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Abstract

Background: Among scorpion species, the Buthidae produce the most deadly and painful venoms. However, little is known
regarding the venom components that cause pain and their mechanism of action. Using a paw-licking assay (Mus musculus),
this study compared the pain-inducing capabilities of venoms from two species of New World scorpion (Centruroides
vittatus, C. exilicauda) belonging to the neurotoxin-producing family Buthidae with one species of non-neurotoxin
producing scorpion (Vaejovis spinigerus) in the family Vaejovidae. A pain-inducing a-toxin (CvIV4) was isolated from the
venom of C. vittatus and tested on five Na+ channel isoforms.

Principal Findings: C. vittatus and C. exilicauda venoms produced significantly more paw licking in Mus than V. spinigerus
venom. CvIV4 produced paw licking in Mus equivalent to the effects of whole venom. CvIV4 slowed the fast inactivation of
Nav1.7, a Na+ channel expressed in peripheral pain-pathway neurons (nociceptors), but did not affect the Nav1.8-based
sodium currents of these neurons. CvIV4 also slowed the fast inactivation of Nav1.2, Nav1.3 and Nav1.4. The effects of CvIV4
are similar to Old World a-toxins that target Nav1.7 (AahII, BmK MI, LqhIII, OD1), however the primary structure of CvIV4 is
not similar to these toxins. Mutant Nav1.7 channels (D1586A and E1589Q, DIV S3–S4 linker) reduced but did not abolish the
effects of CvIV4.

Conclusions: This study: 1) agrees with anecdotal evidence suggesting that buthid venom is significantly more painful than
non-neurotoxic venom; 2) demonstrates that New World buthids inflict painful stings via toxins that modulate Na+ channels
expressed in nociceptors; 3) reveals that Old and New World buthids employ similar mechanisms to produce pain. Old and
New World a-toxins that target Nav1.7 have diverged in sequence, but the activity of these toxins is similar. Pain-inducing
toxins may have evolved in a common ancestor. Alternatively, these toxins may be the product of convergent evolution.
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Introduction

For animals that lack the advantage of size, razor-like claws,

speed, camouflage, etc. to overpower or outmaneuver their pre-

dators, painful venom can serve as a potent weapon. A diversity of

animals including ants, wasps, bees, scorpions, spiders, snakes,

jellyfish, stonefish, and stingrays employ painful venom to either

deter their enemies or escape subjugation.

Among all species of scorpion, those in the family Buthidae

produce the world’s most deadly venoms [1]. Buthid venom is a

mixture of several peptides that bind different families of ion

channels (Na+, K+, Cl2, Ca2+) in excitable membranes of nerve

and muscle [2,3,4,5]. The majority of toxins that have been

described recognize either sodium (Na+) or potassium (K+)

channels. Toxins that bind Na+ channels alter the gating

mechanism, making the channel likely to open near the resting

membrane potential and then inhibiting fast inactivation, thus

prolonging the flow of Na+ ions through the pore [6,7]. Toxins

that bind K+ channels block the flow of K+ ions through the

channel, preventing the membrane from returning to its resting

potential after depolarization [8,9]. The synergistic effect of these

toxins is hyper-excitability of nerve and muscle cells that can cause

a wide range of physiological malfunction [10,11,12,13]. Even

when buthid stings are not fatal, humans report excruciating pain

that may last from several hours to days. While the buthid toxins

that cause seizures, paralysis and respiratory failure have been well
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studied, little is known regarding the venom components that

cause pain and their mechanism of action.

Animals sense pain when peripheral sensory neurons (nocicep-

tors) are activated [14,15] and transmit information about noxious

stimuli to the central nervous system (CNS). The cell bodies of

nociceptors are housed in dorsal root ganglia (DRG), located just

outside the spinal cord. A number of distinct DRG-expressed

voltage-gated sodium channels (VGSCs), primarily Nav1.7, Nav1.8,

Nav1.9, play a major role in transducing noxious stimuli in animals.

Given that buthid scorpions produce toxins that bind Na+

channels in excitable membranes, it is plausible that their venom

induces pain by initiating action potentials in nociceptors. Because

some human pain disorders involve Na+ channels expressed in

nociceptors [14,15], there has been an effort, albeit limited, to

determine the components in buthid venom that induce pain with

the goal of isolating peptides that discriminate among the DRG-

expressed VGSCs. For example, BmK I, isolated from the venom

of Buthus martensii Karsch, an Old World buthid (species that

originated in Africa and Asia), induces paw licking when injected

into the hind paws of rats. BmK I modulates DRG-expressed Na+

currents in rat, but the specific ion-channel target was not

identified [16,17,18]. A separate study showed that BmK MI

(synonym for BmK I) slows the fast inactivation of Nav1.7

expressed in Xenopus ooctyes [19]. Toxins isolated from the Old

World buthids Odonthobuthus doriae (ODI), Androctonus australis

Hector (AahII) and Leiurus quinquestriatus hebraeus (LqhIII) also slow

the fast inactivation of Nav1.7 [19,20]. However, while the venoms

of these three scorpions are reported to be painful, ODI, AahII

and LqhIII were not tested for their ability to induce paw licking in

a rodent model. Collectively, the results from these studies support

the hypothesis that Old World buthids produce painful stings, in

part, by toxins that modulate DRG-expressed Na+ channels. New

World buthids (species that originated in North and South

America) are reported to produce intensely painful stings, how-

ever, to our knowledge no studies have identified pain-inducing

components from the venoms of New World buthids.

The goal of this study was to gain a better understanding of how

neurotoxic venom produced by buthid scorpions induces pain in

mammals. Our objectives were to 1) establish in a mouse model

whether venom produced by buthid scorpions is more painful than

venom produced by scorpions from other families as anecdotally

reported; 2) determine whether Na+ channel toxins are involved in

generating the intense pain produced by New World buthids, and

if so, identify their ion-channel targets and mechanism of action;

and 3) compare pain-inducing toxins from Old and New World

buthids to determine whether they employ similar venom

components to produce painful stings.

To achieve these objectives, we measured the duration of paw

licking by Mus musculus in response to injections of venom or

venom fractions into their hind paws. While we do not know what

mice perceive, we assume that mice lick their paws in response to

pain. Thus, we will refer to the venom and toxins that produce

paw licking as ‘‘painful’’ or ‘‘pain inducing.’’

Materials and Methods

This study was carried out in strict accordance with recom-

mendations in the Guide for the Care and Use of Laboratory

Animals of the National Institutes of Health. Protocols were

approved by the Institutional Animal Care and Use Committees at

the University of Texas at Austin, protocol number AUP-2009-

00027, and the Indiana University School of Medicine, protocol

number 3552. All efforts were made to reduce the number of

animals used and to minimize the suffering of animals.

Scorpion collection
Specimens of C. exilicauda (synonym for C. sculpturatus) and V.

spinigerus were collected from the foothills of the Santa Rita

Mountains, AZ. Specimens of C. vittatus were collected from the

foothills of the Organ Mountains, NM. Scorpions were collected at

night using ultraviolet light and then placed in plastic bags for

transport. Scorpions were housed in plastic containers (52 cm

L635 cm W615.6 cm H) in a room with a 12/12 light cycle and

daily temperature of 25–26uC. Aquarium gravel was used to line

the containers and cardboard egg crates were added to provide the

scorpions with a refuge. Scorpions were fed live crickets once a

week and provided with water ad libitum.

Venom extraction and preparation
Fresh venom was extracted from captive scorpions using

electrical stimulation of the telson (terminal tail segment that

houses the venom gland). The crude venom was dissolved in sterile

water and centrifuged at 14,500 RPM, 4uC, for 15 minutes to

remove insoluble components. The supernatant was collected and

the protein concentration determined using a nanodrop spectro-

photometer. For protocols isolating pain-inducing peptides from

venom, aliquots of the supernatant were stored for a short period

of time at 280u C and then thawed before applying the sample to

the perfusion column. For behavioral assays to screen venom and

venom fractions for pain-inducing capability, aliquots of soluble

venom were lyophilized and maintained at 220u C until tested.

Isolation of peptides that induce paw licking in mice
Venom peptides were purified by tandem purification. Soluble,

whole venom from C. vittatus was separated into fractions using

perfusion chromatography (1 dimension). Aliquots of whole venom

were injected into a POROS (PerSeptive Biosystems, Framing-

ham, MA) R2 10 mm perfusion column (4.6 mm internal

diameter6100 mm length). The perfusion column was connected

to a Bio Rad (Hercules, CA) Biologic Duoflow Maximizer system

with a Quad Tec UV-Vis detector. Fractions were separated using

the following method: linear gradient with 0% to 4% solvent B at

0.80 ml/min for 2.0 ml; linear gradient with 8% to 38% solvent B

at 0.80 ml/min for 80.0 ml; linear gradient with 44% to 100%

solvent B at 0.80 ml/min for 10.0 ml; isocratic flow with 0%

solvent A, 100% solvent B at 0.80 ml/min for 3.0 ml; linear

gradient with 100% to 0% solvent B at 0.80 ml/min for 3.0 ml;

isocratic flow with 100% solvent A, 0% solvent B at 0.80 ml/min

for 4.0 ml (solvent A, 0.1% trifluoroacetic acid in LC water;

solvent B, acetonitrile). The elution of each fraction was monitored

by following the UV trace at 214 nm and 280 nm. Fractions were

collected manually and screened for their ability to produce pain

using a behavioral assay (see below). Fractions that produced pain

were further separated into individual peptides using a TARGA

(Higgins Analytical, Inc., Mountain View, CA) reverse phase C18

column (4.6 mm internal diameter6250 mm length) (2 dimension)

and a different buffer system. Individual peptides were separated

using the following method: linear gradient with 0% to 8% solvent

B at 0.80 ml/min for 2.0 ml; linear gradient with 8% to 44%

solvent B at 0.80 ml/min for 80.0 ml; linear gradient with 44% to

100% solvent B at 0.80 ml/min for 10.0 ml; isocratic flow with

0% solvent A, 100% solvent B at 0.80 ml/min for 3.0 ml; linear

gradient with 100% to 0% solvent B at 0.80 ml/min for 3.0 ml;

isocratic flow with 100% solvent A, 0% solvent B at 0.80 ml/min

for 4.0 ml (solvent A, 100 mM ammonium acetate, pH 6.5, in LC

water; solvent B, acetonitrile). Peptides were collected manually by

following the UV trace at 214 nm and 280 nm. The purity of

peptides was confirmed using analytical HPLC (data not shown).

Purified peptides were tested for their ability to induce pain using a
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behavioral assay. All peptides were further characterized using

mass spectrometry.

Behavioral assays
Soluble venom, venom fractions and purified peptides were

tested for their ability to produce pain using the paw-licking assay

[16,21]. For all behavioral assays, lyophilized samples of venom or

venom components were hydrated in sterile water to the final

concentration and injected subcutaneously into the plantar region

of the left hind paw of house mice (Mus musculus domesticus). To

control for the pain of an injection, aliquots of an equal volume of

sterile water were injected into the hind paw of an additional

group of mice. Immediately following the injection, mice were

placed in a Plexiglas container (8 cm W638 cm L626 cm H) and

their response was videotaped using a digital video camcorder

(Canon XL1 mini DV) equipped with a 36wide-angle zoom lens

(Canon XL 3.4–10.2 mm). The amount of time mice spent licking

their paws was measured and used as an index of pain.

In the first paw-licking assay comparing the pain-inducing

capability of soluble venom from three different species of

scorpion, samples of lyophilized venom were diluted to a

concentration of 1.7 mg/ml. An aliquot of 10 ml was injected into

the hind paw of male mice (strain CD-1, 37–40 g, n = 8 per

treatment) and paw licking was recorded for 10 minutes. Data are

reported as the mean values in seconds (s) 61 standard error of the

mean (SE). A single factor analysis of variance (ANOVA, JMPH8,

www.jmp.com) was used to test for significant effects across

treatment groups. Planned orthogonal contrasts were used to test

for differences between treatments.

In the behavioral assays screening C. vittatus venom fractions and

purified peptides for pain-inducing ability, lyophilized venom

fractions or peptides were diluted to a concentration of 2.0 mg/ml.

A 10 ml sample was injected into the hind paw of female mice

(strain CD-1, 20–24 g, n = 2–5 mice per treatment) and paw

licking was recorded for 5 minutes. Paw licking values for C. vittatus

venom fractions are reported as the mean (s) 61 SE. A single

factor ANOVA (JMPH8, www.jmp.com) was used to detect

significant differences in paw licking across all treatment groups.

A multiple comparisons test (Tukey’s HSD) was used to identify

venom fractions that produced as much paw licking as the sample

of whole venom. In order to reduce the number of mice used to

test samples and to conserve the limited supply of purified

peptides, only two mice were used to test each individual peptide

isolated from venom fractions. Measures of pain for purified

peptides are shown as paw licking values (s) from each of two tests

for each peptide.

Mass spectrometry analysis
The molecular mass of C. vittatus venom fractions and purified

peptides were estimated using matrix assisted laser desorption

ionization time of flight (MALDI TOF) technology. Mass

spectrometry was performed using an Applied Biosystems (Full-

erton, CA) Voyager Biospectrometry Workstation MALDI-TOF

mass spectrometer in the Institute of Cellular and Molecular

Biology Protein Microanalysis Facility of the University of Texas

at Austin. Aliquots of peptide samples in aqueous solution or

containing up to 50% acetonitrile were combined with freshly

prepared matrix solution [saturated sinapinic acid dissolved in a

mixture of 50 or 75% (v/v) acetonitrile, 0.3% (v/v) trifluoroacetic

acid (TFA) and distilled water]. Mass spectral measurements were

made with ratios of peptide solution to matrix solution ranging

from 1:1 to 1:6. The optimum ratio was typically 1:4, thus, all

reported spectra were made with a ratio of 1:4. Sample aliquots of

0.5 or 1.0 mL were spotted onto stainless steel sample plates and

spectra were collected by averaging 10–20 laser shots. Samples

were irradiated with a nitrogen laser (Laser Science Inc.) operated

at 337 nm, attenuated and focused on the sample target using the

built-in Perseptive GRAMS/386 software. Ions were accelerated

with a deflection voltage of 30 kV and differentiated according to

their m/z using a time-of-flight mass analyzer. Myoglobin (horse

heart; Mr 16,950.7), insulin (Mr 5,733.5) and Bradykinin (Mr

1,060.2) were used as external standards to calibrate the spectra.

Amino acid analysis (N-terminal Protein Sequencing)
After confirming the purity of the peptides isolated from C.

vittatus’ venom, the N-terminal amino acid sequence for each

peptide was determined using Edman degradation. Automated

protein sequencing was performed on a 492A protein sequencer

equipped with a 120A HPLC system (PE Applied Biosystems). All

reagents and solvents used for the sequencer were obtained from

PE Applied Biosystems. Aliquots of each peptide were reduced

with DTT and chemically modified with iodoacetamide. Briefly,

peptides were incubated with 100 mM DTT at 37uC for one hour

followed by incubation with 120 mM iodoacetamide at 37uC for

one hour. The peptides were then spotted onto either polybrene

(Bioprene) treated glass fiber disks or PVDF membrane pieces (ca.

161 mm). PVDF membrane pieces were wetted with neat

methanol and an aliquot of a 1 to 20 dilution of the Bioprene

solution while glass fiber disks were treated only with the

polybrene solution. Both the glass fiber disks and membrane

pieces were dried under a stream of nitrogen and then loaded into

the reaction cartridge for sequencing.

Molecular Analyses: cloning CvIV4 venom gland cDNA
RNA extraction and cDNA synthesis. Two female speci-

mens of C. vittatus (Organ Mountains, NM) provided the RNA for

molecular analyses of the gene that encodes toxin CvIV4. Total

RNA was extracted from the venom gland of scorpions 24 hours

following venom extraction. The telson was removed from each

scorpion and immediately frozen at 280u C. Frozen telsons were

homogenized in RNA STAT-60 (Tel-Test, Inc., Friendswood,

TX). Total RNA was isolated from the homogenate according to

the manufacturer’s guidelines. Complementary DNA (cDNA) was

generated from approximately 500 ng of total RNA. Oligo d(T)20

(www.invitrogen.com) was used to prime the polyadenylated (poly

A+) mRNA and Invitrogen SuperScriptH III Reverse Tran-

scriptase (www.invitrogen.com) was used to reverse transcribe the

mRNA.

Amplification of cDNA encoding CvIV4. The cDNA

prepared from C. vittatus venom gland RNA served as the tem-

plate to amplify the gene that encodes CvIV4. The polymerase

chain reaction (PCR) procedure was used to amplify cDNA in three

steps. In the first step, degenerate primers (1 and 2, Table 1) were

used to amplify the initial 148 nucleotides from the gene that

correspond to the beginning of the mature toxin. Degenerate

primers were designed from a combination of CvIV4 peptide

sequence (direct sequencing of peptide, Edman degradation) and

published scorpion toxin nucleotide sequences (NCBI). In the

second step, nested gene-specific forward primers (3 and 4, Table 1),

designed from the PCR product obtained during the first step, were

paired with a custom designed oligo d(T)24VN reverse primer (7,

Table 1, Integrated DNA Technologies, www.idtdna.com) to

amplify nucleotide sequence corresponding to the mature toxin

and the three prime untranslated region (39 UTR). In the third step,

nested gene-specific reverse primers (5 and 6, Table 1), designed

from the PCR products obtained during the first and second steps,

were paired with 59 RACE (rapid amplification of cDNA ends)

nested forward primers (see manufacturer’s protocol for inner and
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outer primer sequence, Ambion FirstChoiceH RLM-RACE, www.

appliedbiosystems.com) to amplify nucleotide sequence corre-

sponding to the mature toxin, the signal peptide and the 59 UTR.

All PCR procedures used TaKaRa Ex TaqTM polymerase (www.

takara-bio.com) to amplify the cDNA template according to the

manufacturer’s directions. PCR amplifications of gene sequence

were conducted using an Eppendorf Thermocyler and the products

were analyzed on 1% agarose gels. DNA fragments were extracted

from the agarose gels and purified using Invitrogen PureLinkTM

Quick Gel Extraction Kit (www.invitrogen.com).

Cloning and sequencing PCR products. Taq polymerase

amplified products from steps 1–3 were inserted into a plasmid

vector (pCRH4-TOPO, TOPO TA CloningH Kit for Sequencing,

www.invitrogen.com). Plasmid vectors with DNA inserts were used

to transform E. coli cells (One ShotH TOP10 Competent Cells,

www.invitrogen.com). Cloning and transformation procedures

were conducted following the manufacturer’s guidelines. Colonies

were selected and grown overnight in LB medium containing

50 mg/ ml kanamycin. E. coli cells were harvested from overnight

cultures and plasmids with DNA inserts were extracted and purified

using Qiagen’s QIAprep Spin Miniprep Kit (www.qiagen.com).

DNA samples were eluted in nuclease-free water and sequenced in

both directions using M13 Forward and M13 Reverse primers

supplied with the TOPO TA cloning kit. DNA samples were

sequenced at the University of Texas at Austin Institute for Cell &

Molecular Biology (ICMB) Sequencing Facility using capillary-

based Applied Biosystems 3730 and 3130 automated DNA

Analyzers. The nucleotide (cDNA) sequence encoding a clone of

CvIV4 has been deposited to the NCBI GenBank (accession

number JF938594).

Electrophysiological recordings
Plasmids of sodium channels. The cDNA genes encoding

rat (r) Nav1.2, rNav1.3 and rNav1.4 were inserted into the vectors

pRC-CMV, pcDNA3.1-mod and pRBG4, respectively [22,23,24].

The cDNA genes encoding human (h) Nav1.5 and hNav1.7 were

subcloned into the vectors pcDNA3.1 and pcDNA3.1-mod,

respectively [25].

Preparation of Stably Transfected Cell Lines. HEK293

cells were obtained from ATCC, Manassas, VA, USA. Use of the

HEK293 cells was approved by the Institutional Biosafety

Committee and conformed to the ethical guidelines for the

National Institutes of Health for the use of human-derived cell

lines. The transfections of all wild type sodium channels (Nav1.2,

Nav1.3, Nav1.4, Nav1.5, and Nav1.7) were carried out using the

calcium phosphate precipitation method as described by Xiao et al.

(2010). However, no b subunit or green fluorescent protein reporter

plasmid was included in the calcium phosphate-DNA mixture. After

transfection of Human Embryonic Kidney cells (HEK) for 15–20 h,

the cells were washed with fresh medium. After 48 h, antibiotic

(G418, Geneticin; Cellgro, Herndon, VA) was added to select for

neomycin-resistant cells. After 2–3 weeks in G418, colonies were

picked, split, and subsequently tested for channel expression using

whole-cell patch clamp recording techniques.

Dorsal root ganglion (DRG) neuron preparation. Adult

rat DRG neurons were acutely dissociated and cultured as

previously described [26]. Briefly, rats were anesthetized by

exposure to CO2 and decapitated. Cells were treated with

collagenase (1 mg/ml) and papain (1 mg/ml), dissociated in

DMEM supplemented with 10% fetal bovine serum, and plated

on glass coverslips coated with polyornithine and laminin. Cultures

were maintained at 37uC in a 5% CO2 incubator, and media was

changed every 2 days during experimental incubation periods.

DRG neurons express both tetrodotoxin-sensitive (TTX-S) and

TTX-resistant (TTX-R) sodium channels. In order to isolate TTX-

R sodium current, DRG neurons were pretreated with 500 nM

TTX to block TTX-S sodium current.

Site-directed mutagenesis. Two hNav1.7 mutations (D1586A

and E1589Q, DIV S3–S4 loop) were constructed using the

QuikChange II XL Site-Directed Mutagenesis kit (Stratagene, La

Jolla, CA) and expressed in HEK293 cells as described by Xiao et al.

(2010).

Whole-cell Patch Clamp Recordings. Whole-cell patch

clamp recordings were performed at room temperature (,21uC)

using an EPC-10 amplifier (HEKA, Lambrecht, Germany). Data

were acquired on a Pentium IV computer using the Pulse program

(version 8.31; HEKA). Fire-polished electrodes were fabricated

from 1.7-mm capillary glass (VWR, West Chester, PA) using a P-

97 puller (Sutter, Novato, CA). The standard pipette solution

contained (in mM): 140 CsF, 1 EGTA, 10 NaCl and 10 HEPES,

pH 7.3. The standard bathing solution was (in mM): 140 NaCl, 3

KCl, 1 MgCl2, 1 CaCl2 and 10 HEPES, pH 7.3. After filling with

pipette solution, the access resistance of electrode pipette ranged

from 0.8 to 1.4 MV. The liquid junction potential for these

solutions was ,8 mV; data were not corrected to account for this

offset. The offset potential was zeroed before contacting the cell.

After establishing the whole-cell recording configuration, the

resting potential was held at 2100 mV for 5 min to allow

adequate equilibration between the micropipette solution and the

cell interior. Linear leak subtraction, based on resistance estimates

from four to five hyperpolarizing pulses applied before the

depolarizing test potential, was used for all voltage clamp

recordings. Membrane currents were usually filtered at 5 kHz

and sampled at 20 kHz. Voltage errors were minimized using 80%

series resistance compensation, and the capacitance artifact was

canceled using the computer-controlled circuitry of the patch

clamp amplifier. The CvIV4 stock solution was made at 0.1 mM

using bathing solution containing 1 mg/ml BSA, and aliquots

were stored at 220uC. Before use, the solution was diluted to the

desired concentration with fresh bathing solution. Toxin (30 ml)

was added directly to the recording chamber (volume of 300 ml)

and mixed by repeatedly pipetting to achieve the specified final

concentration.

Data Analysis. Data were analyzed using the Pulsefit

(HEKA) and GraphPad Prism 4 (GraphPad Software) programs.

All data points are shown as the mean 6 SE and n represents the

number of separate experimental cells. Steady-state activation and

inactivation curves were fitted using Boltzmann equation: y = 1/

(1+exp((V1/22V)/k), in which V1/2, V and k represented midpoint

Table 1. Primers for Amplification of cDNA Encoding CvIV4.

No. Sequence Direction 1Position

1 AARAARGAYGGNTAYCCNGTNGAN Forward 100–123

2 CVYTATCSGGWAGVCCKWVRCART Reverse 240–217

3 CACAGTGGTTGCAAATATACTTGTTGGAAA Forward 124–153

4 ACTTGTTGGAAAAACGAATATTGT Forward 141–165

5 TTTGTTTTTAAAGGTACGTTATCAGGAAGACCTGT Reverse 266–232

6 TGTTTACTTCCTTTTACCGTTACA Reverse 297–274

7 TTTTTTTTTTTTTTTTTTTTTTTVN Reverse 389–362

1Position of primer oligonucleotides with respect to CvIV4 cDNA sequence
shown in Fig. 4B.

doi:10.1371/journal.pone.0023520.t001
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voltage of kinetics, test potential and slope factor, respectively.

Dose-response curves to determine EC50 values were fitted using

the Hill equation: y = fTOP(1+10‘((logEC502[Tx]/EC50)nH), where

nH is Hill coefficient, EC50 is half maximal effective concentration,

and fTOP is the fraction of current sensitive to inhibition at high

toxin (Tx) concentration.

Results

Effects of scorpion venom on paw-licking behavior in
Mus

Tests quantifying the effects of the venoms of three different

species of scorpions on paw-licking behavior in M. musculus (strain

CD-1) showed that scorpion venom induces pain-related behaviors

in mice (Fig. 1). The amount of time mice spent licking their paws

in response to an injection of scorpion venom or water differed

among treatment groups (for all treatment groups n = number of

mice; C. vittatus, 130.23 sec622.08, n = 8; C. exilicauda, 100.53 sec

612.42, n = 8; V. spinigerus, 64.94 sec68.14, n = 8; water, 4.36 sec

62.57, n = 8; Fig. 1). A single factor ANOVA showed a significant

effect across treatment groups (F = 16.40; df = 3, 28; P,0.0001).

Planned orthogonal contrasts demonstrated that while the venom

of all three species of scorpion produced significantly more paw

licking in mice than the water control (F = 37.25; df = 1, 28;

P,0.0001), the venom of both species of Centruroides produced

significantly more paw licking than V. spinigerus venom (F = 9.49;

df = 1, 28; P = 0.0046). Although the venom of C. vittatus induced

more paw licking than that of C. exilicauda, the difference was not

significant (F = 2.47; df = 1, 28; P = 0.1275). These results indicate

that scorpion venom, at least the venom of the three species we

tested, is painful, not only to humans, but also rodents. Moreover,

the results show differences in the pain-inducing capability of

different species of scorpion, and they confirm anecdotal reports

that the venom of Centruroides is especially painful, whereas that of

V. spinigerus is much less so.

Isolation and identification of pain-inducing peptides
Because the venom of C. vittatus produced more paw licking

than that of C. exilicauda, we selected C. vittatus venom for

subsequent studies aimed at identifying the components in

scorpion venom that cause pain. High performance liquid

chromatography (HPLC) was used to separate C. vittatus whole,

soluble venom into five fractions, P1–P5 (Fig. 2A). Samples of each

fraction were tested for pain using the paw-licking assay on M.

musculus. The amount of time mice spent licking their paws in

response to an injection of water, scorpion venom, or venom

fractions differed significantly among treatment groups (for all

Figure 1. Mean (+1SE) duration of paw licking for Mus musculus
injected with scorpion venom or water. Samples of whole, soluble
venom from three scorpion species induced more hind-paw licking in
M. musculus than the water control during a ten-minute test period
following the injection (F = 37.25; df = 1, 28; P,0.0001). However,
Centruroides’ venom induced more paw licking than V. spinigerus
venom (F = 9.49; df = 1, 28; P = 0.0046). There was no statistical
difference in the duration of paw licking induced by C. vittatus and C.
exilicauda venom (F = 2.47; df = 1, 28; P = 0.1275).
doi:10.1371/journal.pone.0023520.g001

Figure 2. Effect of C. vittatus venom and venom fractions on
paw-licking behavior in Mus musculus. A. High performance liquid
chromatography (HPLC) profile of C. vittatus venom fractions. Whole,
soluble venom from C. vittatus was separated into five fractions (peaks:
P1, P2, P3, P4, P5). Each fraction was isolated and tested for pain using
the paw-licking assay in M. musculus. B. Mean (+1SE) duration of paw
licking for M. musculus injected with water, scorpion venom, or venom
fractions. Paw licking was recorded for five minutes following the
injection. P4 was the only fraction that was significantly more painful
than water (P,0.0001) and P4 induced as much pain as whole venom
(P = 0.9525). Histograms showing the same letter did not differ at the
P,0.05 level of significance using Tukey’s HSD test.
doi:10.1371/journal.pone.0023520.g002
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treatment groups n = number of mice; water, 0.11 sec68.35,

n = 5; C. vittatus venom, 86.87 sec67.62, n = 6; P1, 33.00 sec6

10.77, n = 3; P2, 9.33 sec610.77, n = 3; P3, 1.23 sec67.05, n = 7;

P4, 75.73 sec68.35, n = 5; P5, 15.66 sec610.77, n = 3; Fig. 2B) as

confirmed by an ANOVA test (F = 19.89; df = 6, 25; P,0.0001).

Multiple comparisons using Tukey’s HSD identified a single

venom fraction, P4, that produced as much pain as whole venom

(P = 0.9525; histograms representing fractions that did not differ at

the P,0.05 level of significance using Tukey’s HSD test were

labeled with the same upper case letter; Fig. 2B). Fraction P4 was

also the only fraction that was significantly more painful than

water (P,0.0001).

Mass spectrometry analysis showed that P4 contained three to

four different components (data not shown). HPLC separation of

P4 produced four subfractions, P4-1–P4-4 (Fig. 3A). Samples of

each subfraction were isolated and tested for pain in M. musculus

using the paw licking assay. To reduce the amount of sample

consumed and the number of mice used, only two tests were

conducted per subfraction. Each sample was tested on two mice

and each mouse was injected only once. The four subfractions

differed dramatically in the duration of paw licking they produced.

Results from the first and second tests showed that subfraction P4-

1 had no effect on paw licking, P4-2 and P4-3 induced a brief

amount of paw licking, and P4-4 produced the longest duration of

paw licking (Fig. 3B). There also appear to be differences in the

latency to induce paw licking in the three subfractions causing

pain. For example, P4-2 produced paw licking in each of two test

mice 15 seconds after injection of the sample. P4-3 produced paw

licking 10 seconds and 30 seconds after injecting the sample into

the first and second test mice, respectively. P4-4 produced paw

licking at 60 seconds after injection into the first test mouse and

30 seconds after injection into the second test mouse. Paw licking

increased during the second minute of the test and peaked from

three to five minutes. Mice injected with P4-4 were still licking

their paws at the end of the five-minute test period.

Mass spectrometry analysis
We used matrix-assisted laser desorption ionization time of

flight (MALDI TOF) technology to determine the molecular mass

of P4-4. Mass spectrometry analysis showed that subfraction P4-4

is a single peptide with a molecular mass of 6904.2 atomic mass

units (amu, data not shown). These results demonstrate that P4-4

has a mass characteristic of scorpion toxins that bind Na+

channels. Scorpion Na+ channel toxins, also known as long-chain

toxins, are polypeptides that have a mass ranging from 6500 to

8500 amu [6]. This suggests that peptides in the venom of C.

vittatus that produce pain may function by binding Na+ channels

expressed in pain-sensing neurons.

Amino acid sequence determination
Edman degradation provided the initial 40 amino acids from

the N-terminal sequence of P4-4 (Fig. 4A). A BLAST (NCBI)

search using the N-terminal sequence confirmed that P4-4 has a

primary structure that is characteristic of scorpion toxins that bind

Na+ channels. C. vittatus P4-4 was then assigned the name CvIV4

following the general guidelines for nomenclature of scorpion Na+

channel toxins.

Isolation of venom gland mRNA encoding CvIV4
A comparison of the N-terminal sequence for CvIV4 with other

scorpion Na+ channel toxins revealed that CvIV4 has a primary

structure similar to alpha (a) toxins. The first seven amino acid

residues and the position of the first four cysteines are identical to a

number of scorpion toxins classified as a-toxins. However, CvIV4

also contains sequence that is unique. Given that the number of

amino acid residues identified from direct sequencing of a peptide

is limited, we isolated mRNA from the venom gland and

sequenced the cDNA that encodes CvIV4 so that we could

compare its structure with other scorpion a-toxins. Total RNA

was isolated from the venom gland of two specimens of C. vittatus

and reverse transcribed to produce cDNA. The gene encoding

CvIV4 (Fig. 4B) was cloned and sequenced from this cDNA

sample in three steps. In the first step, degenerate primers (see

Table 1 for all primer sequences) designed from scorpion Na+

channel toxin sequences (NCBI) were used to amplify gene

sequence corresponding to the initial 148 nucleotides of the

mature toxin (approximately position 99-249, Fig. 4B). In the

second step, nested gene-specific forward primers were designed

from the nucleotide sequence obtained during the first step. These

forward primers were paired with an anchored oligo d(T) reverse

primer to amplify the gene from the middle of the toxin to the

poly-A tail (approximately position 124 to 389, Fig. 4B). In the

third step, nested gene-specific reverse primers were designed from

nucleotide sequence obtained during the first and second steps.

Nested gene-specific reverse primers were paired with 59 RACE

forward primers to amplify the gene from the middle of the toxin

to the 59 UTR (approximately position 1 to 297, Fig. 4B).

Figure 3. Effect of C. vittatus venom P4 subfractions on paw-
licking behavior in Mus musculus. A. High performance liquid
chromatography (HPLC) profile of C. vittatus venom P4 subfractions.
Fraction P4 was separated into four subfractions (P4-1, P4-2, P4-3, P4-4).
B. Duration of hind-paw licking by M. musculus injected with C. vittatus
P4 subfractions. Each sample was tested on two mice and each mouse
was injected only once. Paw licking was recorded for five minutes
following the injection. The paw licking values from both the first and
second tests are shown in plot. Note, values for the first and second
tests for P4-1 are identical and markers overlap.
doi:10.1371/journal.pone.0023520.g003
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An alignment of the N-terminal sequence obtained from Edman

degradation of the CvIV4 peptide with a translation of the

nucleotide sequence obtained from C. vittatus venom gland cDNA

shows that we isolated the gene that encodes CvIV4 (Fig. 4A). Of

the initial 40 amino acid residues from the peptide, 35 are identical

to the gene translation (five residues at the C-terminal end of the

peptide could not be identified using Edman degradation). In

addition, the first four cysteines are located in the same positions in

both the peptide and translated gene. BLAST (NCBI) searches

using both the CvIV4 nucleotide sequence and translated protein

identified similar Na+ channel toxins from several other scorpion

species. An alignment of the translated gene for CvIV4 with toxins

from seven other species shows that CvIV4 is most similar to

CeII8, a Na+ channel toxin isolated from the venom of the

Mexican scorpion Centruroides elegans (Fig. 5). CvIV4 and CeII8

share 64% of their amino acid residues. The first seven amino

acids from both toxins are identical and seven of their eight

cysteines (cysteines 1, 2, 3, 4, 5, 7, 8) are located in the same

positions. The location of cysteine 6 differs by only one residue

position. Interestingly, CeII8 has a primary structure similar to

other scorpion a-toxins, but is classified as a beta (b) toxin based

on electrophysiological assays [27]. CvIV4 shares over 50% of its

amino acid residues with six additional scorpion Na+ channel

toxins (Fig. 5). The initial seven amino acid residues from these

toxins are highly conserved and their eight cysteines are located in

similar positions. Ts3 and TsV, isolated from the venom of the

South American scorpion Tityus serrulatus, are classified as a-toxins

based on electrophysiological data. Tst3 and TbTx5, isolated

from the South American scorpions T. stigmurus and T. bahiensis

respectively, are classified as a-toxins based solely on sequence

similarity to other a-toxins. Pg8, isolated from the African scorpion

Parabuthus granulatus, and LmNaTx10, isolated from the Asian

scorpion Lychas mucronatus, are also classified as a-toxins based

solely on sequence similarity.

Effects of CvIV4 on VGSC subtypes
Effects of CvIV4 on Na+ current. CvIV4 induces pain in

mammals. Pain sensation is regulated, in part, by three VGSC

subtypes (Nav1.7, Nav1.8, Nav1.9) that are expressed in nociceptors.

We tested CvIV4 on hNav1.7 expressed in HEK cells and on

dissociated rat DRG, which express all three subtypes. Nav1.7 is

tetrodotoxin sensitive (TTX-S) while Nav1.8 and Nav1.9 are

tetrodotoxin resistant (TTX-R). Cells were depolarized to 210 mV

from a holding potential of 2100 mV and Na+ current was

measured before and after the application of CvIV4. A comparison

of pre- and post-toxin current traces shows that CvIV4 slowed the

Figure 4. Amino acid sequence of subfraction P4-4 (CvIV4) and C. vittatus venom gland cDNA that encodes toxin CvIV4. A.
Comparison of amino acid sequences representing CvIV4. The upper sequence represents the initial 40 amino acids of the purified peptide obtained
from Edman degradation. Amino acid residues that could not be determined are shown as ‘‘X’’. The lower sequence represents the translation of
nucleotides from the cDNA encoding CvIV4 isolated from C. vittatus venom gland. Sequences representing the peptide and translated gene are
identical with the exception of the five amino acid residues (X’s) that could not be identified. B. Nucleotide sequence from venom gland cDNA that
encodes toxin CvIV4. Nucleotide sequence from the 59 and 39 untranslated region (UTR) is shown as lower case letters. Sequence from the mature
peptide is shown as upper case letters. Amino acid residues translated from nucleotide sequence are shown as upper case letters positioned below
their corresponding codons. Amino acids designating the signal peptide are underlined and shown in bold.
doi:10.1371/journal.pone.0023520.g004
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fast inactivation of Nav1.7, prolonging Na+ current through the pore

(Fig. 6A). However, CvIV4 had no effect on TTX-R current

recorded from DRG. As Nav1.9 currents disappear very quickly

under standard recording conditions in DRG neurons, the majority

of the TTX-R current recorded from the DRG neurons reflects the

activity of Nav1.8 currents. We did not see evidence that CvIV4

enhanced Nav1.9 currents in the DRG neurons. Thus, the results

identify Nav1.7 as the target of CvIV4, demonstrate that Nav1.8 is

not a target and suggest that CvIV4 does not enhance activity of

Nav1.9 currents.

Our molecular analyses of C. vittatus venom gland mRNA showed

that CvIV4 has a primary structure similar to a-toxins produced by

other scorpions. Scorpion a-toxins slow fast inactivation in VGSCs

and prolong Na+ current through the pore. By slowing inactivation

and prolonging current in Nav1.7, the results confirm that CvIV4

functions as an a-toxin.

We tested CvIV4 on four additional Na+ channel isoforms

expressed in HEK cells (rNav1.2, rNav1.3, rNav1.4, hNav1.5).

CvIV4 (1 mM) slowed the fast inactivation and prolonged current

in Nav1.2, Nav1.3, and Nav1.4, but had minimal affect on Nav1.5

(Fig. 6A). The dose-response curves for CvIV4 show that the toxin

produced the strongest effects on Nav1.2 and Nav1.4, moderately

strong effects on Nav1.3 and Nav1.7, and weak effects on Nav1.5

(EC50 values, in mM: Nav1.2, 0.58; Nav1.3, 1.31; Nav1.4, 0.53;

Nav1.5, 23.3; Nav1.7, 1.34; Fig. 6B). These results show that

CvIV4 is not selective for Nav1.7.

Effects of CvIV4 on Nav1.7. We wanted to know if CvIV4

had additional effects on the voltage-dependent properties of

Nav1.7. To test this, HEK cells expressing Nav1.7 were held at

2100 mV and then depolarized for 50 msec, in 5 mV steps, to

+120 mV (Fig. 7A). Na+ currents were measured before (Fig. 7B)

and after (Fig. 7C) the application of CvIV4. A comparison of

current traces pre- and post-toxin showed that CvIV4 prolonged

the flow of Na+ current through the channel, but did not affect the

peak amplitude of current. The fraction of peak current remaining

at 5 ms was approximately 0.5 (I5 ms). A current-voltage (I–V) plot

comparing peak currents pre- and post-toxin with the fraction of

current remaining at 5 ms (post-toxin) showed differences in the

amount of current remaining at different membrane potentials

(data not shown). This suggested that there might be a voltage-

dependent effect on toxin binding. To address this, we plotted the

percentage increase in the fraction of current at 5 ms (post-toxin)

Figure 5. Comparison of CvIV4 translated cDNA with Na+ channel toxin sequence from other scorpion species. CvIV4 (underlined) is
aligned with seven toxin sequences from other species. Alignment is based on cysteine residue position (shaded background) and toxins are
arranged in order of descending percent identity with respect to CvIV4. Percent identify (%ID) is estimated from the number of amino acids shared by
two toxins (NCBI Protein BLAST). While CvIV4 (JF938594) and CeII8 (P0CH40) are structurally similar (64% ID), they are functionally different as CvIV4 is
classified as an a-toxin and CeII8 as a b-toxin (classification based on electrophysiological recordings from Na+ channel subtypes). CvIV4 shares over
50% of its amino acid residues with the remaining six toxins. Ts3 (P01496) and TsV (P46115) are classified as a-toxins based on electrophysiological
studies of mammalian cells and tissues. Tst3 (P0C8X5), Pg8 (ACD35698), TbTx5 (P0C5K8) and LmNaTx10 (ACD35698) are classifed as a-toxins based
solely on sequence similarity. Cv = Centruroides vittatus, Ce = Centruroides elegans, Tst = Tityus stigmurus, Ts = Tityus serrulatus, Pg = Parabuthus
granulatus, Tb = Tityus bahaensis, Lm = Lychas mucronatus. GenBank accession numbers are shown in parentheses following the toxin name.
doi:10.1371/journal.pone.0023520.g005

Figure 6. Effects of toxin CvIV4 on voltage-gated sodium channel isoforms. A. CvIV4 (1 mM) slowed the fast inactivation of isoforms Nav1.2,
Nav1.3, Nav1.4 and Nav1.7 expressed in human embryonic kidney cells (HEK). In contrast, CvIV4 had a minimal effect on Nav1.5 (expressed in HEK) and
no effect on neuronal TTX-R sodium current isolated from adult rat dorsal root ganglia (DRG) neurons (500 nM TTX was used to block TTX-S sodium
current). All sodium current traces were elicited by depolarizing to 210 mV from a holding potential of 2100 mV. B. Dose-response curves for CvIV4
slowing the fast inactivation of five sodium channel isoforms (Nav1.2–1.7).
doi:10.1371/journal.pone.0023520.g006
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vs. membrane potential (Fig. 7D). The results showed that effects of

the toxin increased from 260 mV to reach a peak at approximately

230 mV. The effects of the toxin began to decrease at 0 mV,

reaching the lowest point around 100 mV. The results demonstrate

that the toxin requires depolarizing potentials to slow channel

inactivation, however, strong depolarizing potentials decrease the

effects of the toxin.

While CvIV4 slowed channel inactivation, it had no effect on

the voltage dependence of steady-state inactivation (Fig. 7E). The

effect of CvIV4 on the voltage-dependence of activation was

minimal, as the membrane potential was shifted by only 24 mV

(Fig. 7E).

We also analyzed the effects of CvIV4 on the rate of recovery

from inactivation. Cells were held at 2100 mV and then given a

depolarizing prepulse to 0 mV for 20 msec, followed by a step

back to 2100 mV with increasing duration to allow channels to

recover from inactivation. This was followed by a 20 msec test

pulse to 0 mV to activate those channels that had recovered from

inactivation. The results demonstrated that 1 mM of toxin

decreases the time constant for recovery by approximately 20%

(Fig. 7F).

Effects of CvIV4 on Nav1.2, 1.3, 1.4, 1.5. CvIV4 also

prolonged Na+ current through four additional VGSC isoforms

(Nav1.2, Nav1.3, Nav1.4, Nav1.5). Plots of the percentage increase

in current at 5 ms (post-toxin) against membrane potential showed

that the effects of CvIV4 are voltage-dependent (Fig. 8A). The

results also showed that CvIV4 differed in its effects depending on

the channel subtype. Nav1.3, Nav1.2 and Nav1.4 showed increases

in the fraction of current present at 5 ms (I5 ms) that peaked at

40%, 50%, and 60%, respectively. The peak amplitude occurred

at approximately 0 mV for all three subtypes and strong

depolarizing potentials (+50 to +100 mV) decreased the effects

of the toxin. In contrast, CvIV4 had minimal effects on Nav1.5,

with the fraction of current at 5 ms reaching a peak of only 10%

around 220 mV.

We tested the effects of CvIV4 on the voltage-dependence of

activation and inactivation for Nav1.2, Nav1.3, Nav1.4 and

Nav1.5. A comparison of the fraction of current recorded over a

range of membrane potentials (pre- and post-toxin) for all four

subtypes shows that CvIV4 does not shift the voltage-dependence

of either activation or inactivation for any of the subtypes (Fig. 8B).

Comparison of CvIV4 with scorpion toxins that target
Nav1.7

CvIV4 has a primary structure similar to seven other scorpion

toxins (Fig. 5). However, of these seven toxins, only CeII8 has been

tested on Nav1.7. The remaining six toxins have not been tested

on Nav1.7. We wanted to compare the sequence for CvIV4 with

other scorpion toxins that modulate Nav1.7. A literature search

revealed four additional toxins isolated from Old World scorpions

[ODI, Odonthobuthus doriae; AahII, Androctonus australis Hector;

LqhIII, Leiurus quinquestriatus hebraeus; BmK MI (BmK I), Buthus

martensii Karsch] that target Nav1.7 [19,20]. Interestingly, all of

these peptides function as a-toxins, slowing the fast inactivation

and prolonging Na+ current through Nav1.7. While the biological

activity of these toxins is similar to CvIV4, an alignment of CvIV4

with ODI, AahII, LqhIII and BmK MI (BmK I) showed that the

primary structure of CvIV4 is not similar to these Old World a-

toxins (Fig. 9). However, the number and position of cysteines is

conserved. In addition, there are six hydrophobic amino acids that

are conserved between CvIV4 and these Old World toxins that

correspond to positions important for the structure and function of

Figure 7. Effects of toxin CvIV4 on activation and inactivation of isoform Nav1.7 expressed in Hek293 cells. A. Depolarizing pulses in 5-
mV increments were used to elicit current from Nav1.7 expressed in HEK cells before (B) and after (C) the application of 1 mM CvIV4. D. Effects of 1 mM
toxin on the current-voltage relationship of Nav1.7. Currents not inactivated at 5 ms in the presence of 1 mM toxin were plotted as the percentage
increase in the fraction of current at 5 ms (I5 ms). E. Effects of CvIV4 on steady-state activation and inactivation of Nav1.7. When data points were fitted
with a Boltzmann equation, the V1/2 values were 290.261.2 and 294.161.6 mV before (filled circles) and after (open circles) toxin treatment,
respectively. F. Effect of CvIV4 on rate of recovery from inactivation at 2100 mV. Cells held at 2100 mV were given a depolarizing prepulse to 0 mV
for 20-ms followed by a step back to 2100 mV with increasing duration to allow channels to recover from inactivation, followed by a 20-ms test
depolarization of 0 mV to activate those channels that had recovered from inactivation. Data points presented as a fraction of the maximum
recovered current were fitted with single exponential function to estimate the time constant. The time constants were 58.7615.4 and 48.2615.3 ms
before (filled circles) and after (open circles) toxin treatment, respectively.
doi:10.1371/journal.pone.0023520.g007
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a-toxins [28]. CvIV4 also shares a lysine with AahII (position 60,

Fig. 9) that is critical for the biological activity of AahII [29].

Localization of amino acids critical for CvIV4 activity
Scorpion a-toxins bind to VGSCs at site 3 (Domain IV S3–S4

loop) [28,30]. To localize the residues in the DIV S3–S4 loop that

are critical for CvIV4 activity, we made two mutants of hNav1.7

channels and expressed them in HEK cells. The acidic residue Asp

(D, position 1586 in hNav1.7) is important for a-toxin activity. We

substituted the negatively charged Asp with a neutral Ala

(D1586A) and decreased the effect of CvIV4 on hNav1.7

(Fig. 10A). The acidic residue Glu (E, position 1589 in hNav1.7)

is also critical for a-toxin activity. Glu occurs at this same position

in Nav1.3 and Nav1.2, also targets of CvIV4. However, in Nav1.4

(target of CvIV4) a Gln (Q) occurs at this position. We substituted

the Glu in hNav1.7 with Gln (E1589Q) and reduced the effects of

CvIV4 (Fig. 10A). The results suggest that both Asp1586 and

Glu1589 are important for the effects of CvIV4 on Nav1.7.

However, while both substitutions reduced the effects of CvIV4 on

Nav1.7, neither abolished the effects of this toxin, which suggests

other residues in DIV S3–S4, or other channel regions, are

necessary for the activity of CvIV4.

Discussion

Differences in the pain-inducing capability of venom
Anecdotal reports suggest that the stings of buthid scorpions are

intensely painful, more so than the stings of other scorpions.

However, no studies have used a mouse model to quantify and

compare the pain induced by buthid and non-buthid venoms

[16,21,31]. We found that the venom of one species of scorpion

from the family Vaejovidae (V. spinigerus), whose sting is reported to

be moderately painful in humans, caused significantly more paw

licking in mice than did an injection of water. However, the venom

Figure 8. Effects of CvIV4 on activation and inactivation of Nav1.2, Nav1.3, Nav1.4 and Nav1.5. 50-ms depolarizing pulses were used to
elicit Na+ current from channel isoforms expressed in HEK cells before and after the application of 1 mM CvIV4. Cells were held at 2100 mV.
Depolarizing potentials ranged from 2100 to +120 mV in 5-mV increments. A. Currents not inactivated at 5 ms in the presence of 1 mM toxin were
plotted as the percentage increase in the fraction of current at 5 ms (I5 ms). B. Effects of CvIV4 on steady-state activation and inactivation of Na+

channel isoforms.
doi:10.1371/journal.pone.0023520.g008

Figure 9. Comparison of CvIV4 with Old World a-toxins that modulate Nav1.7. CvIV4 is aligned with ODI, BmK MI, AahII and LqhIII, Old
World a-toxins that slow the fast inactivation of Nav1.7. The biological activity of CvIV4 is similar to these peptides, but its primary structure is not.
Gaps were introduced to align cysteine residues (white font with black background). Hydrophobic residues (dark shaded background) that are critical
for a-toxin structure and function are conserved in CvIV4 at positions 5, 14, 22, 36, 43 and 49 [28]. CvIV4 shares a lysine (light shaded background)
with AahII (position 60) that is critical for the biological activity of AahII [29]. Additional amino acids that are identical among toxins are marked with
an asterisk (*). GenBank accession numbers: CvIV4 (JF938594), ODI (P84646), BmK MI (P45697), AahII (P01484), LqhII (P59355). MAFFT version 6 used
for sequence alignment (http://mafft.cbrc.jp/alignment/software/).
doi:10.1371/journal.pone.0023520.g009
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of two buthid scorpions (C. vittatus and C. exilicauda) induced

significantly more paw licking in mice than V. spinigerus venom.

These results demonstrate that vaejovid venom is painful to

mammals, however, the results agree with anecdotal reports that

buthid venom is considerably more painful. The results also show

that the sensation of pain produced by buthid stings is conserved

across mammals. We also observed differences between the two

species of Centruroides in their pain-inducing capability. Such

variability in painfulness may reflect different ecological and/or

evolutionary histories of these scorpions with their predators

[32,33].

Pain-inducing components in C. vittatus venom (CvIV4)
We screened fractions of C. vittatus venom for pain-inducing

capability and identified four fractions that produced paw licking

in mice. One of those fractions (P4) caused a response in mice

similar to the response induced by the whole venom. Fraction P4

contained four peptides, three of which produced paw licking. Of

those three, P4-4 (CvIV4) produced more than twice as much paw

licking as the other two peptides. While CvIV4 generated more

paw licking than the other peptides, its effects were not immediate,

but commenced between 30 and 60 seconds following an

injection. Moreover, paw licking was sporadic during the first

minute following the injection and did not reach a peak until the

third and fourth minutes of the test. In contrast, injections of either

whole venom or fraction P4 produced an immediate response.

Humans report that Centruroides’ stings produce immediate, intense

pain. This suggests that other components in C. vittatus venom may

be necessary for producing an immediate response. While the

other three peptides in fraction P4 (P4-1, P4-2, P4-3) did not

generate as much paw licking as CvIV4, they may be responsible

for initiating an immediate pain response. Fractions P1, P2 and P5

produced low to moderate amounts of paw licking, while fraction

P3 failed to produce a response. It is possible that one or more of

these fractions, either individually or in combination, are critical

for initiating an immediate pain response in mammals.

Structural characteristics of CvIV4
The molecular mass and the initial 40 amino acids of the

N-terminal sequence for CvIV4 are characteristic of scorpion

toxins that bind Na+ channels [6,34]. Scorpion toxins that bind

voltage-gated Na+ channels are polypeptides composed of a single

strand of amino acids. The peptides range from 58 to 76 amino

acids in length (6500–8500 amu) and they contain eight cysteines

that form four disulfide bonds. The conserved structural scaffold of

these peptides consists of one a-helix and two or three strands of b-

sheet, typically arranged in the order babb. We isolated cDNA

clones from C. vittatus venom gland mRNA and identified a clone

whose translated nucleotide sequence matched the N-terminal

amino acid sequence of CvIV4. A comparison of the translated

cDNA with sequences from other scorpion toxins confirmed that

CvIV4 is a Na+ channel toxin.

Na+ channel toxins can be divided into two groups (alpha and

beta) based on their functional effects [6,7]. Beta (b) toxins shift the

voltage-dependence of activation to more negative potentials,

making the channel more likely to open at membrane potentials

where activation would normally not occur. Alpha (a) toxins

inhibit the fast inactivation mechanism, prolonging Na+ current

through the channel. While a- and b-toxins are structurally

conserved, they are not identical. A BLAST search (NCBI)

revealed that the primary structure of CvIV4 is most similar to the

structure of venom peptides classified as a-toxins [6,28,35]. CvIV4

contains eight cysteine residues whose pattern is highly similar to

other scorpion a-toxins. In addition, the composition and location

of amino acid residues corresponding to the a-helix and b-sheets

conserved among a-toxins are also observed in CvIV4. The

primary structure of CvIV4 is most similar to CeII8, a toxin

recently isolated from the venom of Centruroides elegans [27]. CvIV4

and CeII8 share 64% of their amino acids, however, CeII8 is

classified as a b-toxin based on its functional effects.

Functional characteristics of CvIV4
Noxious stimuli activate nociceptors located in the peripheral

sensory pathway. Nociceptors express three different VGSC

subtypes (Nav1.7, Nav1.8, Nav1.9) that play a role in regulating

pain perception. We tested CvIV4 on hNav1.7 expressed in HEK

cells and on whole cell Na+ currents recorded from rat DRG. We

found that the toxin slowed the fast inactivation of hNav1.7,

however, CvIV4 had no effect on TTX-R currents recorded from

DRG. Nav1.7 is TTX-S, while both Nav1.8 and Nav1.9 are TTX-

R. Thus our findings demonstrate that CvIV4 targets Nav1.7 and

not Nav1.8. Although the pharmacology of Nav1.9 currents are

Figure 10. Effects of CvIV4 on mutant Nav1.7 channels expressed in HEK293 cells. A. Substitution of negatively charged amino acids in the
Domain IV S3–S4 loop with neutral residues (D1586A, E1589Q) reduces the effects of 1 mM CvIV4 on Nav1.7. B. Dose-response curves for CvIV4 on
wildtype and mutant Nav1.7 channels.
doi:10.1371/journal.pone.0023520.g010
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harder to study due to pronounced current run-down, our data

also suggest that CvIV4 does not enhance Nav1.9 currents. This

suggests that CvIV4 induces pain in mammals by slowing the fast

inactivation of Nav1.7.

By slowing the fast inactivation of Nav1.7, CvIV4 induced a

persistent Na+ current, but did not change the peak amplitude of

the current. The persistent Na+ current could be abolished by

strong depolarizing membrane potentials, which suggests that

CvIV4 dissociates from its target at highly positive membrane

potentials. CvIV4 had no effect on the voltage-dependence of

inactivation and shifted the voltage-dependence of activation to

the left by only 4 mV. All of these effects are characteristic of the

activity reported for scorpion a-toxins [7,17,19,20,28,30,36]

confirming that CvIV4 functions as an a-toxin. Moreover, these

findings provide a mechanism to explain how CvIV4 produces the

sensation of pain in mammals. By prolonging Na+ current in

Nav1.7, CvIV4 would cause nociceptors to become hyper-

excitable, thus producing the sensation of pain.

Purified samples of CvIV4 induced paw licking in mice,

however, the response was delayed as compared to whole venom

or fraction P4. It is possible that one of the other fractions or

peptides isolated from C. vittatus venom is necessary for initiating

immediate pain sensation. A recent study of Centruroides elegans

venom components showed that CeII8 binds Nav1.7 expressed in

Xenopus oocytes [27]. In contrast to CvIV4, CeII8 acts as a b-toxin

and shifts the voltage-dependence of activation to more negative

potentials, making Na+ channels more likely to open. Because b-

toxins make Na+ channels more likely to open at subthreshold

membrane potentials, it is plausible that b-toxins are responsible

for inducing the immediate sensation of pain associated with

scorpion stings. However, the study of Centruroides elegans venom did

not directly test whether CeII8 produces paw licking in mammals.

Results from the electrophysiology data showed that micro-

molar concentrations of CvIV4 were required to slow the

inactivation of Nav1.7. However, we do not know the concentra-

tion of CvIV4 delivered in a single sting. Nor do we know whether

or how CvIV4 interacts with other toxins in the venom to produce

the sensation of pain in rodents. Interestingly, a recent study in

Xenopus oocytes indicated that sodium channel b subunits can

modulate the affinity of Nav1.8 channels for conotoxins [37].

Other studies have reported that b subunits do not alter the

interaction of sodium channels with neurotoxins in mammalian

cells [38]. It is possible that specific b1–4 subunit combinations

might alter the affinity of specific sodium channel isoforms for

CvIV4. Unfortunately, it is not known which b subunits associate

with Nav1.7 in DRG neurons.

CvIV4 also slowed the fast inactivation and produced a

persistent Na+ current in rNav1.2, rNav1.3 and rNav1.4. However,

CvIV4 had a minimal affect on hNav1.5. These findings show that

CvIV4 is not selective for Nav1.7, but instead binds several VGSC

isoforms. This is in contrast to CeII8, which is selective for Nav1.7

[27]. Given that CvIV4 and CeII8 are similar in structure but

differ in function and isoform selectivity, a comparison of these two

toxins should improve our understanding of the structural

characteristics that determine New World scorpion toxin selectiv-

ity and function.

Four Old World a-toxins, ODI, isolated from the Iranian

scorpion Odonthobuthus doriae, AahII, from the African scorpion

Androctonus australis Hector, LqhIII, from the Middle Eastern

scorpion Leiurus quinquestriatus hebraeus and BMK MI (BmK I), from

the Asian scorpion Buthus martensii Karsch, all slow the inactivation

of Nav1.7 [16,17,19,20,31]. Anecdotal reports suggest that all four

of these scorpion species produce painful stings. However, of the

four toxins, only BmK MI (BmK I) has been tested for its pain-

inducing capability in mammals. While the biological activity of

CvIV4 is similar to these four toxins, the primary structure of

CvIV4 is not similar. However, eight cysteines and six hydropho-

bic amino acids that are critical for the structure and function of a-

toxins are conserved between CvIV4 and these four toxins [28].

Moreover, CvIV4 shares a lysine residue with AahII that is

important for the activity of AahII [29]. These results raise

intriguing questions about the evolution of pain-inducing toxins in

buthid scorpions. Old and New World scorpions diverged from a

common ancestor approximately 150 million years ago [39]. It is

possible that pain-inducing toxins evolved before the split between

Old and New World scorpions, and were then conserved.

Alternatively, pain-inducing toxins may have evolved separately

in both groups since their divergence. Identification and

comparison of additional pain-inducing toxins from both Old

and New World scorpions would provide insight into the evolution

of these toxins in Buthidae scorpions.

For scorpions like C. vittatus that are small and have slender

pincers, venom that induces pain may provide the opportunity to

escape from potential predators. In a series of staged feeding trials,

wild-caught grasshopper mice (Onychomys arenicola, O. torridus),

voracious predators of scorpions, were fed a variety of their local

prey items, including Centruroides spp., Vaejovis spp. and field

crickets [32]. Both O. arenicola and O. torridus dropped C. vittatus and

C. exilicauda (respectively) significantly more often than they

dropped the Vaejovis species or the crickets. This suggests that

CvIV4 may function as a defense against predators of C. vittatus.
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