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Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the selective loss of motor neurons.
Recent studies have implicated that chronic hypoxia and insufficient vascular endothelial growth factor (VEGF)-dependent
neuroprotection may lead to the degeneration of motor neurons in ALS. Expression of apelin, an endogenous ligand for the
G protein-coupled receptor APJ, is regulated by hypoxia. In addition, recent reports suggest that apelin protects neurons
against glutamate-induced excitotoxicity. Here, we examined whether apelin is an endogenous neuroprotective factor
using SOD1G93A mouse model of ALS. In mouse CNS tissues, the highest expressions of both apelin and APJ mRNAs were
detected in spinal cord. APJ immunoreactivity was observed in neuronal cell bodies located in gray matter of spinal cord.
Although apelin mRNA expression in the spinal cord of wild-type mice was not changed from 4 to 18 weeks age, that of
SOD1G93A mice was reduced along with the paralytic phenotype. In addition, double mutant apelin-deficient and SOD1G93A

displayed the disease phenotypes earlier than SOD1G93A littermates. Immunohistochemical observation revealed that the
number of motor neurons was decreased and microglia were activated in the spinal cord of the double mutant mice,
indicating that apelin deficiency pathologically accelerated the progression of ALS. Furthermore, we showed that apelin
enhanced the protective effect of VEGF on H2O2-induced neuronal death in primary neurons. These results suggest that
apelin/APJ system in the spinal cord has a neuroprotective effect against the pathogenesis of ALS.
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Introduction

Amyotrophic lateral sclerosis (ALS), the most common adult-

onset motor neuron disease, is caused by a selective loss of motor

neurons leading to progressive paralysis of muscles and ultimately

death [1]. Approximately 10% of ALS cases is familial, of which

20% are associated with dominant mutations in the gene encoding

the human Cu2+/Zn2+ superoxide dismutase-1 (SOD1) [2].

Transgenic animals overexpressing mutant SOD1 develop pro-

gressive motor neuron disease that resembles the clinical and

pathological features of human familial ALS [3]. Although the

precise pathogenesis of ALS remains unclear, studies using these

animal models have proposed several hypotheses to explain motor

neuron degeneration, including glutamate-induced excitotoxicity

[4] and oxidative damage [1].

Recently, chronic hypoxia and insufficient vascular endothelial

growth factor (VEGF)-dependent neuroprotection has been linked

to the degeneration of motor neurons in ALS. Mice with deletion

of the hypoxia-response element in the VEGF promoter region

(VEGFd/d) develop spinal hypoperfusion and adult-onset progres-

sive motor neuron degeneration [5]. Prior to motor neuron

degeneration, SOD1 mutants exhibit disruption of the blood-

spinal cord barrier, endothelial damage, and hypoperfusion [6].

Furthermore, Crossbreeding SOD1G93A mutant mice with mice

overexpressing VEGF in neurons produces a phenotype charac-

terized by delayed motoneuron loss and motor impairment, and

prolonged survival compared with mice carrying the SOD1G93A

gene alone [7]. In addition, the cerebrospinal fluid VEGF levels

are significantly increased in patients with long duration of ALS

[8]. These findings suggest that chronic hypoxia have been

implicated in the pathology of ALS.

The human apj gene encodes a G protein-coupled receptor

(GPCR) [9]. Apelin was identified as an endogenous ligand for the

orphan GPCR APJ [10]. Apelin expression is high in human

spinal cord [11], and regulated by hypoxia [12], [13]. Recent

studies suggest that apelin protects neurons against glutamate-

induced excitotoxicity [14], [15]. Furthermore, we previously

showed that the apelin/APJ system cooperates with VEGF to

regulate vascular development in the retina [16]. Kidoya et al. also

demonstrated that apelin in combination with VEGF induced

proliferation and assembly of endothelial cells [17]. Therefore, the

apelin/APJ system alone or in combination with VEGF may play

a neuroprotective role in the pathogenesis of ALS. Here, to

examine whether apelin is an endogenous neuroprotective factor
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using the SOD1G93A mouse model of ALS, we have established

apelin deficient mice carrying the SOD1 mutation. In the present

study, we demonstrated that the apelin receptor APJ was detected

in neuronal cell bodies located in spinal cord, that apelin

expression in spinal cord of SOD1G93A mice was reduced along

with the paralytic phenotype, and that apelin deficiency

accelerated the progression of ALS. In addition to in vivo studies

using transgenic mice, our in vitro studies showed that apelin

enhanced the protective effect of VEGF on oxidative stress-

induced neuronal death. Our findings suggest that apelin/APJ

system plays a protective role in the pathogenesis of ALS.

Results

Apelin and APJ expressions in mouse CNS tissues
We analyzed the precise distribution of apelin and APJ mRNA

in mouse CNS tissues by real-time RT-PCR method. As shown in

Fig. 1, the highest expression of apelin was observed in the spinal

cord (4-fold higher than olfactory bulb, Fig. 1A). APJ receptor

expression was also highest in the spinal cord (Fig. 1B).

To identify the target cells for apelin/APJ system in spinal cord,

we examined APJ expression in the spinal cord by immunohis-

tochemical staining. In the spinal cord from wild-type mice at 14

weeks of age, APJ-positive cells were located in the ventral horn

and around the central canal, which were colocalized with NeuN,

a neuronal marker, -positive cells throughout the spinal cord gray

matter (Fig. 2A–C). In contrast, APJ was expressed in neither glial

fibrillary acidic protein (GFAP)-positive glial cells Fig. 2D–F) nor

IbaI-positive microglia (data not shown) in spinal cord. In addition

that the APJ-positive cells were in the large neurons of ventral

horn, we addressed APJ was expressed in the choline acetyltans-

ferase (ChAT)-positive cells by immunostaining in adjacent

sections (data not shown). These data indicated that APJ was

expressed in the motor neurons.

Apelin mRNA expression is downregulated in spinal
cords of SOD1G93A mice

The first clinical signs of motor neuron disease in SOD1G93A

mice were fine hind limb tremors. The SOD1G93A mice began to

display hind limb tremors around 10 weeks, gait abnormalities

around 14 weeks, and dragging of at least one hind limb around

18 weeks, whereas the control mice never showed signs of motor

dysfunction (Fig. 3A). Contrasted with the progressive weight gain

of the control group, body weight loss in SOD1G93A mice became

evident around 10 weeks of age (Fig. 3B). Furthermore, we

investigated the number of motor neuron in the lumbar spinal

cord sections from 4-week-old to adult mice by ChAT immuno-

staining. Compared with control group, SOD1G93A mice began to

show prominent depletion of anterior horn motor neurons around

14 weeks age (Fig. 3C).

We next compared the expressions of apelin and APJ mRNA in

lumbar spinal cord of SOD1G93A mice with those of control mice

using real-time RT-PCR. In SOD1G93A mice, apelin expression in

the spinal cord was significantly decreased at the 14 and 18 weeks

age (Fig. 4A). In contrast to spinal cord, apelin expression in the

lung of SOD1G93A mice was similar to that of control mice at the

18 weeks age (Control: 1.0060.11, TG: 1.0060.12). On the other

hand, there was not a significant difference in APJ expression in

lumbar spinal cord of between control and SOD1G93A mice

(Fig. 4B).

Apelin deficiency accelerates the progression of the
disease in SOD1G93A mice

To evaluate the effects of apelin deficiency on the SOD1G93A

neurodegenerative phenotype, we compared double mutant

apelin-KO and SOD1G93A (KO-SOD1G93A) mice with their

SOD1G93A littermates in motor performance. We previously

reported that apelin-KO mice exhibited normal behavioral

phenotype other than ocular abnormality [16]. We also performed

the rotarod and footprint tests recording locomotion which

displayed comprised motor functions and gait disturbance of

mice. Consistent with our previous data [16], we could not detect

the abnormality of the motor performance in apelin-KO mice

with intact SOD1 (Fig. 5). On the other hand, KO-SOD1G93A

mice displayed hindlimb tremors earlier than SOD1G93A litter-

mates (Fig. 6A). In the rotarod test, SOD1G93A littermates had a

learning phase showing improvement until 11 weeks of age,

sustained their maximal performance level, and began to decline

steadily at 14 weeks of age. In contrast to SOD1G93A littermates,

KO-SOD1G93A mice had a learning phase until 9 weeks of age

and subsequently performed significantly less well than SOD1G93A

littermates (Fig. 6B). Moreover, we investigated the number of

motor neurons in lumbar spinal cord of KO-SOD1G93A mice and

Figure 1. Apelin and APJ mRNA expression profiles in mouse
CNS tissues. Expression of apelin (A) and APJ (B) in wild type mice
were examined by real-time PCR (n = 3–4). Data are expressed as
arbitrary units normalized to b-actin, and represent mean 6 SEM.
doi:10.1371/journal.pone.0023968.g001

Figure 2. APJ expression in the lumbar spinal cord of WT mice.
Representative pictures of ventral horn show double immunostaining
for APJ and NeuN (A–C) or GFAP (D–F) in the lumbar spinal cord. Scale
bar = 200 mm (upper panels), 100 mm (lower panels).
doi:10.1371/journal.pone.0023968.g002

Role of Apelin in the Progression of ALS
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SOD1G93A littermates at 14 weeks of age by ChAT immuno-

staining. The number of ChAT-positive neurons in KO-

SOD1G93A mice was significantly decreased compared with

SOD1G93A littermates (Fig. 6C).

Microglial activation contributes to the oxidative stress and

damage involved in the ALS process, and parallels the disease

progression [18]. Also, the expression of mutant SOD1 in

microglia contributes to the progression motor neuron degener-

ation [19], [20]. In fact, we detected that the microglia of

SOD1G93A mice in lumber spinal cord were significantly activated

at 18 weeks of age (WT: 2.6460.22%, SOD1G93A: 6.7562.16%).

Therefore, to evaluate the disease progression, we next examined

the microglia activation in lumbar spinal cord of KO-SOD1G93A

mice and SOD1G93A littermates at 14 weeks of age. The Iba1+

microglial cell population in the lumbar spinal cord of KO-

SOD1G93A mice was significantly increased two-fold compared

with SOD1G93A littermates (Fig. 7). These data suggest that apelin

deficiency promotes the disease progression of SOD1G93A mice.

Neuroprotective effect of apelin on cell death induced by
hydrogen peroxide in primary neurons

We next examined whether apelin protects neurons against cell

death. Consistent with previous report [14], we detected the

robustly expressed APJ in rat primary hippocampus neurons, not

cerebral cortex neurons, by RT-PCR (Fig. 8A). The cultured

hippocampal neurons were exposed to 10 mM hydrogen peroxide,

which is known to induce apoptosis for 24 hours, and then cell

death was measured 24 h later by 3- (4, 5-dimethylthiazol-2-yl)-2,

5-diphenyltetrazoilium bromide (MTT) assay. Apelin alone did

not affect on cell viability in the absence of hydrogen peroxide

(Fig. 8B). Moreover, Apelin alone (1–100 mM) did not protect

hydrogen peroxide-induced cell death (Fig. 8C). However,

100 mM apelin co-applied with VEGF (50 ng/ml) showed

significant neuroprotection (Fig. 8D).

Discussion

SOD1 mutants such as G93A lead to the blood-spinal cord

barrier breakdown and subsequent reduction in blood flow

through lumbar spinal cord [6], [21]. In VEGFd/d mice exhibiting

ALS like phenotype, baseline neural blood flow was also lower

than that of control mice [5]. Chronic hypoxia has been linked to

motor neuronal death in ALS [1], [22]. In addition, apelin

expression was upregulated by hypoxia in astrocyte (data not

shown) as well as other cell types [12], [13]. Therefore, we

predicted that apelin expression would be upregulated in the

spinal cord of SOD1G93A mice. Unexpectedly, we found that

apelin expression in spinal cord was declined along with the

progression of ALS. Mutant SOD1 including G93A disrupts the

RNA stabilization, possibly by altering the ribonucleoprotein

complex, and downregulates VEGF expression [23]. This

dysregulation is mediated through the adenylate/uridylate-rich

Figure 3. Time course of disease progression in SOD1G93A mice monitored with three different tests. (A) Motor signs (hind limb tremors)
were measured with the clinical scoring system (see methods). (B) Body weight was monitored twice a week. (C) The number of ChAT-positive cell
bodies was decreased at end-stage disease for SOD1G93A mice. **p,0.01 vs. wild-type mice. Data represent mean 6 SEM.
doi:10.1371/journal.pone.0023968.g003

Figure 4. Gene expression in lumbar spinal cord of SOD1G93A

mice. Temporal expression patterns of apelin (A) and APJ (B) in the
lumbar spinal cord of wild-type (open column) and SOD1G93A (closed
column) mice were examined by real-time RT-PCR (n = 3–6). Data are
mean 6 SEM. **p,0.01 vs. wild-type mice.
doi:10.1371/journal.pone.0023968.g004

Figure 5. Motor performance in apelin-KO mice. (A) Rotarod test.
The average for time spend on the rotarod across five test trials for wild-
type (open circles, n = 22) and apelin-KO (closed circles, n = 22) mice. (B)
Footprint analysis of wild-type (open column, n = 12) and apelin-KO
(closed column, n = 14). The base of support was determined by
measuring the distance between the central pads of the hind paws
(DBF). The stride lengths of the hind paws (SL) were measured in two
consecutive prints. Data are mean 6 SEM.
doi:10.1371/journal.pone.0023968.g005

Role of Apelin in the Progression of ALS
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elements (AREs) in the VEGF 39-untranslated region (UTR),

where an aberrant ribonucleoprotein complex is formed in the

presence of mutant SOD1. In silico analysis, we found that the

apelin 39-UTR also have five AREs (unpublished). Accordingly,

the decline of apelin expression in spinal cord may be due to the

disruption of RNA stabilization by mutant SOD1.

The APJ expression was not changed in spite of a decrease in

ChAT neurons in the ALS mouse spinal cord, although the APJ

expressed in ChAT-positive neurons in the spinal cord. APJ is

expressed in not only ChAT-positive motor neurons but also

interneurons in the gray matter of the spinal cord (Fig. 2).

Therefore, the reason why we could not detect the decrease of APJ

expression may result from APJ abundantly expressed in other

neurons such as interneurons with the exception of motor neurons.

On the other words, apelin/APJ system may have not only the

neuroprotective effect, as suggested here, but also other roles such

as the regulation of reflex or nerve conduction. In fact, we detected

that the latency to lick the hind paw of apelin-KO mice was

significantly decreased that of wild-type mice using 55uC hot plate

test (wild-type: 26.361.31 s, apelin-KO: 22.161.56 s).

The distribution profiles were different from each other between

mRNA expression of apelin and APJ in murine brains, although

the highest expressions of apelin and APJ were observed in the

spinal cord (Fig. 1). One possibility is that apelin could additionally

act on receptors other than APJ in both the pons/medulla and the

midbrain with enrichment of white matter. Alternatively, APJ

could play a role other than apelin receptors in the cerebellum

with a lower expression of apelin.

Apelin which activates the PI3K/AKT signaling pathway

enhances angiogenesis induced by VEGF which also has a

neuroprotective effect through VEGFR-2/AKT signaling path-

way [16], [17]. Therefore, we examined whether apelin

significantly enhances the neuroprotective effect of VEGF

(Fig. 8). Apelin expectedly had a neuroprotective effect combined

with VEGF, although further study on the relation between the

apelin/APJ system and VEGF signaling is required. Meanwhile, a

previous report also shows that a low dose of apelin (1–5 nM)

significantly protects quinolinic acid-induced neuronal apoptosis in

mouse cortical neurons [15]. In this study, we could not detect the

neuroprotective effect of apelin alone (1–100 mM) against hydrogen

peroxide-induced neuronal death in rat hippocampal neurons, and

that was unexpected. The difference of neuroprotective effect

could be explained on the basis of experimental conditions used

such as treatment or species difference, or high doses of apelin

(1 mM). This induces not only the activation of cell survival

signaling such as ERK1/2 and AKT activation [24], [25], but also

AMP-activated protein kinase (AMPK) activation [26]. Therefore,

we cannot deny the possibility that the neuroprotective effect of

apelin could be masked by activating other signaling pathways.

Currently, existing treatment for ALS provides only marginal

benefit [27]. Insulin like growth factor-1 (IGF-1) is one of the most

promising factors as neurotrophic factors against ALS-related

Figure 6. Effect of apelin deficiency on disease progression of ALS mice. (A) Motor signs (hind limb tremors) were measured as in Fig. 3B. (B)
Rotarod performance of SOD1G93A littermates (open circles) and KO-SOD1G93A (closed circles) mice was measured as described in the methods for
180 s. (C) The number of motorneurons was decreased in the lumbar spinal cord of KO-SOD1 G93A mice at 14 weeks-old (n = 3). Data represent mean
6 SEM. *p,0.05 vs. SOD1 G93A mice.
doi:10.1371/journal.pone.0023968.g006

Figure 7. Microglial activation in apelin deficient mice with mutant SOD1. Representative pictures show that Iba1-positive microglia in the
lumbar spinal cord of SOD1 G93A (A) and KO-SOD1G93A (B) mice. (C) The Iba1-positive area was increased in the lumbar spinal cord of KO-SOD1G93A

mice at 14 weeks-old (n = 3). Scale bar = 50 mm. *p,0.05 vs. SOD1G93A. Data represent mean 6 SEM.
doi:10.1371/journal.pone.0023968.g007

Role of Apelin in the Progression of ALS
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neuronal death [28]. However, intramuscular- or intrathecal

administration of IGF-1 had no significant effect on disease

progression of SOD1G93A mice [29], and subcutaneous IGF-1 has

not shown benefit in 2-year ALS trial [30]. Furthermore, several

factors, including lithium and BDNF, also delay the disease

progression, but not completely protect the neuronal death in ALS

[31], [32]. These results indicate that it is difficult for single factor

to improve disease progression or survival of ALS. Our data that

apelin enhanced the neuroprotective effect of VEGF on oxidative

stress-induced neuronal death suggest a new cocktail therapy for

ALS.

In conclusion, this is the first experimental study addressing the

involvement of an endogenous apelin in the pathogenesis of ALS

by using SOD1G93A mouse model, familial ALS model. Oxidized

species of wild-type SOD1 acquired 39-UTR binding and toxic

properties of ALS-linked mutant SOD1, implying that wild-type

SOD1 may be a contributor of pathogenesis in sporadic ALS [33].

Although further studies are required to determine the mecha-

nisms of apelin/APJ system in pathogenesis of ALS, impairment of

posttranscriptional processing of apelin RNA by mutant or

oxidized SOD1 may block an important neuroprotective pathway

and accelerates motor neuron degeneration.

Materials and Methods

Animals
Ethics Statement. The animal experiments were performed

in accordance with the guidelines of the Japanese Society for

Pharmacology and were approved by the Committee for the

Ethical Use of Experimental Animals at Setsunan University

(approval ID: K08-13/08.04.14.2.S.017). All efforts were made to

minimize animal suffering, reduce the number of animals used,

and utilize alternatives to in vivo techniques.

C57BL/6 mice with targeted disruption of the apelin gene

(apelin-KO) were generated as described previously [17]. Male

mice expressing SOD1G93A (Jackson Laboratory #002726) was

backcrossed to C57BL/6 for at least 6 generations before the start

of the experimentation with the apelin-KO mice. We crossbred

male SOD1G93A with female apelin+/2 to assess the effect of

endogenous apelin deficient on motor performance in SOD1G93A

mice. Apelin gene is located in chromosome X. Hence, all analyses

were performed with male littermates. Genotyping analysis was

performed in accordance with the Jackson Laboratory protocols

for SOD1G93A mice and as previously described for apelin gene

[17]. These mice were housed in metallic breeding cages in a room

with a 12 h/12 h light/dark cycle. The humidity was 55%,

temperature was 23uC, and mice had free access to food and

water.

Quantitative PCR to measure transcription levels
Mice were euthanized and lumbar spinal cords were removed.

Total RNA extraction from lumbar spinal cord and reverse

transcription of total RNAs (1 mg) were performed as described

previously [34]. For gene expression analysis in cell culture, total

RNA extraction from primary neurons, and reverse transcription

of total RNAs (1 mg) were performed. Quantification of all gene

transcripts was conducted using quantitative real-time RT-PCR

with ABI Prism 7900-HT (Applied Biosystems; Foster City, CA).

Real-time RT-PCR was performed using SYBR premix Ex Taq II

(Takara, Ohtsu, Japan) with the use of primer pairs as previously

described [34].

Immunohistochemistry
Perfusion-fixed spinal cords were embedded in paraffin, and

serial transverse sections (3 mm) through the lumbar spinal cord

(L2–L4) were cut. Immunostaining for APJ, NeuN, GFAP,

activated microglia (IbaI), and ChAT was performed using rabbit

polyclonal anti-APJ as previously described [32], mouse mono-

clonal anti-neuronal nuclei (1:300, Millipore), mouse monoclonal

anti-GFAP (Progen), rabbit polyclonal anti-Iba1 (WAKO), and

rabbit polyclonal anti-ChAT (1:350, Millipore). Secondary

antibodies were Alexa 568-conjugated anti-rabbit IgG (Molecular

Probes), biotin-labeled anti-mouse IgG (1:200, Dako) and FITC-

conjugated streptavidin (1:200, BD Bioscience), or peroxidase-

conjugated anti-rabbit IgG (Nichirei) and Immpact DAB (Vector

Laboratories). Immunostained sections were photographed using a

fluorescence microscope (AZ-100M, Nikon, Japan). Preimmu-

nized rabbit immunoglobulins were used as a negative control to

confirm specific staining.

For the number of motor neurons, we counted the total number

of the ChAT-positive cell bodies in 8 sections of lumber spinal

cord (L2–4) selected every 100 mm. For quantification of

microglial activation, we measured the percentage of the area of

IbaI positive cells in the gray matter of lumber spinal cord (L2–

L4).

Behavioral test
Beginning at 7.5 weeks, all animals (n = 10/genotype) were

weighed and evaluated for signs of motor deficit with the following

4 point scoring system twice a week (clinical score). 4 points if

normal, 3 points if hind limb tremors are evident when suspended

by the tail, 2 points if gait abnormalities are present, 1 point for

dragging of at least one hind limb, 0 points for inability to right

itself within 30 s.

Figure 8. Effect of apelin and VEGF on oxidative stress-induced
neurotoxicity in rat primary neurons. (A) Representative picture
shows the expression of APJ and apelin mRNA in primary cortical and
hippocampal neuronal cultures (representatively, C and H). Culture
medium was replaced with neurobasal media without B27 supplement
for 24 hours. (B) Cell viability of hippocampal neuronal cultures treated
with indicated concentration of apelin for 24 hours. The cultures were
treated with the indicated concentration of apelin (C) or with VEGF
(50 ng/ml) and apelin (indicated concentration) (D) for 15 min prior to
exposure to H2O2 (10 mM) for 24 hours. Cell viability was assessed by
MTT assay (n = 4). *p,0.05 vs. control. Data represent mean 6 SEM.
doi:10.1371/journal.pone.0023968.g008
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For the rotarod test of evaluating the paralysis phenotype, the

time for which an animal could remain on the rotating cylinder of

a rotarod apparatus (Ugo Basile) at a constant speed of 12 rpm

was measured. Each animal was given three tries and the longest

latency to fall was recorded. 180 s was chosen as the arbitrary cut-

off time. For phenotype analysis of the apelin-KO mice with intact

SOD1, an accelerated rotarod was used. The apparatus has an

initially speed of 2 rpm and gradually accelerated at a rate of

0.11 rpm/s. Each animal was given five trials; interval time was

30 min; 300 s was chosen as a arbitrary cut-off time.

The footprint test was used to qualitatively compare the gait of

wild-type and apelin-KO mice. Footprint tests were performed at

8–12 weeks age of mice. To obtain footprints, the hind and

forefeet of the mice were coated with black nontoxic paints. The

animals were then allowed to walk along a 40-cm-long, 5-cm-wild

runway coated with a white paper. Each mouse had three trials.

Cell culture
Primary rat hippocampal cultures were prepared from embry-

onic day 17 Wister rat pups as previously described [35]. Cells

were plated at a density of 56105 cells/ml on culture dish pre-

coated with polyethylenimine and maintained in neurobasal media

with B27 supplement (Invitrogen) at 37uC/5% CO2 air, as

previously described [36]. After 8 days, the percentage of neurons

was assessed by counting the Microtubule-associated protein-2

(MAP-2) positive neurons, and then we could detect more than

95% neurons in primary neuronal culture.

Assessment of cell viability
Culture medium was replaced with neurobasal media without

the B27 supplement for 24 h. The cultures were treated with

apelin (Peptide institute Inc.) or with VEGF (Peprotech) and apelin

for 15 min prior to exposure to H2O2 for 24 h. Cell viability was

determined by the colorimetric MTT assay. After exposure to

H2O2, 0.5 mg/ml MTT was added and incubation carried out for

an additional 1 h. Then, 100 ml of dimethyl sulfoxide was added to

dissolve the formazan particles. Finally, absorbance at 570 nm was

measured with a microplate reader.

Statistical analysis
Statistical analysis of the experimental data was performed by

two-way analysis of variance followed by the Tukey–Kramer test

(Fig. 3, 4, 5, 6), Student’s t test (Fig. 6C), or one-way ANOVA

followed by the Dunnett’s test (Fig. 7, 8).
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