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Abstract

The prediction of antibody-protein (antigen) interactions is very difficult due to the huge variability that characterizes the
structure of the antibodies. The region of the antigen bound to the antibodies is called epitope. Experimental data indicate
that many antibodies react with a panel of distinct epitopes (positive reaction). The Challenge 1 of DREAM5 aims at
understanding whether there exists rules for predicting the reactivity of a peptide/epitope, i.e., its capability to bind to
human antibodies. DREAM 5 provided a training set of peptides with experimentally identified high and low reactivities to
human antibodies. On the basis of this training set, the participants to the challenge were asked to develop a predictive
model of reactivity. A test set was then provided to evaluate the performance of the model implemented so far. We
developed a logistic regression model to predict the peptide reactivity, by facing the challenge as a machine learning
problem. The initial features have been generated on the basis of the available knowledge and the information reported in
the dataset. Our predictive model had the second best performance of the challenge. We also developed a method, based
on a clustering approach, able to ‘‘in-silico’’ generate a list of positive and negative new peptide sequences, as requested by
the DREAM5 ‘‘bonus round’’ additional challenge. The paper describes the developed model and its results in terms of
reactivity prediction, and highlights some open issues concerning the propensity of a peptide to react with human
antibodies.
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Introduction

Given their key role in the immune response, antibody-protein

interactions play a major role in a variety of clinical domains

(infectious diseases, autoimmune diseases, oncology, vaccination

and therapeutic interventions). For this reason, the prediction of

antibody-protein interactions can be of critical importance [1–2].

The antibodies have a wide range of heterogeneous structures

generated by genomic recombination: the number of human

antibodies is estimated to be around 1010 and 1012 [3]. The

antibodies interact with proteins (called antigens) through their

binding sites (called paratopes).

The region of the antigen bound with the paratope is called

epitope. Two types of epitopes are typically distinguished in

protein-antibody interaction studies: conformational and linear

epitopes. A linear/sequential epitope is recognized by its linear

sequence of amino acids (primary structure). In contrast, most

antibodies recognize conformational epitopes with a specific three-

dimensional structure.

All potential linear epitopes of a protein are short peptides that

can be synthesized and arrayed on solid supports, e.g. glass slides

[4]. By incubating these peptide arrays with antibody mixtures,

such as human serum or plasma, it is possible to determine specific

interactions between antibodies and peptides.

The binding site of a linear epitope has a typical length ranging

between 8 and 10 amino acids. An antibody binds to its epitope/

peptide independently of the physical position of the binding site

within the peptide. Every amino acid has a different impact on the

epitope reactivity; this is not only due to its physicochemical

properties but also to its interaction with the neighboring residues

within the whole peptide sequence.

It has been often assumed that a specific antibody selectively

binds to a specific sequence. However, experimental data indicate

that many antibodies bind to a panel of related (or even distinct)

peptides with different affinities. The open question is whether

there exist rules that enable the prediction of common peptide/

epitope sequences, which can be recognized by human antibodies.

In order to address this problem, the DREAM (Dialogue for

Reverse Engineering Assessments and Methods) Consortium

issued the Epitope-Antibody Recognition (EAR) Specificity

Prediction Challenge (Challenge 1). In the experimental work

leading to this challenge, 75534 peptides were incubated with

commercially available intravenous immunoglobulin (IVIg) frac-

tions. IVIg is a mixture of naturally occurring human antibodies

isolated from up to 100000 healthy individuals. From this dataset,

high-confidence negative and positive pools of peptides were

determined. Training and test datasets were assembled from these

peptide pools. The epitope-antibody recognition challenge consists

of determining whether each peptide in the test set belongs to the

positive or negative set starting from the data of the training set.

A so-called ‘‘bonus round’’ was proposed beside this main

challenge. It consists of generating ‘‘in-silico’’ a list of positive and
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negative new peptide sequences, which should significantly differ

from the ones contained in the training set. The lists provided by

the best performing teams will be subsequently experimentally

evaluated.

In the literature, epitope prediction has been focused

primarily on sequence-dependent methods based on various

amino acid properties, such as hydrophilicity, solvent accessi-

bility, secondary structure and others [5–16]. Several methods

based on machine learning approaches have been applied, too

[17]. They comprise hidden Markov models (HMM), artificial

neural networks (ANN) and support vector machines (SVM)

[18–22]. Machine learning methods have been frequently

coupled with the so-called scale-based approach; this approach

exploits one or more scales of amino acid properties to weight

each residues of the sequence of interest. In particular it has

been shown that the combination of different scales with several

machine learning algorithms have better performances than

single scale methods [23].

We coped with the DREAM challenge by resorting to a classical

supervised machine learning strategy with knowledge-based

feature construction. After the definition of the problem features,

we developed a logistic regression classifier that showed a very

good performance on the test set.

Moreover, we developed a new method for dealing with the

bonus round challenge and we generated a list of de-novo peptides

that will be further experimentally assessed.

Materials and Methods

Data sets
As mentioned in the introduction, one of the DREAM 5

challenges dealt with the prediction of the reactivity of peptides to

bind intravenous immunoglobulin (IVIg) antibodies. The chal-

lenge organizers made available a dataset that comprises

sequences of peptides, which either bind IVIg antibodies with

high affinity/avidity or not.

In particular 75534 peptides were incubated with commercially

available human IVIg fractions. A set of 6841 peptides with high

affinity was identified (positive set). From the same original set,

20437 peptides were identified showing no antibody binding

activity in any of the triplicate assays (negative set). Each of these

peptides is unique in terms of its amino acid sequence.

Most of these sequences are 15 amino acids long; however,

there are also sequences with different lengths (several of them

were 13 amino acids long, while a few were long 9, 16, 18, 20 and

21 amino acids).

A reactivity value was calculated for each peptide. The

reactivity values range from 1 to 65536. The reactivity of the

positive peptides ranges between 10000 and 65536, while this

value ranges from 1 to 1000 in the negative peptides case. The

training and test datasets were assembled from these two peptide

sets.

Training set. The training set contained 13638 peptides and

was created by selecting 3420 peptides from the positive set and

10218 peptides from the negative set. Two features of each peptide

were provided: the amino acid sequence and a measure of the

peptide reactivity to the IVIg antibodies. The predictive model of

the peptide reactivity was trained on this dataset.

Test set. The test set contained 13640 peptides and was

formed by grouping the remaining 3421 positive peptides and the

remaining 10219 negative peptides. Only the sequence of these

peptides was provided for the initial phase of the challenge, while

their class (positive or negative) was made available to us only

when the results of the challenge had been published.

Main challenge
The main challenge consists of determining whether peptide

reactivity with antibodies is strong or weak, i.e., whether a peptide

of the test set belongs to the positive or negative set. The goal is

therefore to exploit the training set to develop a predictive model,

taking into account the available information (e.g., the information

on amino acids and protein-protein interactions available in

biological databases). Participants are required to submit a ranked

list of the peptides in the test set, ordered according to the

predicted probability that the peptide belongs to the positive set

(predicted reactivity).

We have dealt with this challenge by applying a proper

supervised learning pipeline. The approach consisted in feature

selection, classification and cross-validation on the training set and

finally evaluation of the model on the test set. These steps followed

a crucial phase of knowledge-based construction of the initial set of

features.

In the following sub-sections, we will describe, step-by-step, the

procedure applied to develop and test the proposed predictive

model.

Feature construction. The construction of a proper set of

features is the most important step of the development of a

successful predictive model.

In particular, we considered two sets of features for every

peptide: the first set is computed from the peptide sequence, while

the second set is generated taking into account the entire training

set.

The values of all the features have been normalized between 0

and 1.

In order to generate the first set of features, we exploited

information about the peptides and the epitopes reactivity.

In more detail, we used the following peptide attributes:

1. The sequence length, i.e. the number of residues of the peptide.

2. The isoelectric point, computed by using the iterative method

described by Tiengo et al. [24].

3. The amino acid frequencies (24 features), calculated as the

occurrence of each amino acid along the peptide; the four

ambiguous amino acid B (asparagine or aspartic acid), X

(unspecified or unknown amino acid), Z (glutamine or glutamic

acid) and J (leucine or isoleucine) have also been considered.

As mentioned in the introduction, several approaches have been

used for epitope prediction; the so-called scale-based approach

exploited one or more scales of amino acid properties to weight

each residues of the sequence of interest [2,18,25–28]. The use of

multiple scales was essential to predict epitope location reliably, as

reported by Blythe et al. [29]. Therefore, we considered some of

the most promising amino acid properties reported in these

studies, by resorting to a set of widely used scales (i.e. the five scales

reported in Table 1) [9–13]:

1. The antigenicity was calculated as proposed by Kolaskar et al.

[9]. The frequency of the residue in antigenic determinants

(experimentally identified) was exploited to calculate the

antigenic propensity of each amino acid.

2. The accessibility was calculated on the basis of the scale

proposed by Janin et al. [10]. The importance of the

accessibility information is widely reported in the literature;

the hypothesis is that an accessible site is likely to be recognized

by the antibodies [25,30–32].

3. The hydrophilicity was computed following the scale proposed

by Parker et al. [11]. This scale was recently found to have

slightly better results than the other ones [2,33]. The hypothesis

Prediction of Peptide Reactivity
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for hydrophilicity is that the antigenic sites are on the surface,

so they are probably hydrophilic [5,11].

4. The flexibility was calculated with the scale proposed by

Bhaskaran et al. [12]. A high flexibility of the structure is

hypothesized to favor the propensity of a peptide to bind the

antibodies [34–35].

5. The beta-turn prediction was calculated by exploiting an

amino acid scale of propensities following the Chou-Fasman

method [2,8,13].

The five attributes described above were computed on the basis

of the correspondent amino acid scale, computing the maximum

value within a sliding window of 9 residues. The size of the sliding

window was chosen because it is known that the binding site

covered by an antibody typically includes a stretch of 8 to 10

amino acids [36–37].

The second set of features has been generated taking into

account the entire training set. To obtain such features, every

peptide was aligned with all the others by both the Needleman-

Wunsch algorithm (global alignment) and the Smith-Waterman

algorithm (local alignment) [38–39]. In this way, a scoring matrix

[13638613638] has been computed. In this way, we have

generated a set of additional features, as follows:

1. Global alignment. For every peptide we computed: the

maximum score obtained by the global alignment with every

negative peptides (MaxScore0_nw); the maximum score

obtained by the alignment against the positive set (MaxScor-

e1_nw); the difference between MaxScore1_nw and MaxScor-

e0_nw (DiffMaxScore_nw).

2. Local alignment. For every peptide we considered the

maximum score of the local alignment with the elements of

the positive set and with the elements of the negative set

(MaxScore0_sw, MaxScore1_sw), and the difference between

these maximum values, as well (DiffMaxScore_sw).

The rationale for selecting the features mentioned above is

related to the so-called classification for homology (sequence

similarity), which consists of classifying a sequence (in terms of

structure and function) looking at the most similar sequence in a

dataset of available sequences [40–41]. The principle is that

similar sequences have similar structures and, thus, similar

functions (in this case similar reactivities to antibodies) [42].

In our case, for example, a peptide has a high value of

MaxScore0_nw, if the negative examples contain at least another

very similar peptide. Moreover, the MaxScore feature is used to

check the importance of the absolute value of a good alignment,

while the DiffMaxScore attribute takes into account the difference

between class groups.

It is important to notice that the use of the information about

the class (i.e. positive or negative example) during the feature

generation phase requires to properly designing the cross-

validation phase in order to avoid overfitting.

Finally, the two types of alignments have been used to

understand whether the reactivity depends on the entire sequence

of the peptide (global alignment) or on a small portion (local

alignment), as hypothesized.

Feature selection. Because the training set was made of

13638 examples and the generated features were 37, a features

selection step was not mandatory. However, we decided to filter

the features to obtain a more parsimonious model. We resorted to

a filtering strategy because the use of wrapper methods would have

made the cross-validation approaches (and in particular the leave-

one-out strategy) computationally very demanding. We have

applied three different procedures for feature selection, thus

obtaining three different subsets of features.

N Subset A. No feature selection - the 37 features generated so far

are used.

N Subset B. Feature selection with the M5 method [43–44]; before

applying this approach, all the collinear attributes have been

eliminated.

N Subset C. Feature selection with the LASSO method (least

absolute shrinkage and selection operator) [45].

Cross-validation of the classifiers. As mentioned above,

the final aim of this challenge is to discover whether there exist rules

that enable to predict that a peptide/epitope sequence is recognized

by human antibodies. For this reason, we mainly considered

classifiers that provide a predictive model easy to be interpreted.

N Linear regression. Even if linear regression is a simplistic model

due to its strong assumptions, it gives the possibility to evaluate

the contribution of each single variable to classification. The

outcome variable we considered is the reactivity value, which

ranges from 1 to 65536. The distribution of these values shows

that the outcome can be easily binarized: in fact, as previously

mentioned, the reactivity of the positive peptides ranges

between 10000 and 65536, while this value ranges from 1 to

1000 in the negative peptide case. For this reason, we also

tested this classifier by considering the binary classes 0-negative

and 1-positive as continuous values.

N Logistic regression. Also this approach allows assessing the

contribution of each variable to classification: in fact, the

Table 1. Five amino acid scales used for the features
construction.

Antigenicity Accessibility Hydrophilicity Flexibility Beta-turn

A 1.064 6.6 2.10 0.36 0.66

C 1.412 0.9 1.40 0.35 1.19

D 0.866 7.7 10.00 0.51 1.46

E 0.851 5.7 7.80 0.50 0.74

F 1.091 2.4 29.20 0.31 0.60

G 0.874 6.7 5.70 0.54 1.56

H 1.105 2.5 2.10 0.32 0.95

I 1.152 2.8 28.00 0.46 0.47

K 0.930 10.3 5.70 0.47 1.01

L 1.250 4.8 29.20 0.37 0.59

M 0.826 1.0 24.20 0.30 0.60

N 0.776 6.7 7.00 0.46 1.56

P 1.064 4.8 2.10 0.51 1.52

Q 1.015 5.2 6.00 0.49 0.98

R 0.873 4.5 4.20 0.53 0.95

S 1.012 9.4 6.50 0.51 1.43

T 0.909 7.0 5.20 0.44 0.96

V 1.383 4.5 23.70 0.39 0.50

W 0.893 1.4 210.00 0.31 0.96

Y 1.161 5.1 21.90 0.42 1.14

Columns 2–6 report five of the most promising amino acid properties for
predicting the peptide reactivity: antigenicity [9], accessibility [10],
hydrophilicity [11], flexibility [12] and predicted beta-turn propensity [13].
doi:10.1371/journal.pone.0023616.t001
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estimated regression coefficients provide an easy way to

evaluate the reliability of the model. Moreover there are no

assumptions about the probability distribution of the attributes.

However, in the model that we have exploited we supposed

that they were not strongly correlated.

N Naı̈ve Bayes. It is a simple probabilistic classifier based on the

Bayes’ theorem under the attribute independence assumption,

given the class [46]. The model allows an easy interpretation of

the results, since each variable can be separately considered.

The main limits of this approach are the strong assumptions of

conditional independence between variables and the need of

choosing prior distributions.

N Decision tree. This method has the great ability to learn complex

and non-linear relationships between variables and outcome.

Decision trees, however, require the implementation of careful

strategies in order to avoid overfitting. In particular, we used

the J48 algorithm, an open source Java implementation of the

C4.5 method [47]; the dimension of the tree was limited by

fixing the minimum number of instances for each leaf equals to

1% of the training set.

N Rules learner. This method permits, like decision trees, to extract

complex rules; however the accuracy of the predictions is high

only if the rules have a sufficiently large support. Moreover, it

can be computationally demanding in case of large datasets. In

this work we applied the PART method to generate a decision

list. Such method is based on an iterative strategy. In each step,

PART builds a partial decision tree and converts the best leaf

into a rule [48]. The minimum number of instances for each

leaf was fixed at 1% of the examples in order to limit the

number of generated rules.

To evaluate the best classifier, the performances have been

assessed applying the so-called ‘‘leave-one-out’’ cross-validation

approach. This approach is particularly suited in our case, since,

together with maximizing the size of the training set, it allows to

properly generating the features related to the alignment scores.

Choice of final model and its interpretation. The model

was assessed not only in terms of its predictive performance but

also taking into account its interpretation, i.e. by considering the

contribution of the different features included in the prediction.

Together with standard performance measures, such as

accuracy, sensitivity and specificity, we also computed the F-

measure of the predictive model. The F-measure is the harmonic

mean of precision (positive predictive value) and recall/sensitivity.

As a matter of fact, in order to develop a model that is useful to

generate new reactive peptides, it is important to maximize both

precision and sensitivity: it means to have a high probability that

the peptide predicted to be positive is really reactive and that the

reactive peptides are correctly classified.

As previously mentioned, we decided to select, among the best

classifiers, the model with the clearest interpretation. In the case of

logistic regression, we evaluated the reliability of the regression

coefficients by comparing their values and signs with what was

expected in the light of the available knowledge.

Evaluation of the model and of the teams in the DREAM 5

challenge. As mentioned in the previous sections, the classifiers

have been trained on the entire training set. The selected model was

then applied on the test set (3421 positive and 10219 negative

peptides).

The predictions of all the participants to this DREAM5

challenge have been evaluated and compared. Teams were

ranked according to their performance score based on two

metrics: the area under the precision versus recall (PR) curve and

the area under the receiver operating characteristic (ROC) curve.

P-value was defined as the probability that a given or larger area

under the curve value is obtained by a random prediction. The

overall final score was defined as minus the logarithm of the

geometric mean of the ROC and PR p-values.

Bonus round
The final aim of this challenge is to discover whether there exist

rules able to predict reactivity of peptides with human antibodies.

These rules can be used to develop new reactive peptides. The

‘‘bonus round’’ was conceived to test the rules learned during the

main challenge: each team was required to submit a list of de-novo

peptides generated using their predictive models; the list generated by

the teams that achieved the top performance in the main challenge

will be experimentally validated by the DREAM5 organizers.

In particular, the bonus round challenge required the provided

list to contain peptides with sequence length equal to 15, which

must follow these specifications:

N at least 1000 peptides in the list should be predicted to have

high reactivity, i.e. they should be as reactive as the peptides in

the positive training set (high reactivity - H);

N at least 1000 peptides in the list should be predicted to have

low reactivity, as the peptides in the negative training set (low

reactivity - L);

N at least 1000 peptides in the list should be predicted to have

reactivity values in between those of the positive and negative

sets (medium reactivity - M).

Moreover, in order to ensure that the peptides of the generated

list are different from the peptides of the training and test sets, the

following conditions must hold:

1. All submitted peptide sequences should not have stretches of

more than three amino acids in common with any of the amino

acid sequences supplied in the training or test set.

2. The overall identity between any peptide sequence of the

predicted peptides and the training set should not be higher

than 5 within a stretch of 11 amino acid positions.

In summary, the final output of the bonus round should be a list

of 1000 peptides for each of the three classes (i.e. H, L and M). In

the next paragraph we describe the procedure we implemented to

generate such a list. The main idea is to generate de-novo peptides

by extracting from the training set the motifs that characterize the

epitope. A schematic representation of the implemented procedure

is shown in Figure 1.

Clustering. The first step of our strategy is to obtain clusters

of similar peptides. In particular we exploited the scoring matrix

computed by aligning every sequence with all the others with the

Smith-Waterman algorithm (local alignment). We chose local

alignment because the results of the main challenge showed that it

has higher predictive performance than the global one (see

Results). We obtained a distance matrix by subtracting each

element of the normalized scoring matrix to one. Then, we applied

hierarchical clustering with complete linkage and we used a cut-off

value equal to 0.7 to generate the clusters.

Cluster selection and multiple-alignment. We selected

three types of clusters by exploiting the information about the

peptides reactivity.

1) Positive clusters (H) - The clusters with at least five sequences

and where all the members are positives.

2) Negative clusters (L) - The clusters with at least eight

sequences and where all the members are negative.

Prediction of Peptide Reactivity
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3) Uncertain clusters (M) - The clusters with at least five

sequences and where the percentage of positive members is

similar to the proportion of positive peptides in the training

set (3240/13638 = 25%).

A multiple-alignment was then performed on the sequences of

each cluster. Thanks to this strategy it was possible to compute the

conservation of each amino acid in a specific position.

Extraction of the motifs in a cluster. We generated a motif

for every sequence 15 amino acids long and belonging to each

cluster/multiple-alignment. In detail, we considered all the amino

acids composing each of these sequences ordered by the

conservation in the corresponding multiple-alignment (computed

in terms of information as shown in Figure 2). A residue was kept

as constant in the motif if it satisfied the first constraint of the

bonus round (no more than three consecutive amino acids already

present in the training set). The remaining amino acids are less

conserved and do not satisfy the constraint of the bonus round; so

these residues were allowed to vary within their amino acid group

or following the variation patterns in a specific position reported in

the multiple-alignment results. The amino acids groups were

obtained by clustering amino acids on the basis of the

BLOSUM50 matrix. A motif was thus generated for every

sequence in the clusters.

Generation of all the possible peptides and selection

based on final model. All the possible sequences have been

generated starting from the motifs extracted with the method

described in the previous paragraph. Such new sequences were

then filtered in accordance with the second constraint of the bonus

round (identity with the other sequences not higher than 5 amino

acids in a window of 11).

The predictive model used in the main challenge (model B) was

exploited to predict the reactivities of the remaining new peptides.

This prediction has been used to rank the new peptides in terms of

predicted reactivity.

We selected the 1100 peptides with the highest predicted

reactivity generated from the positive clusters and the 1100 with

lowest predicted reactivity obtained from the negative clusters.

Finally, we randomly selected 1100 elements from the uncertain

clusters.

Results

Main challenge
Feature selection. As described in the previous section, we

generated 37 features to predict peptide reactivity to human

antibodies. We applied three different procedures for feature

selection: no selection (subset A), selection based on collinear

attribute elimination and on the M5 method and (subset B) and

selection based on the LASSO method (subset C). The subset B

and C contain 28 and 27 remaining attributes, respectively. The

subsets B and C are partially different (see Table 2).

Cross-validation of the classifiers. As explained in the

Methods section, we learned five different classifiers on the three

features subsets. Cross-validation was performed with a leave-one-

out approach. The models obtained by applying decision tree and

rules learner are reported in the supplementary material (see Text

S1 and Text S2).

Table 3 shows the results obtained in terms of mean accuracy,

sensitivity, specificity, precision and F-measure:

N The results of the classifiers are in general quite good. This

shows that the generated features contain useful information to

predict the peptide reactivity.

N The imbalance between the number of positive and negative

examples in the training set (3420 positives and 10218

negatives) partially influences the results: the sensitivity is

always lower than the specificity.

Figure 1. A schematic representation of the procedure for bonus round. The schema shows the principal steps implemented for generating
the list of de-novo peptides with low (L), medium (M) and high (H) reactivity: (i) clustering of peptides based on the matrix of distances, (ii) cluster
selection and multi-alignment, (iii) creation of some motifs for each sequence in a cluster, (iv) generation of all the possible peptides (followed by the
final selection of the peptides based on final model).
doi:10.1371/journal.pone.0023616.g001

Figure 2. Two examples of peptide clusters. The figure shows two
examples of a positive cluster (top) and a negative cluster (bottom).
Each cluster of peptide is described by its multiple alignments (on the
right top of each sub-figure) and by its representation through
sequence logo [49]. This graphical representation displays the
conservation of the amino acids in each position of the multi-alignment
by their one-letter code. Different residues at the same position are
scaled according to their frequency. In particular the height of the
entire stack of residues is the information measured in bits (y-axis).
doi:10.1371/journal.pone.0023616.g002
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N Linear regression and logistic regression show the highest

performance, even if the difference between the results of the

different classifiers is not statistically significant.

N We tested linear regression by both considering discrete or

continuous outcomes. This first alternative always gave the

best results.

N The best results are obtained after feature selection (subset B

and C). This shows that some redundant information is present

in the original set of features.

N In terms of F-measure, the logistic regression had a

performance clearly higher than all the others (71.15% and

71.17% on subset B and C, respectively). Moreover,

considering the quality of the learned models in terms of their

Brier Score, the following results were achieved: Lin.Reg.

(reactivity) 0.1412; Lin.Reg. (binary) 0.14249; Log. Reg.

0.10344; Naive Bayes 0.13309; Decision tree 0.13717; Rules

learner 0.14258. The model based on logistic regression

reached the best results, giving a further demonstration of its

robustness.

Choice of the final model. The logistic regression models

obtained by considering feature subsets B and C have been

evaluated in terms of their explanation capabilities.

First of all, we analyzed the two subsets of features by giving

some explanations about the removed attributes (zeros are

assigned to removed attributes in Table 2, columns 4 and 5).

N By calculating the correlation among the features along the

examples and also among the amino-scales used, we found that

accessibility, flexibility and hydrophilicity were quite correlated.

This is probably the reason why only flexibility was selected in

subset B while only hydrophilicity was kept in subset C.

N Concerning the features derived from the alignments,

DiffMaxScore attributes were based on MaxScore features,

so they are functionally related. The DiffMaxScore feature was

removed in subset B because it did not bring any additional

information.

N Moreover in subset B all the features derived from global

alignment have been removed, suggesting, as expected, that

the reactivity depends on a small portion of the peptide, which

probably corresponds to the binding site (information retrieved

by local alignment). Also in the case of subset C, two out of the

three remaining alignment-based features have been derived

from local alignment.

N As the amino acid frequencies are concerned, the attributes

associated to the presence of X, B and J are present in both

subsets B and C, since few sequences contain such residues.

The features related to Alanine and Isoleucine have been

removed only from subset C.

We then analyzed the estimated coefficients of the logistic

regressions in order to further investigate which was the most

reliable between the two models. In particular, the estimated

coefficients of both models are reported in Table 2, columns 4 and

5. These coefficients have been evaluated on the basis of the

available knowledge but also on the basis of the correlation of each

feature with the class, as computed in the training set (Single

Regression Coefficients - SRCs). The second column of Table 2

reports the regression coefficient computed for each attribute,

while column 3 reports its F-measure.

N Every SRC corresponding to an alignment-based feature has

the expected sign, given its definition: SRCs are negative for

MaxScore_0 and DiffMaxScore features, while they are

positive for MaxScore_1. This is confirmed by the corre-

sponding values of the regression coefficients for model B (see

Table 2 at column 4). However, model C has an unexpected

negative value related to MaxScore_1_nw (see Table 2 at

column 5)., Both models confirm that local alignment is more

useful for classification than global alignment.

Table 2. The impact on the predictive performance of the
features and the coefficients of the two best models.

SRCs F-measure Log.Reg. B Log.Reg. C

LengthSeq 0.51 41.0% 4.75 26.97

Isoel. point 0.24 33.2% 0.78 0.13

A 20.44 37.1% 7.62 0.00

C 0.37 40.1% 6.05 0.77

D 20.25 36.2% 5.79 2.33

E 20.98 41.1% 7.40 0.28

F 0.91 45.7% 9.43 21.91

G 0.00 30.3% 8.24 4.35

H 0.52 35.2% 8.74 1.49

I 20.04 33.5% 3.48 0.00

K 20.17 34.3% 6.52 2.07

L 0.13 31.6% 9.17 0.22

M 0.35 35.2% 5.74 2.09

N 20.19 36.9% 3.11 2.08

P 20.26 34.3% 7.01 20.46

Q 20.43 38.9% 3.17 0.11

R 0.45 40.5% 7.78 21.56

S 20.51 33.1% 8.00 2.59

T 20.20 34.3% 4.72 20.25

V 20.11 33.9% 3.77 20.18

W 0.94 40.1% 8.78 20.43

Y 1.44 51.0% 11.51 4.49

B 0.00 - 0.00 0.00

X 0.75 40.1% 0.00 0.00

J 0.00 - 0.00 0.00

Z 20.66 40.9% 24.55 6.50

Antigenicity 0.49 31.6% 1.62 21.13

Accessibility 20.85 40.8% 0.00 0.00

Hydrophilicity 20.71 42.6% 0.00 20.35

Flexibility 20.78 38.9% 1.26 0.00

Beta-turn 20.26 27.0% 20.92 1.66

MaxScore0_nw 20.54 38.8% 0.00 0.00

MaxScore1_nw 1.36 45.7% 0.00 26.66

MaxScore0_sw 20.53 37.9% 23.96 0.00

MaxScore1_sw 1.17 52.5% 4.32 0.81

DiffMaxScore_nw 21.35 53.1% 0.00 0.00

DiffMaxScore_sw 21.28 58.9% 0.00 20.61

Intercept 215.76 4.73

The second column shows the correlation coefficients of each feature with the
class calculated on the training set (single regression coefficients - SRCs). The
third column reports the F-measure values of the single attributes. Columns 4
and 5 display the estimated coefficients of the two best models: logistic
regression on subset B and logistic regression on subset C; zero values
correspond to removed features.
doi:10.1371/journal.pone.0023616.t002
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N Concerning the scale-based features, only antigenicity has a

positive SRC, as expected. All the other scale-based features

have negative SRCs; as a matter of fact, it is known that

accessibility, hydrophilicity and flexibility have negative

correlations with the reactivity, while it is more difficult to

interpret the negative correlation of beta-turn propensity.

Both model B and C include only three scale-based features.

Given the SRCs and their plausible explanations, both models

have only an unexpected regression coefficient, in correspon-

dence of flexibility (model B) and antigenicity (model C).

N No well-defined knowledge is available about the influence of

the amino acid frequencies on the peptide reactivity. So, we

assessed the correlation of the corresponding SRCs with the

different amino acid scales (antigenicity: 0.29; accessibility:

20.66; hydrophilicity: 20.69; flexibility: 20.52; beta-turn

propensity: 20.19). The sign of the correlations (i.e. Spearman

correlation) follows the same pattern of the scale-based

features: all the features are negatively correlated with peptide

reactivity except for antigenicity.

Finally, we evaluated the reliability of the regression

coefficients of the multivariate model in terms of their

correlation with the SRCs. Model B showed a good positive

correlation between the regression coefficients and the

correspondent SRCs (i.e. Spearman correlation = 0.496 and

p-value = 0.028), while in model C no correlation was found

(i.e. Spearman correlation = 20.075 and p-value = 0.753).

Based on all these considerations, we selected model B as the

best final model, even if model C had a higher F-measure.

Evaluation of the model. The selected model was used to

generate predictions on the test set data (3421 positive and 10219

Table 4. Scores of the participants to DREAM5 challenge 1.

Team AUPR AUROC Pval AUPR Pval AUROC Score

Team 725 0.772 0.893 2.05E-23 4.75E-19 20.51

Log. Reg. B 0.768 0.895 3.20E-22 1.00E-19 20.25

Log. Reg. C 0.767 0.894 4.11E-22 1.48E-19 20.11

Team 161 0.691 0.864 4.08E-06 1.26E-08 6.64

Team 763 0.689 0.855 6.56E-06 4.02E-06 5.29

Team 795 0.678 0.850 1.76E-04 4.91E-05 4.03

Team 852 0.663 0.849 5.92E-03 9.20E-05 3.13

Team 730 0.662 0.846 6.59E-03 3.86E-04 2.80

Team 809 0.636 0.846 2.79E-01 3.46E-04 2.01

Team 834 0.597 0.835 9.89E-01 1.85E-02 0.87

Team 433 0.627 0.803 5.71E-01 9.85E-01 0.13

Team 703 0.596 0.813 9.91E-01 8.19E-01 0.05

Team 811 0.604 0.748 9.70E-01 1.00E+00 0.01

Team 528 0.565 0.790 1.00E+00 1.00E+00 0.00

Team 550 0.355 0.612 1.00E+00 1.00E+00 0.00

Team 737 0.582 0.793 9.99E-01 9.99E-01 0.00

The table shows the performance of all the participants to DREAM5 challenge 1.
Columns 2–5 displays the Area under the Precision-Recall curve (AUPR), the
Area under the ROC curve (AUROC), the p-value of AUPR (Pval AUPR) and p-
value of (Pval AUROC), respectively. All the participants are evaluated in terms
of the final overall score (reported in column 6); it was defined as minus the
logarithm of the geometric mean of Pval AUROC and Pval AUPR. The results of
our two best models are highlighted in bold.
doi:10.1371/journal.pone.0023616.t004

Table 3. Results of the classifiers evaluated by leave-one-out cross-validation.

Features Classifiers Acc Sens Spec Prec F-measure

Subset A Lin.Reg. reactivity 85.01% 70.12% 90.00% 70.12% 70.12%

Lin.Reg. 85.21% 70.64% 90.09% 70.46% 70.55%

Log. Reg. 85.15% 70.41% 90.09% 70.39% 70.40%

Naive Bayes 83.84% 67.81% 89.21% 67.77% 67.79%

Decision tree (J48) 81.32% 64.56% 86.94% 62.32% 63.42%

Rules learner (PART) 80.75% 63.22% 86.61% 61.25% 62.22%

Subset B Lin.Reg. reactivity 84.92% 69.94% 89.94% 69.94% 69.94%

Lin.Reg. 85.17% 70.47% 90.10% 70.43% 70.45%

Log. Reg. 85.51% 71.23% 90.29% 71.06% 71.15%

Naive Bayes 83.47% 67.08% 88.96% 67.04% 67.06%

Decision tree (J48) 81.40% 63.71% 87.32% 62.71% 63.21%

Rules learner (PART) 77.64% 57.43% 84.40% 55.20% 56.29%

Subset C Lin.Reg. reactivity 84.95% 70.00% 89.96% 70.00% 70.00%

Lin.Reg. 85.19% 70.59% 90.08% 70.42% 70.50%

Log. Reg. 85.54% 71.17% 90.35% 71.17% 71.17%

Naive Bayes 83.02% 66.14% 88.67% 66.14% 66.14%

Decision tree (J48) 81.42% 65.50% 86.75% 62.33% 63.87%

Rules learner (PART) 81.47% 63.28% 87.56% 63.00% 63.14%

The table shows the results of the six classifiers evaluated by leave-one-out cross-validation on three different subsets of features (A, B and C): (i) linear regression
considering the reactivity values; (ii) linear regression considering the binary classes 0-negative and 1-positive as continuous values; (iii) logistic regression; (iv) Naı̈ve
Bayes; (v) decision tree; (vi) rules learner. The second column displays the name of the tested classifiers. Columns 3–7 report the results reached by each classifier in
terms of mean accuracy (Acc), sensitivity (Sens), specificity (Spec), precision (Prec) and F-measure ((2*Sens*Prec)/(Sens+Prec)). The two models with highest F-measure
are highlighted in bold.
doi:10.1371/journal.pone.0023616.t003
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negative peptides). The predictions of our model, as well as of the

other participants to DREAM5 challenge 1, were evaluated in

terms of a score based on the area under the precision versus recall

(PR) curve and the area under the receiver operating characteristic

(ROC) curve.

The results obtained by Model B and Model C are reported in

Table 4. Both models had a very high performance in terms of PR

and ROC, as shows in Figure 3. It is important to note that Model

B achieved the highest score.

By analyzing the scores of all the participants, reported in

Table 4, it can be noted that two teams (our team and team 725)

clearly over-performed all the others.

Bonus round
As explained in the previous section, the final output of the

bonus round is a list of 1000 new peptide sequences for each of the

three classes: high reactivity (H), low reactivity (L) and medium

reactivity (M).

The procedure for the generation of these peptides follows the

steps described in the Methods section and schematically reported

in Figure 1.

In the first phase we used the scores of local alignment to cluster

the available sequences. As result of this first phase, about 7000

clusters with different size have been created.

Then we exploited the class information to select three types of

clusters. By applying the rules described in the Methods section,

we selected 23 positive clusters, 27 negative clusters and 4

uncertain clusters. An example of positive cluster and an example

of negative one are shown in Figure 2: the figure depicts the

multiple alignments of the two clusters and their representation

through sequence logos [49].

The motif generation phase resulted in a few thousands

sequences for each class group (i.e. H, L and M).

Finally, we computed the predicted reactivity for all the

sequences generated from the positive and negative clusters. The

final list was formed by: i) the 1100 peptides with the highest

predicted reactivity generated from the positive clusters, ii) the

1100 with lowest predicted reactivity from the negative clusters

and iii) 1100 peptides randomly selected from the uncertain

clusters. As shown in Figure 4, the distributions of the predicted

reactivity clearly separate the peptides coming from the positive

clusters and the negative ones. This demonstrates the validity of

the strategy adopted to generate new peptides.

The experimental test of the real reactivity of these peptide

sequences is still ongoing.

Discussion

In the present work we described the procedure implemented to

cope with the Epitope-Antibody Recognition (EAR) Specificity

Prediction Challenge of the DREAM5 competition. The aim of

the EAR challenge was to extract rules able to predict the binding

Figure 3. ROC curve and Precision-Recall curve of the two best final models. The figure displays the ROC curve (top) and the Precision-
Recall curve (P-R) (below) calculated for the two best final models: logistic regressions fitted on the features contained in the subset B (model B) and
in the subset C (model C).
doi:10.1371/journal.pone.0023616.g003
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of a peptide/epitope to a human antibody. A training set of

peptides with experimentally identified high and low reactivity to

human antibodies was provided. The challenge consists therefore

in determining whether the peptides of an independent test set

belong to the positive or negative set.

As mentioned in the previous section, we have exploited a

machine learning approach to analyze the data, after a knowledge-

based feature generation phase. In particular we extracted two

types of features for every peptide: (i) sequence-dependent features,

which are based on both general information about peptides and

knowledge about the propensity of a peptide to interact (amino

acid frequencies, antigenicity, accessibility, etc.); (ii) dataset-

dependent features, which are generated by exploiting the scores

obtained by aligning every peptide of the training set with all the

others with both global and local alignment. A total of 37 features

have been finally generated.

We considered three different subsets of such attributes, based

on different feature selection strategies. As a last step, we learned

some simple classifiers, which have been evaluated with a leave-

one-out cross-validation approach. Since the final aim of the EAR

challenge is to extract rules able to explain the propensity of

peptide to react, we selected classifiers able to provide a model

easy to be interpreted (e.g. logistic regression, rule learners,

decision trees, etc.).

The classifier finally selected was built with the logistic

regression, one of the most widely used classifiers, able to predict

the probability of the class on the basis of both continuous and

discrete features. The best results were achieved by using a

reduced subset of features; in particular, taking into account the

model interpretation needs, we selected the logistic regression

fitted with the features obtained by M5 method.

The evaluation of the prediction of the model on the test set

showed the validity of the approach: the model had one of the best

performances of the challenge. As a note, the performances of the

model on the test set are higher than the one obtained with cross-

validation on the training set (e.g. F-measure metrics are 71.26%

and 71.15%, respectively).

In general, this good performance has demonstrated that, even

if the prediction of epitope reactivity is a difficult problem, there

are ways to obtain promising predictive models based on the

combination of prior knowledge and data analysis [50].

Together with the high performance of the proposed reactivity

prediction model, the present work highlights some open issues

concerning the propensity of a peptide to react with human

antibodies.

N The features based on local alignment are more predictive

than the ones based on global alignment. This shows that, as

expected, the reactivity depends on a small portion of the

peptide, which probably corresponds to the binding site.

N In contrast to some hypotheses previously formulated, the

features related to accessibility, flexibility and hydrophilicity

are negatively correlated with the reactivity values of the

dataset.

Concerning accessibility and hydrophilicity, the hypothesis

that the antigenic sites are on the surface, and thus probably

hydrophilic, was recently confuted [9]. As a matter of fact, the

analysis of the experimentally determined antigenic sites has

revealed that the hydrophobic residues are more likely to be a

part of antigenic sites if they occur on the surface of a protein.

Moreover, some studies hypothesized that the flexibility is

inversely proportional to antigenic propensity [9,51]: a

relatively high positive correlation (i.e. Spearman correla-

tion = 0.61 and p-value = 0.018) was found between the

flexibility and the minimum concentration needed to inhibit

the E.Coli growth with antimicrobial peptides. As a matter of

fact, a small flexibility may be related to a compact structure,

which could favor antigenic propensity.

Figure 4. The distributions of the predicted reactivities of bonus round peptides. We selected the same number of peptides (i.e. 1100)
both deriving from negative and from positive clusters. The reactivity of the peptides of the two groups is predicted through the final best model
proposed for the main challenge. This figure shows the histogram of such predicted reactivities. In particular we considered the binary classes 0-
negative (reactivity between 1 and 1000) and 1-positive (reactivity between 10000 and 65536); the predicted reactivity of a peptide in the range [0:1]
is given by the probability to belong to the positive class.
doi:10.1371/journal.pone.0023616.g004
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N Antigenicity is positively correlated with the reactivity value.

This result confirms the appropriateness of the scale used for

its calculation [9]: this is defined as the ratio between the

frequency of the residue in antigenic determinants (experi-

mentally identified) and the frequency of the amino acid on the

surface (predicted by using the average of hydrophilicity,

accessibility and flexibility values reported by Parker et al.

[11]).

N Finally, the high values of both SRCs and regression

coefficients, as shown in Table 2 (see columns 2 and 4),

demonstrate that some amino acids, like F and Y, favour the

peptide reactivity.

The future developments of this work will concern the test of

our model on other datasets related to the prediction of epitope

reactivity. Preliminary encouraging results have been achieved on

some peptides of the IEDB (Immune Epitope DataBase) [52].

The final aim of the challenge was to elucidate the mechanisms

of epitope reactivity with human antibodies; for this reason, a

‘‘bonus round’’ was proposed beside this main challenge. To this

end, we have developed a method based on a clustering approach.

We grouped the peptides of the training set in about 7000 clusters

by using as distance the score of the local alignment. Then, we

selected 23 positive, 27 negative and only 4 uncertain clusters by

a-posteriori taking into account of the class of the peptides. It is

worthwhile mentioning that the small number of negative and

positive clusters demostrates that there are many rules underlying

peptide reactivity. Each rule has thus a small support; this is

probably related to the wide variability of the antibodies.

The clusters have been used to extract a set of motifs that were

the basis to generate an initial list of potential new peptides. We

predicted the reactivity of such new peptides relying on our model:

the sequences with highest and lowest predicted reactivity formed

the final list of de-novo peptides. The results of the experimental

test of the real reactivity of these peptide sequences will be

available in the near future.
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