TSS distribution has a limited direct role

in defining the function of the downstream transcripts or is not

actively regulated by for instance transcription factors, but rather

is a function of local DNA sequence, since we know that the

dinucleotides around individual TSSs to a large degree can predict

the proportion of CAGE tags mapping there [19], and changes in

dinucleotides between species can in many cases explain observed

shifts in TSS distributions. This is further corroborated by the fact

that if splitting up the scattered TSSDs in subgroups depending on

how many peaks they have, simple dinucleotide counts can

identify the location of each peak. In this light, the studies using

two general ‘‘sharp’’ and ‘‘broad’’ classes are more motivated than

more elaborate schemes.

However, we also find that the previously defined sharp class

with certainty has two stable sub-classes with very different

biological properties – one where there is a small spread of the

TSSs around a dominant peak, perhaps reflecting the flexibility of

the pre-initiation complex as discussed in [11], and one where

essentially all CAGE tags map to the same nucleotide position.

The first corresponds well to ‘‘text-book’’ core promoters

dominated by TATA-boxes and tissue-specific genes, the other

group lacks most biological signals associated with promoters –

TATA-boxes, CpG islands and also typical epigenetic patterns

such as H3K4me3 and RNA Polymerase II enrichment. Notably,

such promoters have been included in a larger ‘‘sharp’’ category in

previous studies. Thus, it is likely that these ultra-dense promoters

are giving an undue influence on the ‘‘sharp ‘‘ class in such studies,

as the depletion of promoter signals in the ultra-sharp sub-group

will affect the average of the super-group.

There are two major explanation models for the ultra-sharp

class: i) the TSSDs are due to either experimental of biological

noise, such as mapping issues or recapping events or ii) these

TSSDs represent atypical promoters.

We have shown that at least some of these TSSDs overlap with

known ribosomal pseudogenes, and that this is likely due to

mapping errors caused by the G-addition bias in the CAGE

protocol: those TSSs likely belong to the genuine, transcribed RP

gene. These problems are conceptually similar to cross-hybridiza-

tion problems reported for hybridization-based methods, and have

cautionary implications for mapping CAGE data – clearly, the G

addition bias must be filtered at a stage before mapping [48], or a

mapping strategy that considers the ‘‘stability’’ of a mapping

should be considered: will the tag map to multiple locations if the

first G is removed?

The same problem could potentially occur for any sequencing

platform that uses short reads and where mismatches are tolerated

in the mapping protocol. In particular, sequence methods that are

trying to capture mRNA 59 ends will be susceptible to this problem

as reverse transcriptase often adds additional Gs once the end of

the RNA is encountered – this feature is even used in certain

protocols [49,50], often refereed to as ‘‘template switching’’.

Figure 6. Ultra-dense TSSDs associated with ribosomal protein pseudo genes and their transcribed counterparts. (A)–(B) Examples of
TSSDs mapping to processed pseudogenes and corresponding transcribed ribosomal protein gene promoters. Each example shows an alignment of
the pseudogene (top) and transcribed gene (bottom) with the sequence alignment in the middle and a genome-browser view as the inset. In the
browser view, the CAGE distribution (TSSD), Mouse RefSeq, RefSeq from other species are shown as separate tracks. Note that the pseudogene has an
ultra-dense TSS distribution just at the inferred 59 end of the pseudogene. In the alignment, the tag distributions (red for pseudogene; blue for
transcribed gene) are aligned and shown with sequence comparison along the x-axis in the middle. The Y-axis shows the number of CAGE tags
mapping at the region, only counting the 59 end. Note that the regions upstream of the TSS are generally dissimilar while the +2,+20 nt region from
the TSS of the pseudogene TSSD is almost identical (covered by grey boxes). The CT-tract is colored in blue. The position of the single CAGE peak in
the pseudogene coincides with the 1 nt difference just upstream of the CT track, where the pseudogene has a G (colored in red). (C) Correlation
between pseudogene and transcribed gene CAGE tags in terms of distribution over tissues. The Y-axis shows the fraction of tags from each tissue as a
stacked barplot for each TSSD. Each panel shows a pair of TSSD from the transcribed gene and the corresponding pseudogene. The transcribed
Mouse Rpl41 gene has two corresponding pseudogenes with their own ultra-dense TSSD, and therefore has three columns instead of two. Spearman
correlation coefficients comparing the tissue distributions of pseudogene and transcribed gene CAGE tags are shown above each panel. All of the
correlations are statistically significant: P,0.01 in all cases (data not shown).
doi:10.1371/journal.pone.0023409.g006
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Some of the newer mapping algorithms for small DNA reads

use some of these concepts, for instance, Delve (Timo Lassmann,

personal communication) and Sesam (as used in [51]) represent

reads as weight matrices and can calculate the probability that a

mapping is correct, weighting in all possible mappings and the

difference between the strongest and the second strongest

mapping.

Importantly, pseudo-RP gene promoters can only explain

around 20% of these the ultra-dense TSSDs, and while other

pseudogenes could cause similar issues, many of the ultra-dense

TSSDs do not map close to obvious pseudogene candidates.

Previous work have show the widespread use of repetitive elements

working actual TSSs [52]; as we find an over-representation of

repetitive elements in the ultra-dense promoters, this might

account for some of the observations. Another explanation for

these extremely sharp tag distributions is regulated cleavage and

recapping, as suggested by Hoskins et al. [53]. Similarly, Mercer

et al. [54] have suggested that many of intergenic CAGE tags are

recapped partial mRNAs, based on the lack of epigenetic signals

around such tags, and this and other studies ([10]) have shown

specific expression patterns of (possibly) recapped transcripts

within 39 UTRs of genes. However, only a few of the ultra-dense

TSSDs are overlapping internal exons (,5%), and none overlap

the 39 UTR, indicating that they represent another class of

transcripts than those reported by Mercer et al. [54].

Regardless of their origin, our results show that it is highly

relevant to separate these two peaked TSSDs from each other (or

even filter out TSSDs composed of a single position) in any large-

scale promoter analysis since they have very different properties

and/or origin.

Materials and Methods

Data sources and data preprocessing
Our primary data set is the FANTOM3 data for 22 tissues of the

May 2004 mouse (Mus musculus) draft genome data (mm5) obtained

by cap analysis gene expression (CAGE) as defined [10]. Other data

sets used in the analysis include FANTOM3 CAGE data of mouse

liver (Mus musculus, mm5), FANTOM3 CAGE data of mouse

embryo (Mus musculus, mm5), FANTOM3 CAGE data of human

(Homo sapiens Homo, hg17), and FANTOM4 CAGE data of human

(Homo sapiens Homo, hg18) [10,55]. We applied the mappings of

sequence tags from these studies and used their tag clusters (TCs) as

our TSSDs, with the following additions: A TSSD is defined as a set

of 59 end of closely located tags that overlap each other at least 2

base pair (bp) on the same strand. The two-bp overlap is required in

order to reduce the tiling effects observed in the original paper [10],

where a requirement of one-bp overlap was used. In this study, we

examined the TSSDs with no less than 100 tags. This threshold is set

to yield a more accurate and robust clustering of TSSDs. However,

a lower threshold is also acceptable if a data set has very few tags, as

long as this threshold is the same throughout the study. We also

applied Laplace’s rule of succession to the TSSDs to reduce the

background noise. The primary data set of all the tissues of Mus

musculus contains 7,151,511 uniquely mapped tags and they yield

594,136 TSSDs as defined in previous study [10]. 7752 of the

TSSDs with 5,463,328 tags fulfill our criterion and were used in

further analysis. Similarly, we obtained 2656; 1341; 5298; 9201

TSSDs from other data set as described in Table S1.

GM-Distance: Measuring dissimilarity between
distributions

We represented a core promoter in the format of a TSSD, which

displays a histogram of the occurrence of the 59 end of CAGE tags at

each genomic position. In order to define groups of similar TSS

distributions, we needed to define a sensible way to measure the

similarity, or distance, between TSSDs. We based our metric on:

the minimum difference of pair assignments (MDPA) [56], which is

a true metric. MDPA is a distance between sets of equal size. Given

two ordinal type histograms [56] of n elements in b bins, A and B,

the MDPA between them can be calculated as the necessary cell

movements to transform one histogram into the target histogram.

For instance, a histogram A can be transformed into B by moving

elements to left or right and the total of all necessary minimum

movements is the distance between them. In our study, the TSSDs

are ordinal histograms, representing the genomic positions of the

tags. However, the MDPA method requires that the numbers of

bins in the two histograms are identical, and the total numbers of

objects falling into all bins are the same. This is not true for most

pairwise comparisons of TSSDs. To fulfill the requirement we

normalized the distributions to sum up to one for each TSSD, which

also makes them comparable in shape instead of in magnitude as

noted above. To account for variable lengths of TSSDs, we let one

distribution slide over the other and padded distributions with tag

counts of 0 when needed (i.e. equal number of bins). In addition, we

also took strand information into account, so that all distributions

are in the sense direction (i.e. from 59 to 39) before comparing them.

Unsupervised clustering
Hierarchical clustering was computed with the R language

function hclust with Ward linkage. The method was fed a 7752-by-

7752 dissimilarity matrix of all TSSDs (using GM-distance as

described above) as input. A produced tree object was then cut by R

function cutree with a specified number of clusters (k) to split the tree

into k clusters. k-medoids and k-means clustering is described in Text

S1, but was also made with corresponding standard R methods.

Stability of a clustering and the resulting clusters
2We employed the mean Jaccard coefficient to measure the

stability of each cluster from the clustering by bootstrap resampling

in [30]. By resampling the original data with replacement B = 100

times we obtained B pseudo data sets. For each pseudo data set

b, b [ 1,2,:::,Bf g, we obtained a pseudo clustering using the same

procedure as for the original clustering based on the original data

set. For each original cluster ci, i [ 1,2,:::,Nf g (where N is the total

number of clusters in the original clustering), its stability was

represented by mean Jaccard coefficient as

�JJ(ci)~

PB
b~1

max
j[ 1,:2:::,Nf g

J(ci,c
0
j,b)

� �

B
, i [ 1,:2:::,Nf g ð1Þ

where ci is a cluster of TSSDs in the original clustering; c0j,b is the

most similar cluster of ci in a pseudo clustering b; B is the number of

bootstrap samples; J(ci,c
0
j,b) is the Jaccard (similarity) coefficient of

ci and c0j,b, which is defined as the ratio of the size of their set

intersection and that of their set union,

J(ci,c
0
j,b)~

ci\c0j,b

��� ���
ci|c0j,b

��� ��� : ð2Þ

For each original cluster ci, we took the average of the Jaccard

coefficients J(ci,c
0
j,b) over the resampled data sets b as a

measurement of its stability.
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We collected summary statistics for the stability of the overall

clusters to infer the overall robustness among different clustering

scenarios. We then proposed a stability measure of one clustering

C and computed it by the weighted mean of the cluster mean

Jaccard coefficients �JJ(ci) across all cluster ci, with the coefficient of

each cluster weighted by the cluster size si (i.e. the number of the

TSSDs in the cluster). This stability measure of a clustering is

denoted by ��JJ�JJ(C) and formulated as

��JJ�JJ(C)~

PN
i~1

�JJ(ci)si

PN
i~1

si

: ð3Þ

Peakedness of TSSD distributions
Individual peakedness score. The peakedness of a

distribution (TSSD) g was defined as

sg~
m

nw
ð4Þ

, where m is the tag count at the dominant peak (the mode); n is the

total number of tags in the distribution; w is the width of the

distribution, i.e. the number of nucleotides covered. This statistic

measures similar features as kurtosis [41].

Intra-cluster peakedness score. The intra-cluster

peakedness score was calculated by taking the average across all

peakedness scores of every TSSDs in a cluster.

Two-level hybrid clustering to find stable clusters
We proposed a two-level clustering approach, attempting to find

homogeneous clusters from a highly heterogeneous dataset. The

approach is composed of a hierarchical clustering at the first level

and a k means partition at the second. We first constructed a 7752-

by-7752 dissimilarity matrix on the TSSDs in the primary data set

and then push the dissimilarity matrix into a hierarchical

clustering procedure (as described above). We obtained 500

clusters by partitioning the dendrogram with a cutline (k1 = 500).

Next, we calculated 500 intra-cluster peakedness scores and

applied a k-means clustering procedure (using R function kmeans)

to aggregate them into three larger groups by fitting an optimal

model with k2 = 3 (see Results section).

Peak identification in scattered TSSDs
Our peak identification algorithm is controlled by two

parameters: span and intensity. Span is the span (the width) of a

single peak. We set span to 20 nt, which also means peaks within

half of the value (10 nt) will be counted as one peak. Intensity is

defined as the relative peak intensity against the total number of

tags. We set the intensity threshold to 0.05. That is, a peak is

identified when the tag count at a specific nucleotide position has

no less than 5% of total tags in a TSSD. If no peak is detected, we

classified the TSSD as ‘‘uniform’’. This occurred for less than 1%

of the scattered TSSDs.

Characterization of TSSDs using biological meta-data
TATA patterns. The promoters and the flanking region

(+/2100 nt) around their dominant peaks were scanned with the

TATA position weight matrix (PWM) from JASPAR database (ID:

POL012.1; [57]). The TATA patterns were then determined given

scores above a threshold of 70%, as described in [58]. For each

prediction, we tabulated the position of the 1st T in the TATA box

and calculated the density per unique TSSD in each group.

CpG Islands. The promoters were aligned at the dominant

peaks. For each TSSD, the position of the CpG islands to

the dominant peaks was examined in the flanking regions

(+/2300 nt). Then we count the number of the CpG islands

covered at each position for each groups of TSSDs and

normalized the number by the total number of TSSDs in that

group (in normalized units of sites per TSSD). The annotation of

CpG islands were retrieved from UCSC genome browser track

generated according to [59].

Tissue specificity. The overall and categorical tissue

specificity were calculated based on relative entropy, also known

as Kullback-Leibler divergence as in [11]:

dg~
X

1ƒtƒN

ptjg log2

ptjg
qt

� �
ð5Þ

where t denotes a tissue (N~22), ptjg is the distribution the tissues

in the tags of a TSSD g; qt is the distribution the tissues in all tags.

This minimum distance d is 0 when ptjg~qt; i.e. when the

distribution of the tissues in one TSSD resembles the distribution

in the whole data, the distance is low, which indicates low tissue

specificity.

Sequence conservation. Sequence conservation was

calculated as mean PhastCons [60,61] scores over all sites with

the promoters aligned at the dominant peaks. For each TSSD, the

conservation intensity was examined in the flanking regions

(+/21000 nt) of their TSSs. Then we sum up the PhastCons

scores at each position for each group of TSSDs and normalized

the value by the total number of TSSDs in that group. The

PhastCons scores were retrieved from UCSC genome browser

[62], which is determined by alignments of 4 vertebrate genomes

(Rat, Human, Dog and Chicken) with Mouse.

Genomic annotation. The original CAGE data was taken

from Carninci et al. [32], and thus mapped to the mm5 assembly

(the May 2004 Mus musculus draft genome data). We did not

remap this set to a newer assembly to be able to compare with the

original results present in Carninci et al. [32]. However, the

additional CAGE data sets analyzed were mapped to newer

assemblies and show the same general findings). As some data

tracks are only present in newer assemblies (such as the ‘‘Other

RefSeq’’ track), we used the LiftOver [62] tools to transfer

annotation from mm9 to mm5 using standard settings.

Epigenetic patterns. Epigenetic marks were obtained from

publically available ChIP-seq data sets, including DNA

methylation [33], histone modification and RNA polymerase II

occupation [34,35,36,63] and the nucleosomal positioning [37].

The DNA methylation was obtained from the Sequence Read

Archive (SRA; [64]), pooled by three replicate samples of human

embryonic stem cells (SRA accessions SRX020007, SRX020008,

SRX020009; Chavez, Jozefczuk et al. 2010). The SRA submissions

were then converted to FASTQ files by SRA toolkit [64] and

mapped to human genome (hg18) by bowtie [65]. Finally, the

immuno-enriched areas were identified using MACS [66] based

on uniquely mapped reads and then transferred to mouse genome

(mm5) using LiftOver [62]. The enriched regions of histone lysine

and arginine methylations as well as histone variant H2A.Z and

RNA polymerase II in CD4+ T cell were provided by [34,35,36].

The alignment coordinates of the sequence reads for histone

modifications in mouse ES and NP cells (mm8) were obtained

from [35,63] and then the immuno-enriched areas were identified

by MACS [66] based on uniquely mapped reads and then
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transferred to mouse genome (mm5). The read coverage of the

nucleosome was calculated according to average nucleosome dyad

positions [67] without smoothing. For all these sets, we counted

the number of ChIP-ed tags for all nucleotides in the flanking

region (2/+5000 nt or 2/+1000 nt) around the dominant peak of

the TSSDs. Aligning the TSSDs at the dominant peaks, we

computed densities as a ratio of reads per unique TSSD for all

groups, in normalized units of ‘‘reads per TSSD (promoter)’’.

Supporting Information

Text S1 Unsupervised clustering using k-medoids.
(PDF)

Table S1 CAGE data sets analyzed in the study,
including mouse whole-body, liver, embryo and human
whole-body libraries from FANTOM3; and human THP1
libraries from FANTOM4.
(PDF)

Table S2 The clustering stability measure of five data
sets by (A) hierarchical clustering and (B) k-medoids.
(PDF)

Table S3 Cluster analysis of five data sets by two-level
clustering.
(PDF)

Table S4 CAGE tags mapped to different genomic
regions.
(PDF)

Table S5 RefSeq annotation of TSSDs. EST/mRNA
support of the transcribed and pseudo- RP-gene pro-
moter TSSDs. EST, mRNA and ‘‘Other RefSeq’’ evidence for

mouse RefSeq-unannotated TSSDs.

(PDF)

Table S6 Correlation of the tissue distributions between
the pseudogene TSSDs and the corresponding transcribed-
gene TSSDs. r denotes the Spearman correlation coefficient.

(PDF)

Figure S1 Explained variance by 1st-level clustering.
Explained variance (Y-axis) of five data sets modeled by (A)

hierarchical clustering and (B) k-medoids clustering given number

of clusters (k, X-axis).

(PDF)

Figure S2 Explained variance of the 2nd-level clustering,
modeled by k-means.
(PDF)

Figure S3 Tiling effect at borders of TSSDs. Examples of

TSSDs that are labeled ‘‘scattered’’ by our method but SP (‘‘sharp

peak’’) in Carninci et al., due to tiling effects of tags spreading

around the dominant peak.

(PDF)

Figure S4 Similar patterns of epigenetic marks between
cell lines. Comparison of epigenetic patterns across between

different cell lines, for the different promoter classes. Regardless of

what cell that is used as reference, the distributions are similar.

(A)–(D) human CD4+ T cell. (E)–(H) mouse ES cell. (I)–(K) mouse

NP cell.

(PDF)

Figure S5 Additional epigenetic mark densities (gener-
ated in a similar procedure as in Figure 4).

(PDF)

Figure S6 Sequence mapping uniqueness. Genomic se-

quence mapping uniqueness around the TSSs, by sampling and

mapping 20-mer DNA fragments around the TSSs.

(PDF)

Figure S7 TATA motifs of subclasses of ‘‘scattered’’
TSSDs. Density plot of TATA-box extend 250 nt at 59 of the

first peak and 20 nt at 59 of the last peak. The X-axis shows the

genomic position relative to the peaks (TSS, indicated by a green

arrow). The Y-axis shows the number of predicted sites per TSSD,

as in Figure 3B. TATA motifs are dominant at around 230 nt in

the 1-peak ‘‘scattered’’ TSSDs (top panel) while are strongly

weakened in other subclasses. For each subclass, the TSSDs are

aligned at their identified peaks, with the distance between two

adjacent peaks rescaled to same width.

(PDF)

Figure S8 Alignments of pseudo and transcribed genes
promoters. (A)–(Y) Alignments between pseudogene promoters

(top) and the corresponding transcribed ribosomal protein gene

promoters (bottom), as in Figure 5. Their sequences are aligned

along the X-axis in between. X-axis shows the tag 59 end position

relative to the dominant peak (at position 0) of the pseudogene

TSSDs; Y-axis shows the count of 59 ends of the tags.

(PDF)

Author Contributions

Conceived and designed the experiments: XZ EV AS. Performed the

experiments: XZ. Analyzed the data: XZ. Contributed reagents/materials/

analysis tools: XZ EV BP AS. Wrote the paper: XZ AS.

References

1. Smale ST, Kadonaga JT (2003) The RNA polymerase II core promoter. Annu
Rev Biochem 72: 449–479.

2. Carninci P, Kasukawa T, Katayama S, Gough J, Frith MC, et al. (2005) The

transcriptional landscape of the mammalian genome. Science 309: 1559–1563.

3. Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R, Gingeras TR, et al.

(2007) Identification and analysis of functional elements in 1% of the human
genome by the ENCODE pilot project. Nature 447: 799–816.

4. Maruyama K, Sugano S (1994) Oligo-capping: a simple method to replace the

cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138:
171–174.

5. Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, et al. (2003) Human-mouse

alignments with BLASTZ. Genome Research 13: 103–107.

6. Valen E, Pascarella G, Chalk A, Maeda N, Kojima M, et al. (2009) Genome-

wide detection and analysis of hippocampus core promoters using DeepCAGE.
Genome Research 19: 255–265.

7. Engstrom PG, Suzuki H, Ninomiya N, Akalin A, Sessa L, et al. (2006) Complex

loci in human and mouse genomes. Plos Genetics 2: 564–577.

8. Akalin A, Fredman D, Arner E, Dong XJ, Bryne JC, et al. (2009)

Transcriptional features of genomic regulatory blocks. Genome Biology 10: -.

9. Bajic VB, Tan SL, Christoffels A, Schonbach C, Lipovich L, et al. (2006) Mice
and men: Their promoter properties. Plos Genetics 2: 614–626.

10. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, et al. (2006)
Genome-wide analysis of mammalian promoter architecture and evolution.

Nature Genetics 38: 626–635.

11. Ponjavic J, Lenhard B, Kai C, Kawai J, Carninci P, et al. (2006) Transcriptional

and structural impact of TATA-initiation site spacing in mammalian core
promoters. Genome Biology 7: -.

12. Valen E, Preker P, Andersen P, Zhao X, Chen Y, et al. (2011) Small RNA

profiles from human genic regions suggest biogenic mechanisms and identify

new Argonaute-associated species. Nat Struct Mol Biol;DOI: 10.1038/
nsmb.2091 Available: http://www.nature.com/nsmb/.

13. Kawaji H, Frith MC, Katayama S, Sandelin A, Kai C, et al. (2006) Dynamic

usage of transcription start sites within core promoters. Genome Biology

7: -.

14. Kimura K, Wakamatsu A, Suzuki Y, Ota T, Nishikawa T, et al. (2006)
Diversification of transcriptional modulation: Large-scale identification and

characterization of putative alternative promoters of human genes. Genome

Research 16: 55–65.

Clustering of TSS Landscapes

PLoS ONE | www.plosone.org 15 August 2011 | Volume 6 | Issue 8 | e23409



15. Suzuki Y, Taira H, Tsunoda T, Mizushima-Sugano J, Sese J, et al. (2001)

Diverse transcriptional initiation revealed by fine, large-scale mapping of mRNA
start sites. Embo Reports 2: 388–393.

16. Ni T, Corcoran DL, Rach EA, Song S, Spana EP, et al. (2010) A paired-end
sequencing strategy to map the complex landscape of transcription initiation.

Nature Methods 7: 521–U557.

17. Nilsson R, Bajic VB, Suzuki H, di Bernardo D, Bjorkegren J, et al. (2006)

Transcriptional network dynamics in macrophage activation. Genomics 88:
133–142.

18. Suzuki H, Forrest ARR, van Nimwegen E, Daub CO, Balwierz PJ, et al. (2009)

The transcriptional network that controls growth arrest and differentiation in a

human myeloid leukemia cell line. Nature Genetics 41: 553–562.

19. Frith MC, Ponjavic J, Fredman D, Kai C, Kawai J, et al. (2006) Evolutionary
turnover of mammalian transcription start sites. Genome Research 16: 713–722.

20. Taylor MS, Kai C, Kawai J, Carninci P, Hayashizaki Y, et al. (2006)
Heterotachy in mammalian promoter evolution. Plos Genetics 2: e30.

21. Frith MC, Valen E, Krogh A, Hayashizaki Y, Carninci P, et al. (2008) A code

for transcription initiation in mammalian genomes. Genome Research 18: 1–12.

22. Sandelin A, Carninci P, Lenhard B, Ponjavic J, Hayashizaki Y, et al. (2007)

Mammalian RNA polymerase II core promoters: insights from genome-wide
studies. Nature Reviews Genetics 8: 424–436.

23. Baumann M, Pontiller J, Ernst W (2010) Structure and basal transcription

complex of RNA polymerase II core promoters in the mammalian genome: an

overview. Molecular Biotechnology 45: 241–247.

24. Rach EA, Winter DR, Benjamin AM, Corcoran DL, Ni T, et al. (2011)
Transcription initiation patterns indicate divergent strategies for gene regulation

at the chromatin level. Plos Genetics 7: e1001274.

25. Saxonov S, Berg P, Brutlag DL (2006) A genome-wide analysis of CpG

dinucleotides in the human genome distinguishes two distinct classes of
promoters. Proc Natl Acad Sci U S A 103: 1412–1417.

26. Kratz A, Arner E, Saito R, Kubosaki A, Kawai J, et al. (2010) Core promoter
structure and genomic context reflect histone 3 lysine 9 acetylation patterns.

Bmc Genomics 11: 257.

27. Cha S-H, Srihari SN (2002) On measuring the distance between histograms.

Pattern Recognition 35: 1355–1370.

28. Rubner Y, Tomasi C, Guibas LJ (1998) A metric for distributions with
applications to image databases; 1998. pp 59–66.

29. Mark S, Aldenderfer RKKB (1984) Cluster Analysis (Quantitative Applications
in the Social Sciences).

30. Hennig C (2007) Cluster-wise assessment of cluster stability. Computational

Statistics and Data Analysis 52: 258–271.

31. Schug J, Schuller WP, Kappen C, Salbaum JM, Bucan M, et al. (2005) Promoter

features related to tissue specificity as measured by Shannon entropy. Genome
Biology 6: -.

32. Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, et al. (2006)
Genome-wide analysis of mammalian promoter architecture and evolution. Nat

Genet 38: 626–635.

33. Chavez L, Jozefczuk J, Grimm C, Dietrich J, Timmermann B, et al. (2010)
Computational analysis of genome-wide DNA methylation during the

differentiation of human embryonic stem cells along the endodermal lineage.

Genome Res 20: 1441–1450.

34. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, et al. (2007) High-
resolution profiling of histone methylations in the human genome. Cell 129:

823–837.

35. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E, et al. (2007) Genome-

wide maps of chromatin state in pluripotent and lineage-committed cells. Nature
448: 553–560.

36. Wang Z, Zang C, Rosenfeld JA, Schones DE, Barski A, et al. (2008)
Combinatorial patterns of histone acetylations and methylations in the human

genome. Nature Genetics 40: 897–903.

37. Schones DE, Cui K, Cuddapah S, Roh TY, Barski A, et al. (2008) Dynamic

regulation of nucleosome positioning in the human genome. Cell 132: 887–898.

38. Ioshikhes IP, Zhang MQ (2000) Large-scale human promoter mapping using
CpG islands. Nature Genetics 26: 61–63.

39. Kobor MS, Lorincz MC (2009) H2A.Z and DNA methylation: irreconcilable
differences. Trends Biochem Sci 34: 158–161.

40. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R, et al. (2004) A silencing

pathway to induce H3-K9 and H4-K20 trimethylation at constitutive

heterochromatin. Genes Dev 18: 1251–1262.

41. Joanes DN, Gill CA (1998) Comparing measures of sample skewness and

kurtosis. Journal of the Royal Statistical Society Series D-the Statistician 47:
183–189.

42. Frith MC, Valen E, Krogh A, Hayashizaki Y, Carninci P, et al. (2008) A code

for transcription initiation in mammalian genomes. Genome Res 18: 1–12.
43. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Wheeler DL (2004)

GenBank: update. Nucleic Acids Res 32: D23–26.
44. Perry RP (2005) The architecture of mammalian ribosomal protein promoters.

BMC Evol Biol 5: 15.

45. Zhang Z, Harrison P, Gerstein M (2002) Identification and analysis of over 2000
ribosomal protein pseudogenes in the human genome. Genome Res 12:

1466–1482.
46. Frith MC, Wilming LG, Forrest A, Kawaji H, Tan SL, et al. (2006) Pseudo-

messenger RNA: phantoms of the transcriptome. Plos Genetics 2: e23.
47. Harbers M, Carninci P (2005) Tag-based approaches for transcriptome research

and genome annotation. Nat Methods 2: 495–502.

48. Carninci P Cap-Analysis Gene Expression (CAGE): The Science of Decoding
Gene Transcription: Pan Stanford Publishing.

49. Plessy C, Bertin N, Takahashi H, Simone R, Salimullah M, et al. (2010) Linking
promoters to functional transcripts in small samples with nanoCAGE and

CAGEscan. Nat Methods 7: 528–534.

50. Islam S, Kjallquist U, Moliner A, Zajac P, Fan JB, et al. (2011) Characterization
of the single-cell transcriptional landscape by highly multiplex RNA-seq.

Genome Res.
51. Rasmussen M, Li Y, Lindgreen S, Pedersen JS, Albrechtsen A, et al. (2010)

Ancient human genome sequence of an extinct Palaeo-Eskimo. Nature 463:
757–762.

52. Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C, et al. (2009) The

regulated retrotransposon transcriptome of mammalian cells. Nature Genetics
41: 563–571.

53. Hoskins RA, Landolin JM, Brown JB, Sandler JE, Takahashi H, et al. (2010)
Genome-wide analysis of promoter architecture in Drosophila melanogaster.

Genome Res 21: 182–192.

54. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights
into functions. Nature Reviews Genetics 10: 155–159.

55. Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, et al. (2010) An
atlas of combinatorial transcriptional regulation in mouse and man. Cell 140:

744–752.
56. Cha SH, Srihari SN (2002) On measuring the distance between histograms.

Pattern Recognition 35: 1355–1370.

57. Portales-Casamar E, Thongjuea S, Kwon AT, Arenillas D, Zhao X, et al. (2010)
JASPAR 2010: the greatly expanded open-access database of transcription factor

binding profiles. Nucleic Acids Res 38: D105–110.
58. Sandelin A, Wasserman WW, Lenhard B (2004) ConSite: web-based prediction

of regulatory elements using cross-species comparison. Nucleic Acids Res 32:

W249–252.
59. Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes.

J Mol Biol 196: 261–282.
60. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, et al. (2005)

Evolutionarily conserved elements in vertebrate, insect, worm, and yeast
genomes. Genome Res 15: 1034–1050.

61. Siepel A, Haussler D (2004) Combining phylogenetic and hidden Markov

models in biosequence analysis. J Comput Biol 11: 413–428.
62. Hinrichs AS, Karolchik D, Baertsch R, Barber GP, Bejerano G, et al. (2006)

The UCSC Genome Browser Database: update 2006. Nucleic Acids Res 34:
D590–598.

63. Meissner A, Mikkelsen TS, Gu H, Wernig M, Hanna J, et al. (2008) Genome-

scale DNA methylation maps of pluripotent and differentiated cells. Nature 454:
766–770.

64. Leinonen R, Sugawara H, Shumway M (2011) The sequence read archive.
Nucleic Acids Res 39: D19–21.

65. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome
Biology 10: R25.

66. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, et al. (2008) Model-based
analysis of ChIP-Seq (MACS). Genome Biology 9: R137.

67. Spies N, Nielsen CB, Padgett RA, Burge CB (2009) Biased chromatin signatures
around polyadenylation sites and exons. Mol Cell 36: 245–254.

68. Schneider TD, Stephens RM (1990) Sequence logos: a new way to display

consensus sequences. Nucleic Acids Res 18: 6097–6100.

Clustering of TSS Landscapes

PLoS ONE | www.plosone.org 16 August 2011 | Volume 6 | Issue 8 | e23409


