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Abstract

Idiopathic generalized epilepsy (IGE) syndromes represent about 30% of all epilepsies. They have strong, but elusive,
genetic components and sex-specific seizure expression. Multiple linkage and population association studies have
connected the bromodomain-containing gene BRD2 to forms of IGE. In mice, a null mutation at the homologous Brd2 locus
results in embryonic lethality while heterozygous Brd2+/2 mice are viable and overtly normal. However, using the flurothyl
model, we now show, that compared to the Brd2+/+ littermates, Brd2+/2 males have a decreased clonic, and females a
decreased tonic-clonic, seizure threshold. Additionally, long-term EEG/video recordings captured spontaneous seizures in
three out of five recorded Brd2+/2 female mice. Anatomical analysis of specific regions of the brain further revealed
significant differences in Brd2+/2 vs +/+ mice. Specifically, there were decreases in the numbers of GABAergic (parvalbumin-
or GAD67-immunopositive) neurons along the basal ganglia pathway, i.e., in the neocortex and striatum of Brd2+/2 mice,
compared to Brd2+/+ mice. There were also fewer GABAergic neurons in the substantia nigra reticulata (SNR), yet there was
a minor, possibly compensatory increase in the GABA producing enzyme GAD67 in these SNR cells. Further, GAD67
expression in the superior colliculus and ventral medial thalamic nucleus, the main SNR outputs, was significantly decreased
in Brd2+/2 mice, further supporting GABA downregulation. Our data show that the non-channel-encoding,
developmentally critical Brd2 gene is associated with i) sex-specific increases in seizure susceptibility, ii) the development
of spontaneous seizures, and iii) seizure-related anatomical changes in the GABA system, supporting BRD2’s involvement in
human IGE.
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Introduction

Idiopathic generalized epilepsy (IGE) is mostly genetic in origin

[1] and represents about 30% of all epilepsies [2]. IGE comprises

several sub-syndromes including Juvenile Myoclonic Epilepsy

(JME) and Juvenile Absence Epilepsy (JAE) [3]. Although some

channel genes have been shown to cause some rare forms of

epilepsy [4], none have yet been proven to play a major role in the

far more common IGEs. Few IGE genes have been identified, and

those mostly through linkage scans chosen through specific

phenotypes. Of those genes only BRD2, which is not a channel

gene, has been both linked and associated in multiple studies with

a particular IGE, JME [5,6,7,8,9,10,11,12]. The statistical and

population evidence supports BRD2 as strongly influencing

susceptibility to JME in particular and, potentially, a wider range

of IGE syndromes/seizures, including photosensitivity [13,14] and

epilepsy-related electroencephalography (EEG) traits [6,8].

Statistical evidence supporting BRD2 as the EJM1 locus
for JME

Several linkage and association studies support BRD2 as the

EJM1 locus. The 6p21 locus was the first identified locus for a

common epilepsy (JME) [6], a finding independently replicated [7]

and confirmed again by Sander et al. [15], and in an independent
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data set by Greenberg et al. [10]. Durner et al. [8] demonstrated

that the same locus led to the generalized electroencephalogram

(EEG) abnormality seen in both JME cases and in family members

unaffected with epilepsy and Tauer et al.[14] found linkage of

6p21 to the phenotype of photosensitivity using EEG. Greenberg

et al. [10] further found evidence of an association to a

microsatellite marker in the BRD2 gene, subsequently substanti-

ated by Pal et al. [11]. Later, in a follow-up to the Tauer et al.

findings, Lorenz et al. [13] showed association of BRD2 alleles to

photosensitivity.

Cavalleri et al. [12] examined 5 different populations and

confirmed the association of JME to BRD2 in two of those

populations: British and Irish. Two other populations, Indian and

Australian, did not show association. This locus had previously

been shown only Caucasian populations [10,15], which was

substantiated when no association was found in the Indian

population. The ethnic makeup of the Australian population was

unknown. The fifth population, German, illustrates the problems

in replication in association studies because this same population

showed linkage and association of BRD2 to the EEG trait (see

above). Because the evidence supports a role for BRD2 in epilepsy-

related brain function, finding the biological basis for its influence

on seizure susceptibility and abnormal (epileptiform) EEG traits

will help elucidate the mechanisms underlying the etiology of the

IGEs.

One of the problems in drawing conclusions from association

studies, especially when comparing two or more populations, is

that the existence of multiple disease-related alleles can make

data interpretation difficult. Two reports illustrate the confound-

ing factors in association studies of JME and the related EEG

traits.

In one report, Layouni et al. [16] found an association of JME

with the TAP1 gene in Tunisians. However, the authors found no

TAP1 association in Caucasians. That BRD2 does not associate

with JME in some non-Caucasian populations has previously been

demonstrated [10,12,15,17]. Furthermore, given the close prox-

imity of TAP1 to BRD2, one could speculate that, in Tunisians, a

DNA variant in TAP1 affects expression of BRD2. Such ‘‘long

distance’’ interactions have been reported in the past (e.g., [18]).

Moreover, a Tap1 knockout mouse shows no effects on brain

development [19], in contrast to the profound effects on neural

development in Brd22/2 mouse embryos [20] and our

observations on Brd2+/2 mice in the present study.

In a second report, de Kovel et al. [21] used a Dutch sample of

IGE patients to test for association of three BRD2 SNPs with the

IGE phenotype and, in a smaller sample, the JME phenotype.

They found no evidence of association of the three SNPs with

those phenotypes. However, the SNPs used by de Kovel et al. were

those reported associated, not with IGE or JME, but with EEG

photosensitivity in a study by Lorenz et al. [13]. Pal [11] had tested

JME (but not IGE) and had included only two of the three SNPs

tested by de Kovel et al. One of those SNPs showed no association

with JME in the Pal et al. report and one showed marginal

association (although other SNPs and SNP haplotypes showed

strong association evidence). de Kovel et al. rightly conclude that

the data neither confirm nor refute the BRD2 association

evidence. While de Kovel et al. did not test association of these

SNPs with photosensitivity in that work, in a later report, de Kovel

et al. [22] found no association of selected SNPs in BRD2 with a

photosensitivity subtype using, among others, the SNPs identified

in the Lorenz et al. photosensitivity study. However, the de Kovel

et al. cases were a mixture of IGE subtypes, thus perhaps diluting

any specific BRD2-related effect. Indeed, several studies show that

the chromosome 6p21 locus does not predispose to non-JME IGEs

[9,23,24]. Mixtures of patients with different phenotypes would be

less likely to be revealing.

Thus, because of the problems in interpretation due to different

populations, differing phenotypes, and the number of possible

different disease-related variants, association studies can take one

only so far in the attempt to identify the disease locus, the

responsible allele(s), and a possible biological mechanism.

Eventually, statistical evidence must point the way to seeking

biological evidence. We now have molecular biological data

suggesting an epilepsy-related mechanism related to BRD2.

Although the data are preliminary, we have observed that the

ratio of normally-spliced to alternatively spliced (and non-

functional) BRD2 RNA is a function of the number of tandem

GT repeats in a microsatellite located in intron 2 of BRD2 [25]. If

the ratio is small enough, such a situation could mimic

haploinusfficiency. Thus, it is possible that several different alleles

(or GT repeat lenths) may predispose to the brain-related

phenomena that we report here and that associations may differ

greatly depending on the frequencies of those alleles in the

population.

BRD2 is a member of the ‘BET’ subfamily of genes carrying

bromodomain motifs [26] that includes the genes (mouse/human

designation) Brd2/BRD2, Brd3/BRD3, Brd4/BRD4, and Brdt/

BRDT. The zebrafish homologue of the Brd2/BRD2 gene is highly

expressed in the egg, early embryo, and developing nervous system

[27]. Various functions have been ascribed to the BRD2 protein,

including transactivation of promoters of several cell cycle

regulatory genes [28], binding to mitotic chromosomes[29], and

interaction with acetylated lysine-12 in histones [30] but its role in

basic cellular functions in vivo remains unknown.

We generated a null mutation of the murine Brd2 gene using a

gene-trap approach [20]. Heterozygous Brd2+/2 mice are viable

and overtly normal. In contrast, the Brd2-null mutation (Brd22/2)

is incompatible with life: Brd22/2 mice die by embryonic day 11

and exhibit abnormal brain structures [20]. These observations

suggest that Brd2 is essential for neural development, observa-

tions subsequently confirmed by others [31]. Heterozygous

Brd2+/2 mice are viable and overtly normal. Understanding

how Brd2 functions during neural development in the mouse

model will give us insight into basic mechanisms of IGE, and

JME in particular.

In the present study, we determined if the viable and overtly

healthy heterozygous Brd2+/2 mice have increased susceptibility

to flurothyl-induced seizures and if they develop spontaneous

seizures. We further examined whether alterations in seizure

susceptibility are associated with changes in GABAergic markers

in the basal ganglia pathway involving cortex, striatum, substantia

nigra pars reticulata (SNR), superior colliculus (SC), and ventral

medial thalamic nucleus (VM). These areas were chosen because

we found that the Brd2+/2 mice display increased susceptibility to

primarily generalized seizures, and GABAergic mechanisms in the

SNR and SC have significant roles in controlling those seizure

types [32,33,34,35,36,37]. Changes in GABAergic neuron number

within an endogenous seizure-controlling network could account

for, or contribute to, increased seizure sensitivity or development

of spontaneous seizures. Indeed, we here demonstrate that the

viable and overtly healthy heterozygous Brd2+/2 mice [20] not

only show increased seizure susceptibility but develop spontaneous

generalized seizures with corresponding EEGs abnormalities. We

further show that the likely mechanism for this susceptibility is a

decrease in GABAergic neurons in the basal ganglia pathway,

including in the SNR, a critical seizure-controlling site [33]. Our

results suggest that a mechanism underlying JME is, in part, an

impairment in GABAergic inhibition due to wide-spread,

BRD2 Haploinsufficiency and Epilepsy
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developmentally-determined, abnormally low numbers of inhibi-

tory neurons.

Results

Seizure susceptibility
We first asked whether heterozygous Brd2+/2 knockout mice

show increased seizure susceptibility with the ‘‘threshold test’’

using flurothyl exposure by inhalation. Decreased thresholds for

flurothyl-induced tonic-clonic seizures were observed in Brd2+/2

vs. Brd2+/+ female, but not male, mice, while Brd2+/2 males

showed decreased thresholds for clonic seizure induction.

In females, the threshold for flurothyl-induced tonic-clonic
seizures was statistically significantly (21%) lower in Brd2 +/2

(n = 12) compared to Brd2 +/+ mice (n = 12; ANOVA

F(1,22) = 8.229; *p = 0.009; Figure 1A). The two covariates of age

(range 3.5-8.0 months) and vaginal impedance were not found to

be significant in any analysis and were removed from the analysis.

(The lack of estrous cycle effect on flurothyl seizures is consistent

with a previous report [38].) The threshold for clonic seizures in

females did not differ between the genotypes (ANOVA

F(1,24) = 0.112; p.0.74), unlike male mice (see below). Some

female mice developed multiple clonic seizures, but there was no

difference between the Brd2+/- and Brd2+/+ mice in the number

of clonic seizures (Mann-Whitney U = 67.5; tied p.0.35). The

threshold for twitches did not differ between Brd2+/2 and Brd2+/+
mice (ANOVA F(1,24) = 0.076; p.0.78). The death rate was

identical at 41.7% in Brd2+/2 and Brd2+/+ mice (Fisher’s exact

test p.0.99).

In Brd2+/2 male mice (n = 16), the clonic seizure threshold

was significantly decreased by 18% compared to the Brd2+/+

males (n = 12; ANOVA F(1,26) = 10.338; *p = 0.004; Figure 1B).

Although some mice developed multiple clonic seizures, there was

no difference in the total number of clonic seizures between the

Brd2+/+ and Brd2+/2 mice (Mann-Whitney U = 77.5; tied

p.0.24). There was no significant difference in the male mice

(Brd2+/2 vs. Brd2+/+) in the threshold for induction of twitches

(ANOVA F(1,20) = 1.901; p.0.18) or tonic-clonic seizures
(ANOVA (F(1,24) = 2.777; p.0.10). We always used one covariate

(age: 3.5–8.0 months) on top of the main factor (genotype) but

there was no effect of age on the threshold for flurothyl-induced

twitches, clonic or tonic-clonic seizures, and no interaction of age

with the main factor of genotype. Therefore, we removed age as a

covariate in all statistics. Finally, the death rate did not differ

between Brd2+/2 (64.3%) and Brd2+/+ mice (41.7%; Fisher’s

exact test p.0.43) male mice.

Spontaneous seizures
To determine whether Brd2 haploinsufficiency is associated with

spontaneous seizure development, Brd2+/2 mice (females, n = 5)

were subjected to long-term EEG/videomonitoring using two

unipolar frontal and one bipolar occipital EEG channels and

infrared video (Figure 2A). Three mice showed spontaneous

seizure events, one of which showed interictal discharges

(Figure 2B), sometimes associated with a whole body twitch.

These interictal discharges developed into true spontaneous spike-

and-wave clonic seizures lasting approximately 30 seconds each

(Figure 2C). One Brd2 +/2 mouse had a total of three seizures of

similar duration with an in-between interval of approximately

2 hours. A second Brd2+/2 mouse had one brief clonic seizure

that was recorded. The third mouse experienced relatively

frequent episodes (0–19 per 24 hours) of behavioral arrest

associated with EEG spindles of sharp waves, similar to human

absence seizures (Figure 2D), and died in protracted clonic seizures

(status epilepticus; Figure 2E) within 6 weeks of monitoring.

Examination of GABAergic neurons
The decrease in the flurothyl-induced, primarily generalized

seizure threshold and the presence of spontaneous primary

generalized seizures in Brd2+/2 mice suggested that there might

be changes in the generalized seizure control system, which

includes the SNR [32], and significant GABA involvement. We

also examined other structures of this circuit [39]: primary motor

cortex, caudate-putamen (CPu)/globus pallidus (GP), superior

colliculus (SC), and ventral medial (VM) thalamic nucleus [40].

We always tested for sex differences, but in those analyses in which

no male vs. female differences were detected, male and female

data were combined.

In the SNR, parvalbumin (PVA) is almost completely co-

expressed with GABA [41], thus serving as a marker of

GABAergic neurons. Differences in the number of GABAergic

neurons, which could directly affect seizure susceptibility [33],

would thus be reflected in the numbers of PVA-expressing

neurons. We found highly statistically significant differences in

the numbers of GABAergic neurons in the SNR. Brd2+/2 mice of

either sex (n = 8; no sex differences present) had 20% fewer PVA-

immunopositive cells in the SNR than did Brd2+/+ controls (n = 8;

both sexes combined) (*p = 0.0008; Figure 3B).

We further hypothesized that the decreased number of PVA-

immunopositive (i.e., GABAergic) neurons in the SNR of Brd2+/2

mice could lead to a compensatory GABA overproduction

correlated with an increased GAD67 (a GABA-synthesizing

enzyme) content in those remaining GABAergic neurons. Thus,

using densitometry [42], we examined the average GAD67 content

in individual SNR cell bodies. There was a small (9%) but

Figure 1. Susceptibility of Brd2 heterozygous KO mice (+/-) and
control littermates (+/+) to flurothyl-induced seizures. Seizure
threshold is depicted in ml of flurothyl necessary to induce specific
seizure type (Mean6S.E.M.). (A) In females, tonic-clonic seizures in
Brd2+/- mice had significantly lower threshold than in Brd2+/+
littermate controls. (B) In males, clonic seizures in Brd2+/2 mice had
significantly lower threshold than in Brd2+/+ littermate controls.
doi:10.1371/journal.pone.0023656.g001

BRD2 Haploinsufficiency and Epilepsy
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statistically significant increase (*p = 0.042; Figure 3B) in GAD67

expression in the SNR cell bodies in Brd2+/2 mice (n = 8) vs.

Brd2+/+ controls (n = 7), indicating a possible compensatory

increase in GABA synthesis.

We next examined GAD67 concentration in fibers in the

intermediate gray matter layer of the SC. This structure contains

SNR output and also plays a role in generalized seizure control

[43]. It is important to note that the GAD67 concentration in

fibers in the SNR target areas (such as SC or VM) is the product

of the number of GAD67-positive SNR cells and their GAD67

content. We measured areas devoid of cell bodies to look for

differences in the levels of GAD67 in axons emerging from the

SNR GABAergic neurons. We found a small (10%) but

statistically significant decrease in GAD67 immunodensity in

Brd2+/2 mice (n = 7) compared to Brd2+/+ mice (n = 8;

*p = 0.018; Figure 3C) that was also not sex-related. For an

internal control, we examined the deep gray matter layer of the

SC (with negligible SNR inputs) and found no difference in

Brd2+/2 vs. Brd2+/+ GAD67 immunodensity (Figure 3C). The

data suggested that the changes in the numbers of GABAergic

neurons (PVA-positive) and in the levels of GAD67 within those

GABAergic cells that are found are pathway-specific, possibly

limited to basal ganglia connections.

In the striatum, we determined relative numbers of both GAD-

67- and PVA-immunopositive neurons. In both parts of the

striatum, the caudate/putamen (CPu) and globus pallidus (GP),

we found highly statistically significant decreases in numbers of

GAD67-immunopositive neurons in Brd2+/2 mice (n = 7). In the

CPu, there was a 67% decrease compared to Brd2+/+ mice

(n = 7; p,0.0001; Figure 3D). In the GP, the decrease in

GAD67-immunopositive neurons in Brd2+/2 mice was 32%

(*p = 0.0026; Figures 3D, E, F). Again, there were no sex-related

differences.

Although we noted above that there was a major effect of

genotype on GAD67-immunopositive neurons, we saw no effect of

Brd2 genotype on PVA-immunopositive neuron numbers in either

CPu or GP, suggesting a structure-specific expression of

GABAergic neurons in Brd2+/2 mice. However, two-way

ANOVA revealed a significant effect of sex alone, consistent with

previously reported prenatal findings [44]: males had, on average,

30% fewer PVA-immunopositive neurons compared to females

irrespective of genotype (*p = 0.0017; Figure 3G). This was unlike

Figure 2. Combined EEG/videorecordings of spontaneous seizures in Brd2+/2 mice. (A) Scheme of head mounted electrodes with one
reference (REF) in the nasal bone, one common ground in the occipital area, and active electrodes in the left and right frontal area (LF, RF,
respectively) and in both occipital areas (BiO). (B) EEG recordings of interictal discharges (one indicated by an arrow) in a Brd2+/2 mouse associated
with myoclonic jerks (twitches of body musculature). (C) EEG recordings from the same mouse showing a long EEG seizure consisting of spike-and-
wave pattern. Onset of seizure is marked by an arrowhead. (D) EEG recordings of spindle-shaped sharp wave episodes associated with behavioral
freezing in another Brd2+/2 mouse. Onset of two spindles (about 3 s and 1 s long) is marked by arrowheads. (E) Frozen video frames (under infrared
lighting) showing onset of a violent clonic seizure (E1) in a Brd2+/2 mouse and the end of status epilepticus (after more than an hour of clonic
seizures) in the same mouse (E2).
doi:10.1371/journal.pone.0023656.g002

BRD2 Haploinsufficiency and Epilepsy
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the findings in the SNR, in which there was a notable genotype-

dependent difference in PVA-positive neuron count.

We also compared the number of GAD67- and PVA-

immunopositive neurons in the primary motor cortex. As in

the CPu and GP, there was a statistically significant 23%

decrease in the number of GAD67-positive neurons in Brd2+/2

mice (n = 7) vs. Brd2+/+ mice (n = 6; *p = 0.025; Figure 3H).

However, like the CPu and GP and unlike the SNR, there was

no difference in the number of PVA-immunopositive neurons in

the motor cortex. Unlike the CPu and GP results (above), there

was no effect of sex on the numbers of either neuronal subtype

(Figure 3H).

Finally, we determined GAD67 concentration in areas of fibers

devoid of cell bodies in the thalamic VM, another significant

GABAergic output of the SNR, involved in seizure control [40].

Similar to SC, we found a small (7%) but statistically significant

decrease in GAD67 immunodensity in Brd2+/2 mice (n = 8)

compared to Brd2+/+ mice (n = 8; *p = 0.048; Figure 3I). There

was no effect of sex on the GAD67 concentration and no

interaction between the sex of the subjects and genotype.

Figure 3. Expression of GABAergic markers in the Brd2+/2 mice and Brd2+/+ littermate controls. (A) Simplified scheme of a direct basal
ganglia pathway, which includes primary motor cortex, caudate-putamen (CPu) and globus pallidus (GP), substantia nigra reticulata (SNR), and its
outputs the superior colicullus (SC) and ventral medial thalamic nucleus (VM). Dark arrows indicate glutamatergic outputs, while grey arrows mark
GABAergic projections [39]. (B) Number of PVA-immunopositive neurons and density of GAD67 staining per neurons in the SNR of Brd2+/2 mice (+/2)
versus Brd2+/+ littermate controls (+/+; expressed in % of control values; mean 6S.E.M.). While the number of PVA-positive neurons significantly
decreased, the GAD67 content within neurons slightly increased in the SNR of Brd2+/2 mice. (C) GAD67 content in the fibers of the intermediate gray
matter layer (inter) of the SC was decreased in Brd2+/2 mice vs. Brd2+/+ controls. However, the GAD67 content in the deep gray matter layer of the SC
(deep) was not different between Brd2+/2 mice and. Brd2+/+ controls. This finding is consistent with presence of GABAergic terminals originating from
the SNR in the intermediate, but not deep, gray matter layer of the SC. (D) Number of GAD67-immunopositive neurons in the CPu and GP was
profoundly decreased in both parts of the striatum in Brd2+/2 mice compared to Brd2+/+ littermates illustrated further in microphotographs of upper
outer quadrant of CPu in a Brd2+/+ (E) and Brd2+/2 mouse (F). (G) Sex-specific difference in the relative number of PVA-positive neurons in the CPu.
Males irrespective of genotype had about 30% fewer PVA neurons than females. There was no significant effect of genotype. (H) There was a significant
decrease in number of GAD67-, but not PVA-immunopositive neurons in the primary motor cortex in Brd2+/2 mice versus Brd2+/+ controls. (I) GAD67
content in the fibers of the ventral medial thalamic nucleus (VM) in the Brd2+/2 mice was significantly decreased compared to Brd2+/+ controls. (J)
Number of PVA-immunopositive neurons in the hilar area of the dentate gyrus in both dorsal and ventral hippocampi was unchanged as in Brd2+/2
mice compared to Brd2+/+ littermates.
doi:10.1371/journal.pone.0023656.g003

BRD2 Haploinsufficiency and Epilepsy
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Because the hippocampus is not involved in primarily

generalized seizures [45], we hypothesized that there will be no

differences in GABA markers in this structure. The distribution of

GABA markers in the hippocampus could thus indicate whether

the GABA-related changes in Brd2+/2 mice represent a global

brain feature or are specific for the basal ganglia pathway. There

were no genotypic or sex-related differences in PVA-immunopo-

sitive neuron numbers between Brd2+/2 and Brd2+/+ mice in the

dentate gyrus in the ventral and dorsal parts of the hippocampus,

suggesting the effect of a Brd2 deficit was confined to only certain

pathways (Figure 3J).

Discussion

This is the first demonstration of a developmentally-related

mechanism for seizure susceptibility of common forms of epilepsy.

That mechanism involves a deficit of GABAergic neurons caused

by haplo-insufficiency of the mouse Brd2 gene. This significant

deficit of inhibitory GABAergic neurons was observed along the

basal ganglia seizure-controlling pathway, but not in regions of the

brain outside this pathway (i.e., deep layers of the superior

colliculus not connected to the SNR or hippocampal dentate

gyrus). This decrease in inhibitory neurons and their GABA-

synthesizing enzyme expression (GAD67) presages increased

seizure susceptibility and spontaneous seizure development.

Even though the effects of a BRD2 deficiency in humans are

likely to be more subtle than those arising from a complete

elimination of one of the BRD2 alleles (the situation in the Brd2+/2

mice), there are consistent imaging-related differences in JME

patients vs. normals [46,47,48,49]. That is, there are additional

human findings, besides the genetic data, that directly connects

human epilepsy to our finding of a reduction in GABAergic

neurons in Brd2+/2 mouse basal ganglia pathway. Decreased

volume in the basal ganglia was reported in human IGE [50,51]

and a decrease in caudate nucleus blood-oxygen-level-dependent

(BOLD) MRI signal has been observed in children with absence

epilepsy [52]. Also, after treatment of IGE patients with

lamotrigine, there is reduced glucose metabolism in basal ganglia

(including the substantia nigra), and in cerebral cortex and

thalamus, further suggesting association of basal ganglia pathway

with IGE syndromes in humans [53]. These findings correlate well

with our data in the Brd2+/2 mouse model.

Our data show that haploinsufficiency for the Brd2 gene in mice

is associated with decreased number of GABAergic neurons,

which may be important for control of seizure activity, especially

in critical brain structures [54,55,56]. These results strengthen the

hypothesis that aberrant expression of human BRD2 contributes to

JME susceptibility, and perhaps other epilepsy-related phenome-

na, in humans. That is, GABAergic system impairment in Brd2+/2

mice suggests that a developmentally-based deficit of GABAergic

neurons might be a mechanism underlying the etiology of IGE. In

this study, we focused our observations on the GABA system

because we found increased susceptibility to primarily generalized

seizures and generalized spontaneous seizures. In these seizure

syndromes, structures and pathways containing GABA are

considered as major contributors [33,56,57,58,59]. However, we

cannot exclude participation of enhanced activity of glutamatergic

excitatory system in our findings. Further, the sex-related

differences we observed in the mice with a Brd2 deficit correlate

well with the sex-specific expression of seizure susceptibility in

human JME [60].

Thus, regulatory genes such as the bromodomain-containing

BRD2 may be significantly involved in common IGE syndromes.

The recent report of a role for the gene encoding the transcription

factor ELP4 in the development of centrotemporal EEG spikes in

rolandic epilepsy [61] further suggests that the common genetic

epilepsies can be influenced by genes involved in the regulation of

gene expression in brain development. The basis for autosomal

dominant partial epilepsy with auditory features (ADPEAF), the

LGI1 gene, also appears to have a developmental origin [62].

These findings are important for widening our perspectives on

which kinds of genes are responsible for IGE syndromes in

particular and seizure disorders in general.

An additional contribution of this study is the focus on

somewhat neglected subcortical basal ganglia structures [36]

specifically with regard to IGE. This focus represents a diversion

from the common approach of concentrating on the hippocampus,

amygdala, thalamus, or cortex, with regard to seizure disorders,

and indicates that specific seizure disorders may involve specific

brain structures. This finding may significantly contribute to novel

therapies focused on those brain nuclei in patients with IGE.

In conclusion our data clearly indicate that Brd2 haploinsuffi-

ciency is associated with a deficit of GABAergic neurons and along

the basal ganglia path in structures critical for control of seizure

activity. This developmentally-related impairment of the GA-

BAergic system likely contributes to increased susceptibility to

provoked seizures and to the development of spontaneous seizures

in Brd2+/2 mice. BRD2 has been associated and linked to the

expression of JME in humans, this underlying susceptibility could,

when another insult occurs, either environmental or genetic, lead

to the expression of epilepsy.

Materials and Methods

Ethics Statement
All animal utilization was carried out in strict accordance with

the recommendations in the Guide for the Care and Use of

Laboratory Animals of the National Institutes of Health. The

protocols were approved by the IACUC of the Columbia

University (breeding; protocol number: AAAA8870) and the

Albert Einstein College of Medicine (experiments; protocol

number: 20080914). All surgery was performed under ketamine/

xylazine anesthesia, and all efforts were made to minimize

suffering and the number of mice used while keeping the statistical

power.

Brd2+/2 mice (Mus musculus) and Brd2+/+ littermates (controls)

were generated by mating heterozygous Brd2+/2 females to

heterozygous Brd2+/2 males. The mice used in this study were at

the 7th generation of backcrossing onto a C57Bl/6J background.

At this step of backcrossing, their genetic background would be

considered on average 99% C57Bl/6J (Mouse Nomenclature,

jaxmice.jax.org). The genotypes of the mice were assessed by PCR

using primers that spanned the gene-trap vector junction inserted

into the Brd2 gene [20].

Vapor inhalation of flurothyl [bis(2,2,2-trifluorethyl) ether; CAS

333-36-8], induces a sequence of seizure behaviors: myoclonic

twitches, clonic seizures of face and forelimb muscles with

preserved righting ability, and tonic-clonic seizures of all four

limbs with the loss of righting [63]. Mice in pairs (always Brd2+/2

and Brd2+/+) were exposed to flurothyl in an air-tight chamber.

Flurothyl was delivered at a constant 40 ml/min rate until the

tonic-clonic seizures developed. Seizure behavior was evaluated by

two independent observers blinded to the mouse genotype.

Latency to onset of twitches, clonic, and tonic-clonic seizures

were recorded. The amount of flurothyl delivered by the time of

seizure onset served as the measure of the seizure threshold value

[64]. Female estrous cycles were monitored as changes in vaginal

epithelium impedance using a vaginal impedance meter (Fine
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Science Tools, Foster City, CA) [65,66,67] because changes in

progesterone and estrogen levels may alter seizure susceptibility

[68].

Pinnacle Technology, Inc., three-channel EEG system with

time-locked infrared videorecording was used for long-term EEG/

videomonitoring. Mice were implanted with EEG electrodes

under ketamine/xylazine (70/7 mg/kg i.p.) anesthesia. We used

epidural silver ball electrodes, positioned bilaterally in frontal and

occipital cortex. A stainless steel screw in the nasal bone was the

reference electrode, and a similar screw above the cerebellum

served as ground. The mice were recorded for minimum of 5 days,

24 hours a day. The recordings were first pre-sorted using Sirenia

Seizure software and all seizure-suspect segments were visually

inspected including video.

To identify GABAergic neurons, 40 mm thick coronal hemi-

sections, were cut. Alternating sections were collected for

parvalbumin (PVA) and GAD67 immunostaining. PVA is a useful

marker of GABAergic neurons in the SNR or hippocampal hilus,

where it almost completely co-expresses with GABA [41].

However, in other brain structures PVA is expressed only in

small subpopulations of GABAergic neurons. GAD67 (isozyme of

glutamic acid decarboxylase, a GABA synthesizing enzyme) tags

almost entire population of GABAergic neurons and additionally,

GAD67’s expression (density measurement) within individual cells

may provide an estimate of GABA synthesis. The immunostaining

was performed in free-floating sections using an avidin-biotin

horseradish peroxidase method (Vectastain AB kit, Vector

Laboratories, Burlingame, CA) [69] with primary antibodies:

anti-parvalbumin (1:5000; Sigma, St. Louis, MO); anti-GAD67

(1:4000; Millipore, Temecula, CA). We were interested only in

differences in cell numbers between Brd2+/2 and Brd2+/+ mice;

therefore, we compared the relative number of immunopositive

cells in Brd2+/2 and Brd2+/+ mice. Section images were digitally

captured. Counts were performed in the direct basal gaglia

pathway (primary motor cortex, striatum, SNR) and in the hilus of

the dorsal and ventral hippocampus to determine site-specificity of

findings. For counting, a minimum of three corresponding sections

were selected in each structure of interest in both Brd2+/2 and

Brd2+/+ mice and all immunopositive neurons were counted.

Counts were averaged and the average used for statistical

evaluation.

We also compared relative densities of GAD67 expression in

Brd2+/2 and Brd2+/+ mice. To minimize variability between the

groups, tissue from a heterozygote and a wild type mouse were

processed together. We evaluated the density of GAD67

immunoexpression in the SNR cells (manually outlined somata)

and in the fibers of the superior colliculus (SC) or ventral medial

thalamic nucleus (VM) [40,42] under 4006 magnification using

computer-assisted image analysis (ImageJ, Wayne Rasband, NIH)

to quantify the relative amounts of protein [70]. In three

corresponding sections per subject, we averaged semiquantitative

densitometry measurements of three samples of areas (same area

rectangles randomly positioned over the section) containing fibers

or five randomly chosen immunopositive cell somata. In the SC,

we measured GAD67 expression in the intermediate (receiving

abundant SNR input connections) and deep (sparse SNR inputs)

gray matter layers [71]. Three areas devoid of cell bodies were

manually outlined across each layer. All densitometry measure-

ments were normalized using in relation to white matter

background (non-specific staining in the cerebral peduncle for

the SC or mamillothalamic tract for the VM) and averaged for

each subject before entering statistics.

Statistics. Seizure susceptibility was evaluated by sex. For

seizure threshold evaluation, multivariate ANOVA was used.

Genotype was the main factor (levels: Brd2+/+ or Brd2+/2). Age

was used as a covariate in males; in females, age and vaginal

impedance were the covariates. A lack of effect of a covariate, and

no interaction with the main effect, caused the covariate’s removal

from the analysis. The numbers of clonic seizures were compared

by non-parametric Mann-Whitney U test. Immunopositive cell

numbers were compared first using ANOVA with factors of

genotype and sex. If no main effect of sex was found, the factor of

sex was removed from analysis and the evaluation was run using

Student’s t-test. Densitometric expression of GAD67 was

evaluated similarly. Significance threshold was set at p,0.05

and adjusted for multiple comparisons. Graphs show means

6S.E.M.s.
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